Skip to main content

Abstract

The Leidenfrost effect is a case of thin-film boiling where a drop of liquid levitates on a surface heated to temperatures significantly higher than the liquid’s boiling point. When the drop contacts this superheated surface, a thin film of vapor (typically around 100 microns) forms instantaneously between the surface and the drop. The vapor layer supports the weight of the drop and thermally shields it from immediate evaporation. Due to the absence of direct contact between the drop and the surface, the Leidenfrost effect represents the case of a perfectly hydrophobic surface. In this chapter, we discuss the effect of surface wettability on the onset of this thin-film boiling state. We discuss passive methods, such as surface texturing, and active methods, such as using external fields to alter and control the transition to the Leidenfrost effect. The absence of a contact line provides extremely high mobility to these levitating drops and virtually eliminates friction. We discuss how this reduced friction can, in one case, reduce viscous drag on solid objects and, in another case, by introducing an asymmetry in the vapor flow, induce self-propulsion of levitating drops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem., vol. 28, no. 8, pp. 988–994, 1936.

    Google Scholar 

  2. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc., vol. 40, no. 5, pp. 546–551, 1944.

    Google Scholar 

  3. M. A. Goldshtik, V. M. Khanin, and V. G. Ligai, “A liquid drop on an air cushion as an analogue of leidenfrost boiling,” J. Fluid Mech., vol. 166, pp. 1–20, 1986.

    Google Scholar 

  4. W. Bouwhuis, K. G. Winkels, I. R. Peters, P. Brunet, D. Van Der Meer, and J. H. Snoeijer, “Oscillating and star-shaped drops levitated by an airflow,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 88, no. 023017, 2013.

    Google Scholar 

  5. H. De Maleprade et al., “Air-propelled, herringbone-textured platelets,” Phys. Rev. Fluids, vol. 3, no. 104101, 2018.

    Google Scholar 

  6. D. Soto, H. De Maleprade, C. Clanet, and D. Quéré, “Air-levitated platelets: From take off to motion,” J. Fluid Mech., vol. 814, pp. 535–546, 2017.

    Google Scholar 

  7. J. G. Leidenfrost, “On the fixation of water in diverse fire,” Int. J. Heat Mass Transf., vol. 9, no. 11, pp. 1153–1166, 1966.

    Google Scholar 

  8. T. Baier, G. Dupeux, S. Herbert, S. Hardt, and D. Quéré, “Propulsion mechanisms for Leidenfrost solids on ratchets,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 87, no. 021001 (R), 2013.

    Google Scholar 

  9. Y. Iida and T. Takashima, “A study of liquid-liquid Leidenfrost film boiling,” JSME Int. J., vol. 31, no. 4, pp. 727–733, 1988.

    Google Scholar 

  10. M. Shi, X. Ji, S. Feng, Q. Yang, T. J. Lu, and F. Xu, “Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon,” Sci. Rep., vol. 6, no. 28574, 2016.

    Google Scholar 

  11. M. Adda-Bedia, S. Kumar, F. Lechenault, S. Moulinet, M. Schillaci, and D. Vella, “Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen,” Langmuir, vol. 32, no. 17, pp. 4179–4188, 2016.

    Google Scholar 

  12. A. Gauthier, C. Diddens, R. Proville, D. Lohse, and D. van der Meer, “Self-propulsion of inverse Leidenfrost drops on a cryogenic bath,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 4, pp. 1174–1179, 2019.

    Google Scholar 

  13. H. Sugioka and S. Segawa, “Controllable Leidenfrost glider on a shallow water layer,” AIP Adv., vol. 8, no. 115209, 2018.

    Google Scholar 

  14. B. S. Gottfried and K. J. Bell, “Film boiling of spheroidal droplets: Leidenfrost Phenomenon,” Ind. Eng. Chem. Fundam., vol. 5, no. 4, pp. 561–568, 1966.

    Article  Google Scholar 

  15. J. D. Bernardin and I. Mudawar, “The Leidenfrost Point: Experimental Study and Assessment of Existing Models,” J. Heat Transfer, vol. 121, no. 4, pp. 894–903, 1999.

    Article  Google Scholar 

  16. M. Le Merrer, C. Clanet, D. Queŕeá, E. Raphaël, and F. Chevy, “Wave drag on floating bodies,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 37, pp. 15064–15068, 2011.

    Google Scholar 

  17. K. Piroird, C. Clanet, and D. Quéré, “Magnetic control of Leidenfrost drops,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 85, no. 5, pp. 10–13, 2012.

    Google Scholar 

  18. A. Gauthier, D. van der Meer, J. H. Snoeijer, and G. Lajoinie, “Capillary orbits,” Nat. Commun., vol. 10, no. 3947, 2019.

    Google Scholar 

  19. G. Dupeux, T. Baier, V. Bacot, S. Hardt, C. Clanet, and D. Quéré, “Self-propelling uneven Leidenfrost solids,” Phys. Fluids, vol. 25, no. 051704, 2013.

    Google Scholar 

  20. S. R. Waitukaitis, A. Zuiderwijk, A. Souslov, C. Coulais, and M. Van Hecke, “Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing,” Nat. Phys., vol. 13, no. 11, pp. 1095–1099, 2017.

    Google Scholar 

  21. A. Milionis, C. Antonini, S. Jung, A. Nelson, T. M. Schutzius, and D. Poulikakos, “Contactless Transport and Mixing of Liquids on Self-Sustained Sublimating Coatings,” Langmuir, vol. 33, no. 8, pp. 1799–1809, 2017.

    Article  Google Scholar 

  22. E. Mogilevskiy, “Levitation of a nonboiling droplet over hot liquid bath,” Phys. Fluids, vol. 32, no. 012114, 2020.

    Google Scholar 

  23. M. A. Alchalabi, N. Kouraytem, E. Q. Li, and S. T. Thoroddsen, “Vortex-induced vapor explosion during drop impact on a superheated pool,” Exp. Therm. Fluid Sci., vol. 87, pp. 60–68, 2017.

    Article  Google Scholar 

  24. Y. Ding and J. Liu, “Dynamic interactions of Leidenfrost droplets on liquid metal surface,” Appl. Phys. Lett., vol. 109, no. 121904, 2016.

    Google Scholar 

  25. S. D. Janssens, S. Koizumi, and E. Fried, “Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates,” Phys. Fluids, vol. 29, no. 032103, 2017.

    Google Scholar 

  26. Y. S. Song et al., “Vitrification and levitation of a liquid droplet on liquid nitrogen,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 10, pp. 4596–4600, 2010.

    Article  Google Scholar 

  27. A. L. Biance, C. Clanet, and D. Quéré, “Leidenfrost drops,” Phys. Fluids, vol. 15, no. 6, pp. 1632–1637, 2003.

    Article  MATH  Google Scholar 

  28. G. Paul, I. Manna, P. Kumar Das, and P. K. Das, “Formation, growth, and eruption cycle of vapor domes beneath a liquid puddle during Leidenfrost phenomena,” Appl. Phys. Lett., vol. 103, no. 084101, 2013.

    Google Scholar 

  29. H. Linke et al., “Self-propelled leidenfrost droplets,” Phys. Rev. Lett., vol. 96, no. 154502, 2006.

    Google Scholar 

  30. S. Waitukaitis, K. Harth, and M. van Hecke, “From Bouncing to Floating: The Leidenfrost Effect with Hydrogel Spheres,” Phys. Rev. Lett., vol. 121, no. 048001, 2018.

    Google Scholar 

  31. L. Qiao, Z. Zeng, H. Xie, H. Liu, and L. Zhang, “Modeling Leidenfrost drops over heated liquid substrates,” Int. J. Heat Mass Transf., vol. 128, pp. 1296–1306, 2019.

    Article  Google Scholar 

  32. P. Aussillous and D. Quéré, “Properties of liquid marbles,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 462, no. 2067, pp. 973–999, 2006.

    Google Scholar 

  33. D. Quéré, “Leidenfrost Dynamics,” Annu. Rev. Fluid Mech., vol. 45, pp. 197–215, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. G. Wells, R. Ledesma-Aguilar, G. McHale, and K. Sefiane, “A sublimation heat engine,” Nat. Commun., vol. 6, no. 6390, 2015.

    Google Scholar 

  35. P. Agrawal et al., “Leidenfrost heat engine: Sustained rotation of levitating rotors on turbine-inspired substrates,” Appl. Energy, vol. 240, pp. 399–408, 2019.

    Article  Google Scholar 

  36. P. R. Jones et al., “High-speed X-ray imaging of the Leidenfrost collapse,” Sci. Rep., vol. 9, no. 1598, 2019.

    Google Scholar 

  37. G. C. Lee et al., “Measurement of the vapor layer under a dynamic Leidenfrost drop,” Int. J. Heat Mass Transf., vol. 124, pp. 1163–1171, 2018.

    Article  Google Scholar 

  38. J. C. Burton, A. L. Sharpe, R. C. A. Van Der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett., vol. 109, no. 074301, 2012.

    Google Scholar 

  39. T. Roques-Carmes, A. Domps, P. Marchal, and L. Marchal-Heussler, “Equivalent capacitive thickness of the vapor layer below Leidenfrost drops,” Exp. Fluids, vol. 59, no. 115, 2018.

    Google Scholar 

  40. B. Sobac, A. Rednikov, S. Dorbolo, and P. Colinet, “Leidenfrost effect: Accurate drop shape modeling and refined scaling laws,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 90, no. 053011, 2014.

    Google Scholar 

  41. C. Cai, I. Mudawar, H. Liu, and C. Si, “Theoretical Leidenfrost point (LFP) model for sessile droplet,” Int. J. Heat Mass Transf., vol. 146, p. 118802, 2020.

    Google Scholar 

  42. A. Bouillant, T. Mouterde, P. Bourrianne, A. Lagarde, C. Clanet, and D. Quéré, “Leidenfrost wheels,” Nat. Phys., vol. 14, pp. 1188–1192, 2018.

    Article  Google Scholar 

  43. M. A. J. Van Limbeek et al., “Leidenfrost drops cooling surfaces: Theory and interferometric measurement,” J. Fluid Mech., vol. 827, pp. 614–639, 2017.

    Google Scholar 

  44. T. Tran, H. J. J. Staat, A. Prosperetti, C. Sun, and D. Lohse, “Drop impact on superheated surfaces,” Phys. Rev. Lett., vol. 108, no. 036101, 2012.

    Google Scholar 

  45. H. Kim, B. Truong, J. Buongiorno, and L. W. Hu, “On the effect of surface roughness height, wettability, and nanoporosity on leidenfrost phenomena,” Appl. Phys. Lett., vol. 98, no. 083121, 2011.

    Google Scholar 

  46. M. A. J. Van Limbeek, M. Shirota, P. Sleutel, C. Sun, A. Prosperetti, and D. Lohse, “Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature,” Int. J. Heat Mass Transf., vol. 97, pp. 101–109, 2016.

    Google Scholar 

  47. T. Tran et al., “Droplet impact on superheated micro-structured surfaces,” Soft Matter, vol. 9, no. 12, pp. 3272–3282, 2013.

    Article  Google Scholar 

  48. T. Y. Xiong and M. C. Yuen, “Evaporation of a liquid droplet on a hot plate,” Int. J. Heat Mass Transf., vol. 34, no. 7, pp. 1881–1894, 1991.

    Article  Google Scholar 

  49. Y. M. Qiao and S. Chandra, “Experiments on adding a surfactant to water drops boiling on a hot surface,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 453, no. 1959, pp. 673–689, 1997.

    Google Scholar 

  50. L. Maquet, M. Brandenbourger, B. Sobac, A. L. Biance, P. Colinet, and S. Dorbolo, “Leidenfrost drops: Effect of gravity,” Epl, vol. 110, no. 24001, 2015.

    Google Scholar 

  51. D. Orejon, K. Sefiane, and Y. Takata, “Effect of ambient pressure on Leidenfrost temperature,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 90, no. 5, pp. 1–6, 2014.

    Google Scholar 

  52. O. Ozkan, A. Shahriari, and V. Bahadur, “Electrostatic suppression of the Leidenfrost state using AC electric fields,” Appl. Phys. Lett., vol. 111, no. 141608, 2017.

    Google Scholar 

  53. N. Nagai and S. Nishio, “Leidenfrost temperature on an extremely smooth surface,” Exp. Therm. Fluid Sci., vol. 12, no. 3, pp. 373–379, 1996.

    Article  Google Scholar 

  54. C. K. Huang and V. P. Carey, “The effects of dissolved salt on the Leidenfrost transition,” Int. J. Heat Mass Transf., vol. 50, pp. 269–282, 2007.

    Article  MATH  Google Scholar 

  55. P. Zhang, B. Peng, X. Yang, J. Wang, and L. Jiang, “Regulating Droplet Dynamic Wetting Behaviors Using Surfactant Additives on High-Temperature Surfaces,” Adv. Mater. Interfaces, vol. 2000501, pp. 1–8, 2020.

    Google Scholar 

  56. N. Hatta, H. Pujimoto, K. Kinoshita, and H. Takuda, “Experimental study of deformation mechanism of a water droplet impinging on hot metallic surfaces above the leidenfrost temperature,” J. Fluids Eng. Trans. ASME, vol. 119, no. 3, pp. 692–699, 1997.

    Article  Google Scholar 

  57. M. Shirota, M. A. J. Van Limbeek, C. Sun, A. Prosperetti, and D. Lohse, “Dynamic Leidenfrost Effect: Relevant Time and Length Scales,” Phys. Rev. Lett., vol. 116, no. 064501, 2016.

    Google Scholar 

  58. S. C. Yao and K. Y. Cai, “The dynamics and leidenfrost temperature of drops impacting on a hot surface at small angles,” Exp. Therm. Fluid Sci., vol. 1, no. 4, pp. 363–371, 1988.

    Article  Google Scholar 

  59. K. J. Baumeister, R. E. Henry, and F. F. Simon, “Role of the surface in the measurement of the Leidenfrost temperature,” Augment. Convect. Heat mass Transf. ASME Winter Annu. Meet. New York, 1970.

    Google Scholar 

  60. K. J. Baumeister and F. F. Simon, “Leidenfrost temperature—Its correlation for liquid metals, cryogens, hydrocarbons, and water,” J. Heat Transfer, vol. 95, no. 2, pp. 166–173, 1973.

    Article  Google Scholar 

  61. G. Duursma, R. Kennedy, K. Sefiane, and Y. Yu, “Leidenfrost Droplets on Microstructured Surfaces,” Heat Transf. Eng., vol. 37, no. 13–14, pp. 1190–1200, 2016.

    Article  Google Scholar 

  62. A. Sharon and S. G. Bankoff, “Destabilization of leidenfrost boiling by a sudden rise of ambient pressure,” Chem. Eng. Sci., vol. 37, no. 8, pp. 1173–1179, 1982.

    Article  Google Scholar 

  63. G. S. Emmerson and C. W. Snoek, “The effect of pressure on the leidenfrost point of discrete drops of water and freon on a brass surface,” Int. J. Heat Mass Transf., vol. 21, no. 8, pp. 1081–1086, 1978.

    Article  Google Scholar 

  64. F. Celestini, T. Frisch, and Y. Pomeau, “Room temperature water Leidenfrost droplets,” Soft Matter, vol. 9, no. 40, pp. 9535–9538, 2013.

    Article  Google Scholar 

  65. B. T. Ng, Y. M. Hung, and M. K. Tan, “Suppression of the Leidenfrost effect via low frequency vibrations,” Soft Matter, vol. 11, no. 4, pp. 775–784, 2015.

    Article  Google Scholar 

  66. K. Takano, I. Tanasawa, and S. Nishio, “Active enhancement of evaporation of a liquid drop on a hot solid surface using a static electric field,” Int. J. Heat Mass Transf., vol. 37, no. 1, pp. 65–71, 1994.

    Article  Google Scholar 

  67. B. Berge, “Électrocapillarité et mouillage de films isolants par l’eau,” C. R. Acad. Sci. Paris, vol. 317, Série, pp. 157–163, 1993.

    Google Scholar 

  68. F. Celestini and G. Kirstetter, “Effect of an electric field on a Leidenfrost droplet,” Soft Matter, vol. 8, no. 22, pp. 5992–5995, 2012.

    Article  Google Scholar 

  69. V. E. Nakoryakov, S. Y. Misyura, and S. L. Elistratov, “The behavior of water droplets on the heated surface,” Int. J. Heat Mass Transf., vol. 55, no. 23–24, pp. 6609–6617, 2012.

    Article  Google Scholar 

  70. G. S. Emmerson, “The effect of pressure and surface material on the Leidenfrost point of discrete drops of water,” Int. J. Heat Mass Transf., vol. 18, no. 3, pp. 381–386, 1975.

    Article  Google Scholar 

  71. H. M. Kwon, J. C. Bird, and K. K. Varanasi, “Increasing Leidenfrost point using micro-nano hierarchical surface structures,” Appl. Phys. Lett., vol. 103, no. 201601, 2013.

    Google Scholar 

  72. S. H. Kim, G. Lee, H. M. Kim, and M. H. Kim, “Leidenfrost point and droplet dynamics on heated micropillar array surface,” Int. J. Heat Mass Transf., vol. 139, pp. 1–9, 2019.

    Article  Google Scholar 

  73. N. R. Geraldi et al., “Leidenfrost transition temperature for stainless steel meshes,” Mater. Lett., vol. 176, pp. 205–208, 2016.

    Article  Google Scholar 

  74. C. T. Avedisian and J. Koplik, “Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces,” Int. J. Heat Mass Transf., vol. 30, no. 2, pp. 379–393, 1987.

    Article  Google Scholar 

  75. R. Hays, D. Maynes, and J. Crockett, “Thermal transport to droplets on heated superhydrophobic substrates,” Int. J. Heat Mass Transf., vol. 98, pp. 70–80, 2016.

    Article  Google Scholar 

  76. C. Kruse et al., “Extraordinary shifts of the leidenfrost temperature from multiscale micro/nanostructured surfaces,” Langmuir, vol. 29, no. 31, pp. 9798–9806, 2013.

    Article  Google Scholar 

  77. G. C. Lee, J. young Kang, H. S. Park, K. Moriyama, S. H. Kim, and M. H. Kim, “Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temperature,” Exp. Therm. Fluid Sci., vol. 84, pp. 156–164, 2017.

    Google Scholar 

  78. Q. Ma, X. Wu, T. Li, and F. Chu, “Droplet boiling on heated surfaces with various wettabilities,” Appl. Therm. Eng., vol. 167, no. 114703, 2020.

    Google Scholar 

  79. S. H. Kim, H. S. Ahn, J. Kim, M. H. Kim, and H. S. Park, “Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces,” Nucl. Eng. Des., vol. 278, pp. 367–376, 2014.

    Article  Google Scholar 

  80. T. Kano, T. Isobe, S. Matsushita, and A. Nakajima, “Hydrophobicity and Leidenfrost point of ZnO nanorod array combined with nanoscale roughness on the topmost surface,” Mater. Chem. Phys., vol. 217, pp. 192–198, 2018.

    Article  Google Scholar 

  81. S. Adera, R. Raj, R. Enright, and E. N. Wang, “Non-wetting droplets on hot superhydrophilic surfaces,” Nat. Commun., vol. 4, no. 2518, 2013.

    Google Scholar 

  82. I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, “Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces,” Nature, vol. 489, no. 7415, pp. 274–277, 2012.

    Article  Google Scholar 

  83. J. D. Bernardin and I. Mudawar, “A Cavity Activation and Bubble Growth Model of the Leidenfrost Point,” J. Heat Transfer, vol. 124, no. 5, pp. 864–874, 2002.

    Article  Google Scholar 

  84. E. Teodori, T. Valente, I. Malavasi, A. S. Moita, M. Marengo, and A. L. N. Moreira, “Effect of extreme wetting scenarios on pool boiling conditions,” Appl. Therm. Eng., vol. 115, pp. 1424–1437, 2017.

    Article  Google Scholar 

  85. D. A. Del Cerro, Á. G. Marín, G. R. B. E. Römer, B. Pathiraj, D. Lohse, and A. J. Huis In ’T Veld, “Leidenfrost point reduction on micropatterned metallic surfaces,” Langmuir, vol. 28, no. 42, pp. 15106–15110, 2012.

    Google Scholar 

  86. M. Auliano, D. Auliano, M. Fernandino, P. Zhang, and C. A. Dorao, “Water droplet dynamics on a heated nanowire surface,” Appl. Phys. Lett., vol. 113, no. 253703, 2018.

    Google Scholar 

  87. S. H. Kim, H. Seon Ahn, J. Kim, M. Kaviany, and M. Hwan Kim, “Dynamics of water droplet on a heated nanotubes surface,” Appl. Phys. Lett., vol. 102, no. 233901, 2013.

    Google Scholar 

  88. S. M. Sajadi, P. Irajizad, V. Kashyap, N. Farokhnia, and H. Ghasemi, “Surfaces for high heat dissipation with no Leidenfrost limit,” Appl. Phys. Lett., vol. 111, no. 021605, 2017.

    Google Scholar 

  89. N. Farokhnia, S. M. Sajadi, P. Irajizad, and H. Ghasemi, “Decoupled Hierarchical Structures for Suppression of Leidenfrost Phenomenon,” Langmuir, vol. 33, no. 10, pp. 2541–2550, 2017.

    Article  Google Scholar 

  90. N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, and F. B. Pyatt, “Plastron properties of a superhydrophobic surface,” Appl. Phys. Lett., vol. 89, no. 104106, 2006.

    Google Scholar 

  91. S. Srinivasan et al., “Quantification of feather structure, wettability and resistance to liquid penetration,” J. R. Soc. Interface, vol. 11, no. 96, 2014.

    Google Scholar 

  92. N. J. Shirtcliffe, G. McHale, M. I. Newton, and Y. Zhang, “Superhydrophobic copper tubes with possible flow enhancement and drag reduction,” ACS Appl. Mater. Interfaces, vol. 1, no. 6, pp. 1316–1323, 2009.

    Article  Google Scholar 

  93. R. Poetes, K. Holtzmann, K. Franze, and U. Steiner, “Metastable underwater superhydrophobicity,” Phys. Rev. Lett., vol. 105, no. 166104, 2010.

    Google Scholar 

  94. P. Lv, Y. Xue, Y. Shi, H. Lin, and H. Duan, “Metastable states and wetting transition of submerged superhydrophobic structures,” Phys. Rev. Lett., vol. 112, no. 196101, 2014.

    Google Scholar 

  95. P. Bourrianne, C. Lv, and D. Quéré, “The cold Leidenfrost regime,” Sci. Adv., vol. 5, 2019.

    Google Scholar 

  96. B. S. Gottfried, C. J. Lee, and K. J. Bell, “The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate,” Int. J. Heat Mass Transf., vol. 9, no. 11, pp. 1167–1188, 1966.

    Article  Google Scholar 

  97. E. Forrest, R. Schulze, C. Liu, and D. Dombrowski, “Influence of surface contamination on the wettability of heat transfer surfaces,” Int. J. Heat Mass Transf., vol. 91, pp. 311–317, 2015.

    Article  Google Scholar 

  98. M. Chabičovský, M. Hnízdil, A. A. Tseng, and M. Raudenský, “Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures,” Int. J. Heat Mass Transf., vol. 88, pp. 236–246, 2015.

    Article  Google Scholar 

  99. G. C. Lee, S. H. Kim, J. young Kang, M. H. Kim, and H. J. Jo, “Leidenfrost temperature on porous wick surfaces: Decoupling the effects of the capillary wicking and thermal properties,” Int. J. Heat Mass Transf., vol. 145, no. 118809, 2019.

    Google Scholar 

  100. G. Liu and V. S. J. Craig, “Macroscopically flat and smooth superhydrophobic surfaces: Heating induced wetting transitions up to the Leidenfrost temperature,” Faraday Discuss., vol. 146, pp. 141–151, 2010.

    Article  Google Scholar 

  101. J. Park and D. E. Kim, “Droplet dynamics on superheated surfaces with circular micropillars,” Int. J. Heat Mass Transf., vol. 142, no. 118459, 2019.

    Google Scholar 

  102. G. Dupeux, P. Bourrianne, Q. Magdelaine, C. Clanet, and D. Quéré, “Propulsion on a superhydrophobic ratchet,” Sci. Rep., vol. 4, no. 5280, 2014.

    Google Scholar 

  103. D. Soto, G. Lagubeau, C. Clanet, and D. Quere, “Surfing on a herringbone,” Phys. Rev. Fluids, vol. 1, no. 013902, 2016.

    Google Scholar 

  104. H. Xu et al., “Self-propelled rotation of paper-based Leidenfrost rotor,” Appl. Phys. Lett., vol. 114, no. 113703, 2019.

    Google Scholar 

  105. I. U. Vakarelski, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, “Drag reduction by leidenfrost vapor layers,” Phys. Rev. Lett., vol. 106, no. 214501, 2011.

    Google Scholar 

  106. R. Abdelaziz et al., “Green chemistry and nanofabrication in a levitated Leidenfrost drop,” Nat. Commun., vol. 4, no. 2400, 2013.

    Google Scholar 

  107. S. Wildeman and C. Sun, “Electric field makes Leidenfrost droplets take a leap,” Soft Matter, vol. 12, pp. 9622–9632, 2016.

    Article  Google Scholar 

  108. M. Mrinal, X. Wang, and C. Luo, “Self-rotation-induced propulsion of a Leidenfrost drop on a ratchet,” Langmuir, vol. 33, no. 25, pp. 6307–6313, 2017.

    Article  Google Scholar 

  109. A. Würger, “Leidenfrost gas ratchets driven by thermal creep,” Phys. Rev. Lett., vol. 107, no. 164502, 2011.

    Google Scholar 

  110. T. R. Cousins, R. E. Goldstein, J. W. Jaworski, and A. I. Pesci, “A ratchet trap for Leidenfrost drops,” J. Fluid Mech., vol. 696, pp. 215–227, 2012.

    Article  MATH  Google Scholar 

  111. Q. Li, Q. J. Kang, M. M. Francois, and A. J. Hu, “Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces,” Soft Matter, vol. 12, pp. 302–312, 2015.

    Article  Google Scholar 

  112. G. Dupeux, M. Le Merrer, G. Lagubeau, C. Clanet, S. Hardt, and D. Quéré, “Viscous mechanism for Leidenfrost propulsion on a ratchet,” EPL (Europhysics Lett., vol. 96, no. 58001, 2011.

    Google Scholar 

  113. L. E. Dodd et al., “Low-Friction Self-Centering Droplet Propulsion and Transport Using a Leidenfrost Herringbone-Ratchet Structure,” Phys. Rev. Appl., vol. 11, no. 034063, 2019.

    Google Scholar 

  114. J. T. Ok, J. Choi, E. Brown, and S. Park, “Effect of different fluids on rectified motion of Leidenfrost droplets on micro/sub-micron ratchets,” Microelectron. Eng., vol. 158, pp. 130–134, 2016.

    Article  Google Scholar 

  115. J. M. Arter, D. J. Cleaver, K. Takashina, and A. T. Rhead, “Self-propelling Leidenfrost droplets on a variable topography surface,” Appl. Phys. Lett., vol. 113, no. 243704, 2018.

    Google Scholar 

  116. G. Lagubeau, M. Le Merrer, C. Clanet, and D. Quéré, “Leidenfrost on a ratchet,” Nat. Phys., vol. 7, no. 5, pp. 395–398, 2011.

    Google Scholar 

  117. R. L. Agapov et al., “Length scale of Leidenfrost ratchet switches droplet directionality,” Nanoscale, vol. 6, no. 15, pp. 9293–9299, 2014.

    Article  Google Scholar 

  118. A. Cole, B. Jury, and K. Takashina, “A Leidenfrost Thermostat,” J. Heat Transfer, vol. 137, no. 034502, 2015.

    Google Scholar 

  119. J. Li et al., “Rectification of Mobile Leidenfrost Droplets by Planar Ratchets,” Small, vol. 1901751, 2020.

    Google Scholar 

  120. C. Krumm et al., “Micro-ratcheted surfaces for a heat engine biomass conveyor,” Energy Environ. Sci., vol. 9, no. 5, pp. 1645–1649, 2016.

    Article  Google Scholar 

  121. Z. hai Jia, M. yao Chen, and H. tao Zhu, “Reversible self-propelled Leidenfrost droplets on ratchet surfaces,” Appl. Phys. Lett., vol. 110, no. 091603, 2017.

    Google Scholar 

  122. A. Grounds, R. Still, and K. Takashina, “Enhanced droplet control by transition boiling,” Sci. Rep., vol. 2, no. 720, 2012.

    Google Scholar 

  123. C. Luo, M. Mrinal, and X. Wang, “Self-propulsion of Leidenfrost Drops between Non-Parallel Structures,” Sci. Rep., vol. 7, no. 12108, 2017.

    Google Scholar 

  124. C. Kruse et al., “Self-propelled droplets on heated surfaces with angled self-assembled micro/nanostructures,” Microfluid. Nanofluidics, vol. 18, pp. 1417–1424, 2015.

    Article  Google Scholar 

  125. M. yao Chen, Z. hai Jia, T. Zhang, and Y. yuan Fei, “Self-propulsion of Leidenfrost droplets on micropillared hot surfaces with gradient wettability,” Appl. Surf. Sci., vol. 433, pp. 336–340, 2018.

    Google Scholar 

  126. C. Liu, J. Ju, J. Ma, Y. Zheng, and L. Jiang, “Directional drop transport achieved on high-temperature anisotropic wetting surfaces,” Adv. Mater., vol. 26, no. 35, pp. 6086–6091, 2014.

    Article  Google Scholar 

  127. P. Zhang, B. Peng, J. Wang, and L. Jiang, “Bioinspired Self-Propulsion of Water Droplets at the Convergence of Janus-Textured Heated Substrates,” Adv. Funct. Mater., vol. 1904535, 2019.

    Google Scholar 

  128. G. Dupeux, M. Le Merrer, C. Clanet, and D. Quéré, “Trapping Leidenfrost drops with crenelations,” Phys. Rev. Lett., vol. 107, no. 114503, 2011.

    Google Scholar 

  129. L. E. Dodd et al., “Low friction droplet transportation on a substrate with a selective Leidenfrost effect,” ACS Appl. Mater. Interfaces, vol. 8, no. 34, pp. 22658–22663, 2016.

    Article  Google Scholar 

  130. L. E. Dodd et al., “Planar selective Leidenfrost propulsion without physically structured substrates or walls,” Appl. Phys. Lett., vol. 117, no. 081601, 2020.

    Google Scholar 

  131. G. McHale, N. J. Shirtcliffe, C. R. Evans, and M. I. Newton, “Terminal velocity and drag reduction measurements on superhydrophobic spheres,” Appl. Phys. Lett., vol. 94, no. 064104, 2009.

    Google Scholar 

  132. B. R. K. Gruncell, N. D. Sandham, and G. McHale, “Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay,” Phys. Fluids, vol. 25, no. 043601, 2013.

    Google Scholar 

  133. I. U. Vakarelski, D. Y. C. C. Chan, J. O. Marston, and S. T. Thoroddsen, “Dynamic air layer on textured superhydrophobic surfaces,” Langmuir, vol. 29, no. 35, pp. 11074–11081, 2013.

    Article  Google Scholar 

  134. G. McHale, M. R. Flynn, and M. I. Newton, “Plastron induced drag reduction and increased slip on a superhydrophobic sphere,” Soft Matter, vol. 7, pp. 10100–10107, 2011.

    Article  Google Scholar 

  135. A. Busse, N. D. Sandham, G. McHale, and M. I. Newton, “Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface,” J. Fluid Mech., vol. 727, pp. 488–508, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  136. G. McHale, M. I. Newton, and N. J. Shirtcliffe, “Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties,” Soft Matter, vol. 6, no. 4, pp. 714–719, 2010.

    Article  Google Scholar 

  137. A. Jetly, I. U. Vakarelski, Z. Yang, and S. T. Thoroddsen, “Giant drag reduction on Leidenfrost spheres evaluated from extended free-fall trajectories,” Exp. Therm. Fluid Sci., vol. 102, no. October 2018, pp. 181–188, 2019.

    Google Scholar 

  138. I. U. Vakarelski, J. D. Berry, D. Y. C. Chan, and S. T. Thoroddsen, “Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids,” Phys. Rev. Lett., vol. 117, no. 114503, 2016.

    Google Scholar 

  139. D. Saranadhi, D. Chen, J. A. Kleingartner, S. Srinivasan, R. E. Cohen, and G. H. Mckinley, “Sustained drag reduction in a turbulent flow using a low-Temperature Leidenfrost surface,” Sci. Adv., vol. 2, no. 1600686, pp. 1–9, 2016.

    Google Scholar 

  140. I. U. Vakarelski, D. Y. C. C. Chan, and S. T. Thoroddsen, “Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water,” Soft Matter, vol. 10, no. 31, pp. 5662–5668, 2014.

    Article  Google Scholar 

  141. H. W. Gilbert and P. E. Shaw, “Electrical charges arising at a liquid-gas interface,” Proc. Phys. Soc. London, vol. 37, no. 1, pp. 195–214, 1924.

    Article  Google Scholar 

  142. R. Leberman and A. K. Soper, “Effect of high salt concentrations on water structure,” Nature, vol. 378, no. 23, pp. 364–366, 1995.

    Article  Google Scholar 

  143. P. Postorino, R. H. Tromp, M. A. Ricci, A. K. Soper, and G. W. Neilson, “The interatomic structure of water at supercritical temperatures,” Nature, vol. 366, no. 6456, pp. 668–670, 1993.

    Article  Google Scholar 

  144. D. W. Lee, M. H. Jin, Y. J. Lee, J. H. Park, C. B. Lee, and J. S. Park, “Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation,” Sci. Rep., vol. 6, no. 26474, 2016.

    Google Scholar 

  145. D. W. Lee et al., “Straightforward Synthesis of Metal Nanoparticles and Hierarchical Porous Metals Assisted by Partial Film Boiling Phenomena,” Chem. Mater., vol. 27, no. 15, pp. 5151–5160, 2015.

    Article  Google Scholar 

  146. I. Isakov et al., “Exploring the Leidenfrost Effect for the Deposition of High-Quality In2O3 Layers via Spray Pyrolysis at Low Temperatures and Their Application in High Electron Mobility Transistors,” Adv. Funct. Mater., vol. 1606407, pp. 1–9, 2017.

    Google Scholar 

  147. M. Ortel and V. Wagner, “Leidenfrost temperature related CVD-like growth mechanism in ZnO-TFTs deposited by pulsed spray pyrolysis,” J. Cryst. Growth, vol. 363, pp. 185–189, 2013.

    Article  Google Scholar 

  148. C. H. Lim, H. Kang, and S. H. Kim, “Colloidal assembly in leidenfrost drops for noniridescent structural color pigments,” Langmuir, vol. 30, no. 28, pp. 8350–8356, 2014.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank funding from EPSRC grant EP/P005896/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen McHale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Agrawal, P., McHale, G. (2022). Leidenfrost Effect and Surface Wettability. In: Marengo, M., De Coninck, J. (eds) The Surface Wettability Effect on Phase Change. Springer, Cham. https://doi.org/10.1007/978-3-030-82992-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82992-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82991-9

  • Online ISBN: 978-3-030-82992-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics