
113

Chapter 7
Agent-Based Modelling and Simulation
with Domain-Specific Languages

Oliver Reinhardt, Tom Warnke, and Adelinde M. Uhrmacher

Conducting simulation studies within a model-based framework is a complex pro-
cess, in which many different concerns must be considered. Central tasks include
the specification of the simulation model, the execution of simulation runs, the con-
duction of systematic simulation experiments, and the management and documenta-
tion of the model’s context. In this chapter, we look into how these concerns can be
separated and handled by applying domain-specific languages (DSLs), that is, lan-
guages that are tailored to specific tasks in a specific application domain. We dem-
onstrate and discuss the features of the approach by using the modelling language
ML3, the experiment specification language SESSL, and PROV, a graph-based
standard to describe the provenance information underlying the multi-stage process
of model development.

7.1 � Introduction

In sociological or demographic research, such as the study of migration, simulation
studies are often initiated by some unusual phenomenon observed in the macro-
level data. Its explanation is then sought at the micro-level, by probing hypotheses
about decisions, actions, and interactions of individuals (Coleman, 1986; Billari,
2015). In this way, theories about decisions and behaviour of individuals, as well as
data that are used as input, for calibration, or validation, contribute to the model
generation process at the micro- and macro-level respectively. Many agent-based
demographic simulation models follow this pattern, e.g., for fertility prediction
(Diaz et al., 2011), partnership formation (Billari et al., 2007; Bijak et al., 2013),
marriage markets (Zinn, 2012) as well as migration (Klabunde & Willekens, 2016;
Klabunde et al., 2017). Whereas typically, data used for calibration and validation
focuses on the macro-level, additional data that enter the model-generating process
at micro-level add both to the credibility of the simulation model (see Chaps. 4 and
6) and to the complexity of the simulation study.

© The Author(s) 2022
J. Bijak, Towards Bayesian Model-Based Demography, Methodos Series 17,
https://doi.org/10.1007/978-3-030-83039-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83039-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-83039-7_4
https://doi.org/10.1007/978-3-030-83039-7_6
https://doi.org/10.1007/978-3-030-83039-7_7#DOI

114

An effective computational support of such simulation studies needs to consider
various concerns. These include specifying the simulation model in a succinct,
clear, and unambiguous way, its efficient execution, executing simulation experi-
ments flexibly and in a replicable manner (see Chap. 10), and making the overall
process of conducting a simulation study, including the various sources and the
interplay of model refinement and of simulation experiment execution, explicit.
Given the range of concerns, domain-specific languages (DSLs) seem particularly
apt to play a central role within supporting simulation studies, as they are aimed at
describing specific concerns within a specific domain (Fowler, 2010). In DSLs,
abstractions and notations of the language are tailored to the specific concerns in the
application domain, so as to allow the stakeholders to specify their particular con-
cerns concisely, and others in an interdisciplinary team to understand these concerns
more easily. The combination of different DSLs within a simulation study naturally
caters for the separation of different concerns required for handling the art and sci-
ence of conducting simulation studies effectively and efficiently (Zeigler &
Sarjoughian, 2017).

In this chapter, we explore how different DSLs can contribute to (a) agent-based
modelling (and present implications for the efficient execution of these models)
based on the modelling language ML3, (b) specifying simulation experiments based
on the simulation experiment specification language SESSL, and finally, (c) to relat-
ing the activities, theories, data, simulation experiment specifications, and simula-
tion models by exploiting the provenance standard PROV. We also discuss a salient
feature of DSLs, that is, that they constrain the possibilities of the users in order to
gain more computational support, and the implication for use and reuse of the lan-
guage and model.

7.2 � Domain-Specific Languages for Modelling

DSLs for modelling are aimed at closing the gap between model documentation
and model implementation, with the ultimate goal to conflate both in an executable
documentation. Two desirable properties of a DSL for modelling are practical
expressiveness, describing the ease of specifying a model in the language as well as
how clearly more complex mechanisms can be expressed, and succinctness.
Whereas the number of the used lines of code can serve as an indication for the lat-
ter, the former is difficult to measure. Practical expressiveness must not be confused
with formal expressiveness, which measures how many models can theoretically be
expressed in the language, or, in other words, the genericity of the language
(Felleisen, 1991).

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

https://doi.org/10.1007/978-3-030-83039-7_10

115

7.2.1 � Requirements

A necessary prerequisite for achieving practical expressiveness is to identify central
requirements of the application domain before developing or selecting the
DSL. These key requirements related to agent-based models, specifically in the
migration context, are listed below.

Objects of Interest.  In migration modelling, the central objects of interest are the
individual migrants and their behaviour. With an agent-based approach, migrants
are put in the focus and represented as agents. In contrast to population-based mod-
elling approaches, such an agent-based approach allows modelling of the heteroge-
neity among migrants. Each migrant agent has individual attribute values and an
individual position in the social network of agents. As a consequence, agent-based
approaches allow modelling of how the situation and knowledge of an individual
migrant influences his or her behaviour. In addition to the migrant as the central
entity, other types of actors can be modelled as agents in the system, for example
government agencies or smugglers. Although these might correspond to higher-
level entities, depicting them as agents facilitates modelling of the interaction
between different key players in migration research.

Dynamic Networks.  Agent-based migration models need to include the effects of
agents’ social ties on their decisions and vice versa. Therefore, both the local attri-
butes of an agent and its network links to other agents should be explicitly repre-
sented in the modelling language. It is also crucial to allow for several independent
networks between agents. This becomes particularly important when combining
different agent types as suggested above, for example to distinguish contact net-
works among migrants from contacts between migrants and smugglers. Note that
encoding changes in the networks can be challenging, both in the syntax of the DSL
as well as in the simulator implementation.

Compositionality.  Agent-based simulation models can become complex quickly
due to many interconnected agents acting in parallel. All agents can act in ways that
change their own state, the state of their neighbours, or network links. A DSL can
address this complexity by supporting compositional modelling. As stated by
Henzinger et al. (2011, p. 12), “[a] compositional language allows the modular
description of a system by combining submodels that describe parts of the system”.
An agent-based model as described above can be decomposed into parts on several
levels. First, different types of agents can be distinguished. Second, different types
of behaviour of a single type of agent can be described independently. Both improve
the readability of the model, as different parts of the model can be understood
individually.

Decisions.  A central goal of this simulation study is to deepen our understanding
of migrants’ decision processes (see Chaps. 3 and 6). Modelling these decisions in
detail, and the migrants’ knowledge on which they are based, is therefore inevitable.

7.2  Domain-Specific Languages for Modelling

https://doi.org/10.1007/978-3-030-83039-7_3
https://doi.org/10.1007/978-3-030-83039-7_6

116

The DSL must therefore be powerful and flexible enough to express them. In addi-
tion, the language must not be limited to a single model of decision making, to
enable an implementation and comparison of different decision models.

Formal Semantics.  Simulation models are often implemented in an ad hoc fash-
ion. If a model is instead specified with a DSL and that DSL has a formal definition,
it becomes possible to interpret the model or parts of it based on formal semantics.
The semantics of a DSL for modelling maps a given model to a mathematical struc-
ture of some class, often a stochastic process. For example, many modelling
approaches in computational biology are based on Continuous-Time Markov Chains
(De Nicola et al., 2013). In addition to helping the interpretation of a model, estab-
lishing the connection between the DSL and the underlying stochastic process also
informs the design of the simulation algorithm and, for example, allows reasoning
over optimisations. Thus, DSLs for agent-based modelling of migration benefit
from having a formal definition.

Continuous Time.  In agent-based modelling, there are roughly two ways to con-
sider the passing of time. The first approach is the so-called ‘fixed-increment time
advance,’ where all agents have the opportunity to act on equidistant time points.
Although that approach is the dominant one, it can cause problems that threaten the
validity of the simulation results (Law, 2006, 72 ff). First, the precise timing of
events is lost, which prohibits the analysis of the precise duration between events
(Willekens, 2009). Second, events must be ordered for execution at a time point,
which can introduce errors in the simulation. The alternative approach is called
‘next-event time advance’ and allows agents to act at any point on a continuous time
scale. This approach is very rarely used in agent-based modelling, but can solve the
problems above. Therefore, a DSL for agent-based modelling of migration should
allow agents to act in continuous time.

7.2.2 � The Modelling Language for Linked Lives (ML3)

Based on the above requirements we selected the Modelling Language for Linked
Lives (ML3). ML3 is an external domain-specific modelling language for agent-
based demographic models. In this context, external means that it is a new language
independent of any other, as opposed to an internal DSL that is embedded in a host
language and makes use of host language features. ML3 was designed to model life
courses of interconnected individuals in continuous time, specifically with the mod-
elling of migration decisions in mind (Warnke et al., 2017). That makes ML3 a natu-
ral candidate for application in this project. In the following Box 7.1, we give a short
description of ML3, with examples taken from a version of the Routes and Rumours
model introduced in Chap. 3, available at https://github.com/oreindt/routes-
rumours-ml3, and relate it to the requirements formulated above.

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

https://doi.org/10.1007/978-3-030-83039-7_3
https://github.com/oreindt/routes-rumours-ml3
https://github.com/oreindt/routes-rumours-ml3

117

Box 7.1: Description of the Routes and Rumours Model in ML3
Agents: The primary entities of ML3 models are agents. They represent all
acting entities of the modelled system, including individual persons, but also
higher-level actors, such as families, households, NGOs or governments. An
agent’s properties and behaviour are determined by their type. Any ML3
model begins with a definition of the existing agent types. The following
defines an agent type Migrant, to represent the migrants in the Routes and
Rumours model:

1 Migrant(
2 capital : real,
3 in_transit : bool,
4 steps : int
5)

Agents of the type Migrant have three attributes: their capital, which is
a real number (defined by the type real after the colon), for example an amount
in euro; and a Boolean attribute, that denotes if they are currently moving, or
staying at one location; and the number of locations visited so far.

Agents can be created freely during the simulation. To remove them, they
may be declared ‘dead’. Dead agents do still exist, but no longer act on their
own. They may, however, still influence the behaviour of agents who remain
connected to them.

Links: Relationships between entities are modelled by links. Links, denoted
by <->, are bidirectional connections between agents of either the same type
(e.g., migrants forming a social network), or two different types (e.g., migrants
residing at a location that is also modelled as an agent). They can represent
one-to-one (<-> e.g., two agents in a partnership), one-to-many (<-> e.g., many
migrants may be at any one location, but any migrant is only at one location),
or many-to-many relations (<-> e.g., every migrant can have multiple other
migrant contacts, and may be contacted by multiple other migrants). The fol-
lowing defines the link between migrants and their current location in the
Routes and Rumours model:

location:Location[1]<->[n]Migrant:migrants

This syntax can be read in two directions, mirroring the bidirectionality of
links: from left to right, it says that any one [1] agent of the type Location
may be linked to multiple [n] agents of the type Migrant, who are referred
to as the location’s migrants. From right to left, any Migrant agent is
linked to one Location, which is called its location. ML3 always pre-
serves the consistency of bidirectional links. When one direction is changed,
the other is changed automatically. For example, when a new location is set
for a migrant, it is automatically removed from the old location’s migrants,
and added to the new location’s migrants.

(continued)

7.2  Domain-Specific Languages for Modelling

118

Box 7.1  (continued)
Function and procedures: The ability to define custom functions and pro-

cedures adds expressive power to ML3, allowing complex operations, and
aiding readability and understandability by allowing for adding a layer of
abstraction where necessary. Unlike many general-purpose programming lan-
guages, ML3 distinguishes functions, encapsulating calculations that return a
result value, and procedures, containing operations that change the model
state. Both are bound to a specific agent type, making them related to methods
in object-oriented languages. A library of predefined functions and proce-
dures aids with common operations. The following function calculates the
cost of travel from the migrant’s current location to a potential destination
(given as a function parameter):

Migrant.move_cost(?destination : Location) : real :=
costs_move * ego.location.link
.filter(?destination in alter.endpoints).only().friction

The value of this function is calculated from the base cost of movement
(the model parameter costs_move), scaled by the friction of the connection
between the two locations, which is gained by filtering all outgoing ones
using the predefined function filter, and then unwrapping the only element
from the set of results using only(). The keyword ego refers to the agent
the function is applied to. Procedures are defined similarly, with -> -
ing the:=.

Rules: Agents’ behaviour is defined by rules. Every rule is associated with
one agent type, so that different types of agents behave differently. Besides
the agent type, any rule has three parts: a guard condition, that defines who
acts, i.e., what state and environment an agent of that type must be in, to show
this behaviour; a rate expression, that defines when they act; and the effect,
that defines what they do. With this three-part formulation, ML3 rules are
closely related to stochastic guarded commands (Henzinger et al. 2011). The
following (slightly shortened) excerpt from the Routes and Rumours shows
the rule that models how migrants begin their move from one location to
the next:

1 Migrant
2 | !ego.in_transit // guard
3 @ ego.move_rate() // rate
4 -> ego.in_transit := true // effect
5 ego.destination := ego.decide_destination()

The rule applies to all living agents of the type Migrant (line 1). Like in
a function or procedure, ego refers to one specific agent to which the rule is
applied. According to the guard denoted by | (line 2) the rule applies to all

(continued)

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

119

migrants who are currently not in transit between locations. The rate fol-
lowing @ (line 3) is given by a call to the function move_rate, where a rate
is calculated depending on the agent’s knowledge of potential destinations.
The value of the rate expression is interpreted as the rate parameter of an
exponential distribution that governs the waiting time until the effect is exe-
cuted. Rules with certain non-exponential waiting times may be defined with
special keywords (see Reinhardt et al., 2021). The effect is defined in lines 4
and 5, following ->. The migrant decides on a destination and is now in tran-
sit to it.

Box 7.1 (continued)

In general, the guard and rate may be arbitrary expressions, and may make use of
the agent’s attributes, links (and attributes and links of linked agents as well), and
function calls. The effect may be an arbitrary sequence of imperative commands,
including assignments, conditions, loops, and procedure calls. The possibility of
using arbitrary expressions and statements in the rules is included to give ML3
ample expressiveness to define complex behaviour and decision processes. The use
of functions and procedures allows for encapsulating parts of these processes to
keep rules concise, and therefore readable and maintainable.

For each type of agent, multiple rules can be defined to model different parts of
their behaviour, and the behaviour of different types of agents is defined in separate
rules. The complete model can therefore be composed from multiple sub-models
covering different processes, each consisting of one or more rules. Formally, a set of
ML3 rules defines a Generalised Semi-Markov Process (GSMP), or a Continuous-
time Markov Chain (CTMC) if all of the rules use the default exponential rates. The
resulting stochastic process was defined precisely in Reinhardt et al. (2021).

7.2.3 � Discussion

Any domain-specific modelling language suggests (or even enforces), by the meta-
phors it applies and the functionality it offers, a certain style of model. Apart from
the notion of linked agents, which is central for agent-based models, for ML3, the
notion of behaviour modelled as a set of concurrent processes in continuous time is
also of key importance. This is in stark contrast to commonly applied ABM frame-
works such as NetLogo (Wilensky, 1999), Repast (North et al., 2013), or Mesa
(Masad & Kazil, 2015), which are designed for modelling in a stepwise, discrete-
time approach. If in a simulation model events shall occur in continuous time, these
events need to be scheduled manually (Warnke et al., 2016). In this regard, and with
its firm grounding in stochastic processes, ML3 is more closely related to stochastic
process algebras, which have also been applied to agent-based systems before
(Bortolussi et al., 2015). Most importantly, this approach results in a complete sepa-
ration of the model itself, and its execution. ML3’s rules describe these processes

7.2  Domain-Specific Languages for Modelling

120

declaratively, without including code to execute them (which we describe in the
next section of this chapter). This makes the model more succinct, accessible and
maintainable.

The result of applying ML3 to the Routes and Rumours model was twofold
(Reinhardt et al., 2019). On the one hand, the central concepts of ML3 were well
suited to the model, especially in separating the different kinds of behaviour into
multiple concurrent processes for movement, information exchange, exploration
and path planning. Compared to the earlier, step-wise version of the model (Hinsch
& Bijak, 2019), this got rid of some arbitrary assumptions necessitated by the fixed
time step, e.g., that movement to another location would always take one unit of
time. In the continuous-time version, time of travel can depend on the distance and
friction between the locations without restrictions.

On the other hand, it became apparent that some aspects of the model were dif-
ficult to express in ML3. In particular, ML3 knows only one kind of data structure:
the set. This hindered modelling the migrants’ knowledge about the world and the
exchange of knowledge between migrant agents. These processes could be
expressed, but only in a cumbersome way that, in addition, was highly inefficient
for execution. The reason for this lack of expressive power is rooted in ML3’s design
as an external DSL, with a completely new syntax and semantics independent of
any existing language. The inclusion of all the capabilities that general purpose
languages have in regards to data structures would be possible, but would be unrea-
sonable due to the necessary effort.

While the application of ML3 in this form was deemed impractical for the simu-
lation model, insights from its application very much shaped the continued model
development. The model was redesigned in terms of continuous processes, using
the macro system of a general-purpose language (in this case, Julia) to achieve syn-
tax similar to ML3’s rules, as this excerpt, equivalent to the rule shown above,
demonstrates:

1 @processes sim agent::Agent begin
2...
3 @poisson(move_rate(agent, sim.par))
4 ~ ! agent.in_transit
5 => start_move!(agent, sim.model.world, sim.par)

Line 1 is equivalent to line 1 in the ML3 rule (Box 7.1), with the difference that
in ML3 the connection to an agent type is declared individually for every rule, while
this version does it for a whole set of processes. Lines 3 to 5 contain the same three
elements (guard, rate, effect) as ML3 rules, but with the order of the first two
switched. The effect was put in a single function start_move, which contains
code equivalent to that in the effect of the ML3 rule. This Julia version is, however,
not completely able to separate the simulation logic from the model itself, but
requires instructions in the effect, to trigger the rescheduling of events described in
the next section.

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

121

In terms of language design, this endeavour showed the potential of redesigning
ML3 as an internal DSL. ML3’s syntax for expressions and effects already closely
resembles object-oriented languages. Embedding it in an object-oriented host-
language would allow the use of a similar syntax and other host-language features,
such as complex data structures, type systems as well as tooling, for generating and
debugging models.

7.3 � Model Execution

When a simulation model is specified, it must be executed to produce results. If the
model is implemented in a general-purpose language, this usually just means exe-
cuting the model code. However, if specified in a DSL such as ML3, the model
specification does not contain code for the execution, which is handled by a separate
piece of software: the simulator. Given a model and an initial model state, i.e., a
certain population of agents, the simulator must sample a trajectory of future states.
For models with exponentially distributed waiting times, such as ML3, algorithms
to generate such trajectories are well established, many of them derived from
Gillespie’s Stochastic Simulation Algorithm (SSA) (Gillespie, 1977). In the follow-
ing, we describe a variation of the SSA for ML3. A more detailed and technical
description can be found in Reinhardt and Uhrmacher (2017). The implementation
in Java, the ML3 simulator, is available at https://git.informatik.uni-rostock.de/
mosi/ml3.

7.3.1 � Execution of ML3 Models

We begin the simulation with an initial population of agents, our state s, which is
assumed at some point in time t (see Fig. 7.1a). As described in Sect. 7.2, each ML3
agent has a certain type, and for each type of agent there are a number of stochastic
rules that describe their behavior. Each pair of a living agent a and a rule r matching
the agent’s type, where the rule’s guard condition is fulfilled, yields a possible state
transition (or event), given by the rule’s effect applied to the agent. It is associated
with a stochastic waiting time T until its occurrence, determined by an exponential
distribution whose parameter is given by the rule’s rate applied to the agent λr(a, s).
To advance the simulation we have to determine the event with the smallest waiting
time Δt, execute its effect to get a new state s′ and advance the time to the time of
that event t′ = t + Δt.

As per the semantics of the language, the waiting time T is exponentially
distributed:

	
P T t e r a s t≤() = − − ()∆ ∆1 λ , .·

	
(7.1)

7.3  Model Execution

https://git.informatik.uni-rostock.de/mosi/ml3
https://git.informatik.uni-rostock.de/mosi/ml3

122

Fig. 7.1  Scheduling and rescheduling of events. We begin in state s at some time t depicted as the
position on the horizontal time line (a). Events (squares) are scheduled (b). The earliest event is
selected and executed (c), resulting in a new state s′ at the time of that event (d). Then, affected
events must be rescheduled (e)

This distribution can be efficiently sampled using inverse transform sampling
(Devroye, 1986), i.e. by sampling a random number u from the uniform distribution
on the unit interval and applying the distribution function’s inverse:

	

∆t
a s

u
r

= −
()
1

λ ,
·ln

	

(7.2)

Using this method, we can sample a waiting time for every possible event
(Fig. 7.1b). We can then select the first event, and execute it (Fig. 7.1c). In practice,
the selection of the first event is implemented using a priority queue (also called the
event queue), a data structure that stores pairs of objects (here: events) and priorities
(here: times), and allows retrieval of the object with the highest priority very
efficiently.

After the execution of this event, the system is in a new state s′ at a new time t′.
Further, we still have sampled execution times for all events, except the one that was
executed (Fig. 7.1d). Unfortunately, in this changed state, these times might no lon-
ger be correct. Some events might no longer be possible at all (e.g., the event was
the arrival of a migrant at their destination, so other events of this agent no longer
apply). For others, the waiting time distribution might have changed. And some
events might not have been possible in the old state, but are in the new (e.g., if a new
migrant entered the system, new events will be added). In the worst case, the new
state will require the re-sampling of all waiting times. In a typical agent-based
model, however, the behaviour of any one agent will not directly affect the behav-
iour of many other agents. Their sampled times will still therefore be valid. Only
those events that are affected will need to be re-sampled (Fig. 7.1e). In the ML3
simulator this is achieved using a dependency structure, which links events to attri-
bute and link values of agents. When the waiting time is sampled, all used attributes
and links are stored as dependencies of that event. After an event is executed, the

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

123

events dependent on the changed attributes and links can then be retrieved. A
detailed and more technical description of this dependency structure can be found
in Reinhardt and Uhrmacher (2017).

In Box 7.2 below, Algorithm 1 shows the algorithm described above in pseudo-
code, and algorithm 2 shows the sampling of a waiting time for a single event.

Box 7.2: Examples of Pseudo-Code for Simulating and
Scheduling Events

7.3  Model Execution

124

7.3.2 � Discussion

The simulation algorithm described above is abstract in the sense that it is indepen-
dent of the concrete model. The model itself is only a parameter for the simulation
algorithms – in the pseudo-code in Algorithm 1 in Box 7.2 it is called m. As a result,
the simulator, i.e., the implementation of the simulation algorithm, is model-
independent. All the execution logic can hence be reused for multiple models. This
not only facilitates model development, it also makes it economical to put more
effort into the simulator, as this effort benefits many models.

On the one hand, this effort can be put into quality assurance, resulting in better
tested, more reliable software. A simulator that has been tested with many different
models will generally be more trustworthy than an ad hoc implementation for a
single model (Himmelspach & Uhrmacher, 2009). On the other hand, this effort can
be put into advanced simulation techniques. One of these techniques we have
already covered: using continuous time. The simulation logic for a discrete-time
model is often just a simple loop, where the events of a single time step are pro-
cessed in order, and time is advanced to the next step. The simulation algorithm
described above is considerably more complex than that. But with the simulator
being reusable, the additional effort is well invested. Separation of the modelling
and the simulation concerns serves as an enabler for continuous-time simulation.
Similarly, more efficient simulation algorithms, e.g., parallel or distributed simula-
tors (Fujimoto, 2000), simulators that exploit code generation (Köster et al., 2020),
or approximate the execution of discrete events (Gillespie, 2001) developed for the
language, will benefit all simulation models defined in this language.

The latter leads us back to an important relationship between the expressiveness
of the language and the feasibility and efficiency of its execution. The more expres-
sive the modelling language, and the more freedom it gives to the modeller, the
harder it is to execute models, and especially to do so efficiently. The approximation
technique of Tau-leaping (Gillespie, 2001), for example, cannot simply be applied
to ML3, as it requires the model state and state changes to be expressed as a vector,
and state updates to be vector additions. ML3 states – networks of agents – cannot
be easily represented that way. Ideally, every feature of the language is necessary for
the model, so that implementing the model is possible, but execution is not unneces-
sarily inefficient. DSLs, being tailored to a specific class of models, may achieve this.

7.4 � Domain-Specific Languages for Simulation Experiments

With the increasing availability of data and computational resources, simulation
models become ever more complex. As a consequence, gaining insights into the
macro- and micro-level behaviour of an agent-based model requires increasingly
complex simulation experiments. Simulation experimentation benefits from using
DSLs in several ways.

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

125

•	 They allow specifying experiments in a readable and succinct manner, which is
an advantage over using general-purpose programming or scripting languages to
implement experiments.

•	 They facilitate composing experiments from reusable building blocks, which
makes applying sophisticated experimental methods to simulation models easier.

•	 They help to increase the trustworthiness of simulation results by making experi-
ment packages available that allow other researchers to reproduce their results.

In this section, we illustrate these benefits by showing how SESSL, a DSL for
simulation experiments, is applied for simulation experiments with ML3 and give a
short overview of other current developments regarding DSLs for simulation
experiments.

7.4.1 � Basics

The fundamental idea behind using a DSL for specifying experiments is to provide
a syntax that captures typical aspects of simulation experiment descriptions. Using
this provided syntax, a simulation experiment can be described succinctly. This
way, a DSL for experiment specification ‘abstracts over’ individual simulation
experiments, by creating a general framework covering different specific cases. The
commonalities of the experiments become then part of the DSL, and the actual
experiment descriptions expressed in the DSL focus on the specifics of the individ-
ual experiments.

One experiment specification DSL is the ‘Simulation Experiment Specification
on a Scala Layer’ (SESSL), an internal DSL that is embedded in the object-
functional programming language Scala (Ewald & Uhrmacher, 2014). SESSL uses
a more refined approach to abstracting over simulation experiments. Between the
language core and the individual experiments, SESSL employs simulation-system-
specific bindings that abstract over experiments with a specific simulation system.
Whereas the language core contains general experiment aspects such as writing
observed simulation output to files, the bindings package experiment aspects are
tailored to a specific simulation approach, such as specifying which simulation out-
puts to observe. This way, SESSL can cater to the differences between, for example,
conducting experiments with population-based and agent-based simulation models:
whereas population-based models allow a direct observation of macro-level out-
puts, agent-based models might require aggregating over agents and agent attri-
butes. Another difference is the specification of the initial model state, which, for an
ML3 model, might include specifying how to construct a random network of links
between agents.

To illustrate how experimentation with SESSL works, we now consider an exam-
ple experiment specified with SESSL’s binding for ML3 (Reinhardt et al., 2018).
The following listing shows an excerpt of an experiment specification for the Routes

7.4  Domain-Specific Languages for Simulation Experiments

126

and Rumours model. Such an SESSL experiment specification is usually saved in a
Scala file and can be run as a Scala script.

1 execute {
2 new Experiment with Observation {
3 model = "routes.ml3"
4 replications = 10
5 stopTime = 100
6 set("p_find_links" <~ 0.5)
7 observeAt(stopTime)
8

9 initializeWith(JSON("init50.json"))
10 val migrants = observe("migrants" ~ agentCount(agentType = "Migrant"))
11 // additional lines elided
12 }
13 }

In an SESSL experiment, a number of options are available. For example, in the
listing above, the model file, the number of replications, and the stop time of each
simulation run are set in lines 3–5. Line 6 is an example of setting the value of a
model input parameter, and line 7 specifies that model outputs are recorded when a
simulation run terminates. These are examples of settings that are part of virtually
all experiments and, therefore, belong to the SESSL core. The lines 9 and 10, in
contrast, refer to settings that are ML3-specific and packaged in the SESSL binding
for ML3. Line 9 specifies a JSON file that is used to create an initial population for
each simulation run. An ML3-specific observable, which counts the number of
Migrant agents, is configured in line 10.

Which options are available in an experiment depends on the binding used, but
also the creation of the experiment as in line 2. Here, the experiment is configured
to include observation options (with Observation). With such ‘mix-ins,’ SESSL
allows a high degree of flexibility. Some mix-ins are packaged in the SESSL core
and provide generic features; others belong to bindings and contain simulation-
system-specific features. For example, the Observation mix-in above is part of
the binding for ML3, and provides commands to record observations from ML3
simulation runs, such as agentCount.

This example shows how recurring aspects of simulation experiments can be
efficiently expressed. Through bindings and mix-ins, SESSL allows for packaging
code and making it available for reuse across experiments. As a result, the actual
experiment specification focuses on the specifics of the experiment with little syn-
tactical overhead.

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

127

7.4.2 � Complex Experiments

The specification of more complex experiments in SESSL exploits the abstraction
over different simulation systems. Many experimental methods can be integrated
with the generalisation of simulation experiments in the SESSL core. As a result,
those methods can be applied to any experiment for any simulation system.
Examples of experimental methods that are realised this way are algorithms to cre-
ate designs of experiments, which work with the inputs of an experiment (e.g., set
in the experiment shown above), or algorithms that process the outputs.

We demonstrate this by fitting a regression meta-model to the Routes and
Rumours model, based on a central composite design (see Reinhardt et al., 2018 for
background). Based on the experiment specification shown above, three changes are
necessary to integrate these experimental methods with the experiment. First, the
mix-ins CentralCompositeDesign and LinearRegression are added to
the experiment:

new Experiment with ... with CentralCompositeDesign with LinearRegression {

To the configuration options of the experiment we add the specification of
the design.

centralComposite("p_drop_contact" <~ interval(0.0, 1.0), "p_info_mingle" <~ interval(
0.0, 1.0), ...)

Lastly, the linear regression is applied to the collected simulation results.

1 withExperimentResult { result =>
2 val regr = fitLinearModel(result)("p_drop_contact", "p_info_mingle", ...)(migrants)
3 println(regr.fittedFunction)
4 println(regr.rSquared)
5 }

This is an example of the extensibility of internal DSLs such as SESSL. The
withExperimentResult block allows injecting arbitrary user code that is
invoked when the experiment (all replications of all design points) is finished. Here,
we use the function fitLinearModel to obtain a regression meta-model regr
for the observed result, the given factors, and the observable migrants. The fitted
function and the r2 goodness-of-fit measure are written as output.

7.4  Domain-Specific Languages for Simulation Experiments

128

7.4.3 � Reproducibility

In addition to making specifying and executing simulation experiments easier,
DSLs can also help to make experiments reproducible (for a general discussion, see
Chap. 10). As experiments are typically single files, they can be easily distributed to
other researchers, who can then execute the experiments and confirm their results.
This way, textual DSLs and, in particular, internal DSLs facilitate packaging experi-
ments in an executable fashion, in contrast to, for example, GUI-based experimenta-
tion tools. However, the execution of an experiment requires additional software
that must be acquired and installed. SESSL solves this challenge by employing
Apache Maven (https://maven.apache.org/), an industry-grade software project
management tool, and its associated infrastructure. We give a short summary of the
idea below.

Each SESSL experiment is accompanied by a Maven configuration file (called
pom.xml) that contains details about the software artefacts needed to execute the
experiment. Those software artefacts might have their own dependencies, which are
automatically resolved by Maven. For example, an SESSL experiment with an ML3
model must only declare its dependency on the SESSL binding for ML3, which in
turn depends on the SESSL core and the ML3 simulation package. To execute an
experiment, Maven checks whether all dependencies are already installed and, if
not, downloads and installs all missing software artefacts automatically. Thus, these
downloads are only necessary for the first execution of the experiment. An example
of packaging an experiment this way is the SESSL-ML3 quickstart package, which
is available from https://git.informatik.uni-rostock.de/mosi/sessl-ml3-quickstart.

7.4.4 � Related Work

Using a tailored language to specify simulation experiments was pioneered by the
‘Simulation Experiment Description Markup Language’ (SED-ML) (Waltemath
et al., 2011). SED-ML aims at computational biology and, being based on XML, is
a machine-readable rather than human-readable language. In contrast to SESSL,
where experiments are executable standalone artefacts, SED-ML is an exchange
format for experiments that can be written and read by tools in the computational
biology domain.

In the area of agent-based simulation, some tools support simple experiments.
Repast Simphony, for example, provides an interface for ‘Batch Runs,’ which are
simple parameter sweeps (Collier & Ozik, 2013); Netlogo’s BehaviorSpace module
(Wilensky, 2018) enables parameter sweeps as well. Both approaches allow import-
ing and exporting experiments as XML files. In contrast to SED-ML, however,
these XML files are tool-specific and cannot be used to port an experiment from one
tool to another. More complex experiments can be implemented by writing code
that generates such files. For example, this approach has been used to apply

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

https://doi.org/10.1007/978-3-030-83039-7_10
https://maven.apache.org/
https://git.informatik.uni-rostock.de/mosi/sessl-ml3-quickstart

129

Simulated Annealing (an optimisation algorithm) to a Repast Simphony model
(Ozik et al., 2014). More recently, an R package with a DSL-like interface has been
published that implements complex experiments by generating XML files for
NetLogo (Salecker et al., 2019).

To gain more independence from concrete tools, simulation experiments can also
be represented in a more abstract form, for example in schemas (Wilsdorf et al.,
2019). Such a schema describes a machine-readable format of the salient aspects of
a simulation experiment, which can then be used to (semi-) automatically generate
representations of that experiment in concrete tool formats.

7.4.5 � Discussion

Using DSLs emphasises the role of simulation experiments as standalone artefacts.
Experiments and their parts can be composed and reused largely independently of a
concrete simulation model, as they are defined in their own DSL. The DSL imple-
mentation is then responsible for executing a given experiment specification for a
given model. In other words, DSLs for simulation experiments allow separation of
the concerns of developing a model on the one hand, and designing experiments for
a model on the other.

One central advantage of DSLs for simulation experiments is the potential for
reuse. First, it becomes possible to reuse components of simulation experiments and
compose new experiments from them. This is particularly useful when applying
complex experimental methods to a simulation model, as these methods can be
implemented based on an experiment abstraction that represents the commonalities
of all simulation systems. By mapping a concrete simulation system to this abstrac-
tion, as SESSL’s bindings do, all methods become applicable. But the term ‘reuse’
can also refer to complete experiments. One relevant example is conducting the
same experiment with two different implementations of a model or two different
models of the same phenomenon. By confirming that the results from both experi-
ment executions match, the models can be cross-validated.

Finally, expressing simulation experiments with DSLs also facilitates capturing
the role of experiments and their relation to simulation models in the course of a
simulation study, which is studied in the following section by using the concept of
formal provenance modelling.

7.5 � Managing the Model’s Context

Understanding how the data and theories have entered the model-generating process
is central for assessing a simulation model, and the simulation results that are gener-
ated based on this simulation model. This understanding also plays a pivotal role in

7.5  Managing the Model’s Context

130

the reuse of simulation models, as it provides valuable information as to for which
applications a given model might be valid.

Documentation of agent-based models has been standardised in the ODD proto-
col (Overview, Design concepts, Details; see Grimm et al., 2006), which is regularly
applied in many fields, including the social sciences (Grimm et al., 2020). However,
ODD only includes small parts of the wider context, how a simulation model has
been generated, mostly in the ‘purpose’ and ‘input data’ elements. Some more
information (especially on analysis) is included by TRACE (Schmolke et al., 2010;
Grimm et al., 2014), which, when applied to an agent-based model, might include
an ODD documentation of the model itself. Both of these approaches rely on exten-
sive textual descriptions, which might easily add up to 30 pages (see, e.g., Klabunde
et al., 2015).

Instead of textual description, we propose a more formal approach, i.e., using
PROV (Groth & Moreau, 2013), which represents a provenance standard, to describe
how a simulation model has been generated (Ruscheinski & Uhrmacher, 2017).
Provenance refers to “information about entities, activities, and people involved in
producing a piece of data or thing, which can be used to form assessments about its
quality, reliability or trustworthiness” (Groth & Moreau, 2013).

PROV represents provenance information as a directed acyclic graph. This graph
contains different types of nodes, including entities (shown as circles), e.g., data,
theories, simulation model specifications, or simulation experiment specifications,
and activities (shown as squares), such as calibration, validation, analysing, refin-
ing, or composing. Edges represent relationships between nodes, the most promi-
nent ones being used by and generated by. For example, the entities simulation
model and data may be used by the activity calibration, and as a result, a calibrated
simulation model as well as an experiment specification be generated by this activ-
ity. DSLs do not need to be executable, and in fact PROV is not; however, it allows
for storage of the information in a structured manner in a graph database and conse-
quently, for it to be queried.

In this way, the analyst can query, for instance, which data have been used for
validating or calibrating a particular model, or retrieve all validation experiments
that have been executed with simulation models and upon which a particular simu-
lation model is based. If DSLs, such as ML3, are used for specifying the simulation
model, and other DSLs, such as SESSL, are used for specifying the simulation
experiments, then these simulation experiments can be reused for future model ver-
sions (Peng et al., 2015) and may be re-executed automatically (Wilsdorf et al.,
2020). Besides, provenance information can be stored and retrieved at different lev-
els of detail (Ruscheinski et al., 2019). We illustrate this based on the Routes and
Rumours model.

Figure 7.2 shows an example of a provenance graph, based on Box 5.1 in Chap. 5.
It describes in detail how a sensitivity analysis was conducted. The provenance
graph begins with the Routes and Rumours model, as defined in Chap. 3, on the very
left (M). For the purpose of this example, we omit the process of the model creation,
and the entities on which it is based. At first, as described in the second paragraph
in Box 5.1, a Definitive Screening Design was applied on the 17 model parameters,

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

https://doi.org/10.1007/978-3-030-83039-7_5
https://doi.org/10.1007/978-3-030-83039-7_5
https://doi.org/10.1007/978-3-030-83039-7_3
https://doi.org/10.1007/978-3-030-83039-7_5

131

Fig. 7.2  Provenance graph for model analysis based on Box 5.1 in Chap. 5. (Source: own
elaboration)

and simulation runs were performed on the 37 resulting design points. We model
these two steps as a single process (run), which generated two entities: the design
points (DP) produced in the design step, and the data produced by the simulation
runs (D).

Subsequently, GP emulators were fitted to the data in the next step (fit), yielding
the emulators and the information about sensitivity they contain (S) as a result. If
this was conducted using a DSL such as SESSL (see Sect. 7.4), or even a general-
purpose programming language, the processes (run) and (fit) would have yielded
the corresponding code as additional products, which would appear as additional
entities, and could be used to easily reproduce the results. However, the analysis
was performed with GEM-SA, a purely GUI-based tool, so there is no script, or
anything equivalent.

Figure 7.3 (see Appendix E for details) shows a broader view of the whole mod-
elling process in less detail, including multiple iterations of models (Mi), their anal-
ysis, psychological experiments, and data assessment. The whole analysis shown in
Fig. 7.2 is then folded into the process a1, the first step of the broader analysis of the
Routes and Rumours model. The analysis shown above uses that model (M3) as an
input, and produces sensitivity information as an output (S1). The process is addi-
tionally linked to the methodology proposed by Kennedy and O’Hagan (2001),
denoted as (K01), and thereby indirectly related to the later steps of the process, in
which a similar analysis is repeated on subsequent versions of the model.

To give the provenance graph meaning, appropriate information about the indi-
vidual entities and activities must be provided. The type of entity or activity deter-
mines what information is necessary. That might be a textual description (e.g., ODD
for models, or a verbal description of the processes as in Box 5.1), code (potentially
in a domain-specific language), or the actual data and relevant meta-data for data-
entities. In our case, to provide sources of this information, in Appendix E we
mostly refer to the appropriate chapters and sections of this book.

7.5  Managing the Model’s Context

https://doi.org/10.1007/978-3-030-83039-7_5
https://doi.org/10.1007/978-3-030-83039-7_5
https://doi.org/10.1007/978-3-030-83039-7_5

132

F
ig

. 7
.3

 
O

ve
rv

ie
w

 o
f

th
e

pr
ov

en
an

ce
 o

f
th

e
m

od
el

-b
ui

ld
in

g
pr

oc
es

s
–

fo
r

de
ta

ils
, s

ee
 A

pp
en

di
x

E
. (

So
ur

ce
: o

w
n

el
ab

or
at

io
n)

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

133

Of course, as a natural extension, a provenance model may also span multiple
simulation studies on related subjects, relating current research to previous research,
for example if a model developed in one study reuses parts of a previous model
(Budde et al., 2021). For this purpose, standardised provenance models included in
model repositories such as CoMSES/OpenABM can be used.

7.6 � Conclusion

Conducting a complex simulation study is an intricate task, in which a variety of
different concerns have to be considered. We have identified some of the central
ones, i.e., specifying a simulation model, executing simulation runs, conducting
complex simulation experiments, and documenting the context and history of a
simulation model, and demonstrated how domain-specific languages can be
employed to tackle them separately. A domain-specific modelling language allows
for a succinct model representation, making use of suitable metaphors. With the
application of the ML3 to the Routes and Rumours model, we have demonstrated
the value of such metaphors, e.g., ML3’s rules to model concurrent processes. At the
same time, DSLs put a limitation to the kinds of models that can be expressed. This
limitation of expressive power, however, has benefits for the execution of simulation
runs, in that limitations allow for more efficient simulation algorithms. A DSL that
is too powerful for its purpose might hence be equally impractical. This highlights
an important trade-off for selecting a suitable DSL – and for designing such a lan-
guage in the first place. DSLs for simulation experiments allow the specification of
such experiments in a readable and succinct way. Such executable experiment spec-
ifications may then be shared and reused, improving reproducibility of results.

Finally, PROV, a graph-based language for provenance modelling, allows the
specification of a model’s history and context in a way that is accessible to both
human readers and computational processing. This is especially important for creat-
ing and documenting subsequent model versions as part of the iterative process
advocated throughout this book, including several different elements, such as model
versions, languages and formalisms used, empirical and experimental data, ele-
ments of analysis (meta-modelling and sensitivity) and their results, and so on. The
creation of such model is presented in Chap. 8, and the role of individual elements
in the whole model-building process, as well as its scientific and practical implica-
tions, are discussed throughout Part III of the book.

7.6  Conclusion

https://doi.org/10.1007/978-3-030-83039-7_8

134

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

7  Agent-Based Modelling and Simulation with Domain-Specific Languages

http://creativecommons.org/licenses/by/4.0/

	Chapter 7: Agent-Based Modelling and Simulation with Domain-Specific Languages
	7.1 Introduction
	7.2 Domain-Specific Languages for Modelling
	7.2.1 Requirements
	7.2.2 The Modelling Language for Linked Lives (ML3)
	7.2.3 Discussion

	7.3 Model Execution
	7.3.1 Execution of ML3 Models
	7.3.2 Discussion

	7.4 Domain-Specific Languages for Simulation Experiments
	7.4.1 Basics
	7.4.2 Complex Experiments
	7.4.3 Reproducibility
	7.4.4 Related Work
	7.4.5 Discussion

	7.5 Managing the Model’s Context
	7.6 Conclusion

