Skip to main content

Principles of Rehabilitation in Cartilage and Lesions

  • Chapter
  • First Online:
Joint Function Preservation

Abstract

Rehabilitation of osteochondral lesions is still under-researched with little scientific evidence, in particular from a clinical point of view. The continuous evolution of different surgical techniques and the complexity of individual clinical pattern make it difficult to reassume rehabilitation indications in standardized protocols. To understand and criticize the construction of a rehabilitation program it is necessary to refer to evidence and knowledge from available basic science. At the same time, it is clear the necessity to have a method that guides the rehabilitation staff and the patient in the treatment path: rehabilitation phases, criteria of progression between phases, objectives to be achieved, evaluation tests and constant clinical supervision are the keys for a successful rehabilitation, in particular in prolonged and complex paths such as recovery from osteochondral lesions. The possibility to measure clinical and functional parameters allows the clinician to build a customized plan and to improve monitoring of the rehabilitation process. Moreover, these data can be shared with the patient and the rehab staff with the aim of motivating and involving both in the rehabilitation treatment and in the achievement of the goals set. Psychological and communication aspects are fundamental in achieving good results and should be further developed, both in terms of scientific evidence and in daily clinical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard JS, Ebert JR, Hambly K. Current concepts in cartilage management and rehabilitation. J Sport Rehabil. 2014;23(3):169–70.

    Article  PubMed  Google Scholar 

  2. Brittberg M, Imhoff AB, Henning M, Mandelbaum BR. Cartilage repair: current concepts. Guilford: DJO Publications; 2010. 206 p.

    Google Scholar 

  3. Wilk KE, Macrina LC, Reinold MM. Rehabilitation following microfracture of the knee. Cartilage. 2010;1(2):96–107.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhao Z, Li Y, Wang M, Zhao S, Zhao Z, Fang J. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J Cell Mol Med. 2020;24(10):5408–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Vanwanseele B, Lucchinetti E, Stüssi E. The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthr Cartil. 2002;10(5):408–19.

    Article  CAS  Google Scholar 

  6. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1980;62(8):1232–51.

    Article  PubMed  CAS  Google Scholar 

  7. Eckstein F, Faber S, Mühlbauer R, Hohe J, Englmeier K-H, Reiser M, et al. Functional adaptation of human joints to mechanical stimuli. Osteoarthr Cartil. 2002;10(1):44–50.

    Article  CAS  Google Scholar 

  8. Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat. 2006;208(4):491–512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bader DL, Salter DM, Chowdhury TT. Biomechanical influence of cartilage homeostasis in health and disease. Arthritis. 2011;2011:979032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shioji S, Imai S, Ando K, Kumagai K, Matsusue Y. Extracellular and intracellular mechanisms of mechanotransduction in three-dimensionally embedded rat chondrocytes. PLoS One. 2014;9(12):e114327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Khan KM, Scott A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med. 2009;43(4):247–52.

    Article  PubMed  CAS  Google Scholar 

  12. Leong DJ, Hardin JA, Cobelli NJ, Sun HB. Mechanotransduction and cartilage integrity. Ann N Y Acad Sci. 2011;1240:32–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108(Pt 4):1497–508.

    Article  PubMed  CAS  Google Scholar 

  14. Säämänen AM, Tammi M, Jurvelin J, Kiviranta I, Helminen HJ. Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. J Orthop Res. 1990;8(6):863–73.

    Article  PubMed  Google Scholar 

  15. Behrens F, Kraft EL, Oegema TR. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J Orthop Res. 1989;7(3):335–43.

    Article  PubMed  CAS  Google Scholar 

  16. Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med. 2006;34(6):1020–38.

    Article  PubMed  Google Scholar 

  17. CSCS RCMPDSMeA. Postsurgical orthopedic sports rehabilitation: knee & shoulder. 1st ed. St. Louis, Mo: Mosby; 2006. 640 p.

    Google Scholar 

  18. Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16(10):451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med. 2002;30(1):2–12.

    Article  PubMed  Google Scholar 

  20. Wilk KE, Briem K, Reinold MM, Devine KM, Dugas J, Andrews JR. Rehabilitation of articular lesions in the athlete’s knee. J Orthop Sports Phys Ther. 2006;36(10):815–27.

    Article  PubMed  Google Scholar 

  21. DePalma AA, Gruson KI. Management of cartilage defects in the shoulder. Curr Rev Musculoskelet Med. 2012;5(3):254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hensley CP, Sum J. Physical therapy intervention for a former power lifter after arthroscopic microfracture procedure for grade IV glenohumeral chondral defects. Int J Sports Phys Ther. 2011;6(1):10–26.

    PubMed  PubMed Central  Google Scholar 

  23. Wilk KE, Macrina LC, Cain EL, Dugas JR, Andrews JR. Rehabilitation of the overhead Athlete’s elbow. Sports Health. 2012;4(5):404–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Domayer SE, Welsch GH, Stelzeneder D, Hirschfeld C, Quirbach S, Nehrer S, et al. Microfracture in the ankle. Cartilage. 2011;2(1):73–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nunes RFH, Dellagrana RA, Nakamura FY, Buzzachera CF, Almeida FAM, Flores LJF, et al. Isokinetic assessment of muscular strength and balance in Brazilian elite futsal players. Int J Sports Phys Ther. 2018;13(1):94–103.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kannus P. Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med. 1994;15(Suppl 1):S11–8.

    Article  PubMed  Google Scholar 

  27. Gaines JM, Talbot LA. Isokinetic strength testing in research and practice. Biol Res Nurs. 1999;1(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  28. Cvjetkovic DD, Bijeljac S, Palija S, Talic G, Radulovic TN, Kosanovic MG, et al. Isokinetic testing in evaluation rehabilitation outcome after ACL reconstruction. Med Arch. 2015;69(1):21–3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Foster C, Fitzgerald DJ, Spatz P. Stability of the blood lactate-heart rate relationship in competitive athletes. Med Sci Sports Exerc. 1999;31(4):578–82.

    Article  PubMed  CAS  Google Scholar 

  30. Jacobs I. Blood lactate. Implications for training and sports performance. Sports Med. 1986;3(1):10–25.

    Article  PubMed  CAS  Google Scholar 

  31. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Myer GD, Ford KR, Hewett TE. Tuck jump assessment for reducing anterior cruciate ligament injury risk. Athl Ther Today. 2008;13(5):39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buckthorpe M, Della Villa F, Della Villa S, Roi GS. On-field rehabilitation part 1: 4 pillars of high-quality on-field rehabilitation are restoring movement quality, physical conditioning, restoring sport-specific skills, and progressively developing chronic training load. J Orthop Sports Phys Ther. 2019;49(8):565–9.

    Article  PubMed  Google Scholar 

  34. Buckthorpe M, Della Villa F, Della Villa S, Roi GS. On-field rehabilitation part 2: a 5-stage program for the soccer player focused on linear movements, multidirectional movements, soccer-specific skills, soccer-specific movements, and modified practice. J Orthop Sports Phys Ther. 2019;49(8):570–5.

    Article  PubMed  Google Scholar 

  35. Young W, Russell A, Burge P, Clarke A, Cormack S, Stewart G. The use of sprint tests for assessment of speed qualities of elite Australian rules footballers. Int J Sports Physiol Perform. 2008;3(2):199–206.

    Article  PubMed  Google Scholar 

  36. Sayers MGL. Influence of test distance on change of direction speed test results. J Strength Cond Res. 2015;29(9):2412–6.

    Article  PubMed  Google Scholar 

  37. Higgins LD, Taylor MK, Park D, Ghodadra N, Marchant M, Pietrobon R, et al. Reliability and validity of the international knee documentation committee (IKDC) subjective knee form. Joint Bone Spine. 2007;74(6):594–9.

    Article  PubMed  Google Scholar 

  38. Collins NJ, Prinsen CAC, Christensen R, Bartels EM, Terwee CB, Roos EM. Knee injury and osteoarthritis outcome score (KOOS): systematic review and meta-analysis of measurement properties. Osteoarthr Cartil. 2016;24(8):1317–29.

    Article  CAS  Google Scholar 

  39. Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2380–7.

    Article  PubMed  Google Scholar 

  40. Buckthorpe M, Pirotti E, Villa FD. Benefits and use of aquatic therapy during rehabilitation after ACL reconstruction - a clinical commentary. Int J Sports Phys Ther. 2019;14(6):978–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stuart AR, Doble J, Presson AP, Kubiak EN. Anatomic landmarks facilitate predictable partial lower limb loading during aquatic weight bearing. Curr Orthop Pract. 2015;26(4):414–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kutzner I, Richter A, Gordt K, Dymke J, Damm P, Duda GN, et al. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants. PLoS One. 2017;12(3). https://doi.org/10.1371/journal.pone.0171972.g006.

  43. Liang J, Lang S, Zheng Y, Wang Y, Chen H, Yang J, et al. The effect of anti-gravity treadmill training for knee osteoarthritis rehabilitation on joint pain, gait, and EMG. Medicine (Baltimore). 2019;98(18):e15386.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012;85(2):201–15.

    PubMed  PubMed Central  Google Scholar 

  45. Paternostro-Sluga T, Fialka C, Alacamliogliu Y, Saradeth T, Fialka-Moser V. Neuromuscular electrical stimulation after anterior cruciate ligament surgery. Clin Orthop Relat Res. 1999;368:166–75.

    Article  Google Scholar 

  46. McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human performance. Philadelphia: Wolters Kluwer Health; 2014.

    Google Scholar 

  47. Aman JE, Elangovan N, Yeh I-L, Konczak J. The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Hum Neurosci. 2015;8:1075.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Duman I, Taskaynatan MA, Mohur H, Tan AK. Assessment of the impact of proprioceptive exercises on balance and proprioception in patients with advanced knee osteoarthritis. Rheumatol Int. 2012;32(12):3793–8.

    Article  PubMed  Google Scholar 

  49. Alghadir AH, Gabr SA, Al-Eisa ES, Alghadir MH. Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults. Clin Interv Aging. 2016;11:265–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alghadir AH, Aly FA, Gabr SA. Effect of moderate aerobic training on bone metabolism indices among adult humans. Pak J Med Sci. 2014;30(4):840–4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Della VS. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther. 2012;42(3):254–73.

    Article  PubMed  Google Scholar 

  53. Park SH, Yi CW, Shin JY, Ryu YU. Effects of external focus of attention on balance: a short review. J Phys Ther Sci. 2015;27(12):3929–31.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wulf G, Chiviacowsky S, Schiller E, Ávila LTG. Frequent external-focus feedback enhances motor learning. Front Psychol. 2010;1:190.

    Article  PubMed  PubMed Central  Google Scholar 

  55. LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther. 2003;33(10):557–71.

    Article  PubMed  Google Scholar 

  56. Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. Knee. 2015;22(3):270–7.

    Article  PubMed  Google Scholar 

  57. Daly JM, Brewer BW, Raalte JLV, Petitpas AJ, Sklar JH. Cognitive appraisal, emotional adjustment, and adherence to rehabilitation following knee surgery. J Sport Rehabil. 1995;4(1):23–30.

    Article  Google Scholar 

  58. Ninedek A, Kelt GS. Sport physiotherapists’ perceptions of psychological strategies in sport injury rehabilitation. J Sport Rehabil. 2000;9(3):191–206.

    Article  Google Scholar 

  59. Ivarsson A, Tranaeus U, Johnson U, Stenling A. Negative psychological responses of injury and rehabilitation adherence effects on return to play in competitive athletes: a systematic review and meta-analysis. Open Access J Sports Med. 2017;8:27–32.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Theodorakis Y, Beneca A, Malliou P, Goudas M. Examining psychological factors during injury rehabilitation. J Sport Rehabil. 1997;6(4):355–63.

    Article  Google Scholar 

  61. Hsu C-J, Meierbachtol A, George SZ, Chmielewski TL. Fear of reinjury in athletes. Sports Health. 2017;9(2):162–7.

    Article  PubMed  Google Scholar 

  62. Conti C, di Fronso S, Robazza C, Bertollo M. The injury-psychological readiness to return to sport (I-PRRS) scale and the sport confidence inventory (SCI): a cross-cultural validation. Phys Ther Sport. 2019;40:218–24.

    Article  PubMed  Google Scholar 

  63. Glazer DD. Development and preliminary validation of the injury-psychological readiness to return to sport (I-PRRS) scale. J Athl Train. 2009;44(2):185–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Marcacci M, Zaffagnini S, Kon E, Delcogliano M, Di Martino A, Filardo G, et al. Maioregen. Arch Ortop Reumatol. 2009;120(3):35–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Boldrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boldrini, L., Lucenteforte, G., Danelon, F., Della Villa, F. (2022). Principles of Rehabilitation in Cartilage and Lesions. In: Gobbi, A., Lane, J.G., Longo, U.G., Dallo, I. (eds) Joint Function Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-82958-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82958-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82957-5

  • Online ISBN: 978-3-030-82958-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics