Skip to main content

Current Concepts in Subchondral Bone Pathology

  • Chapter
  • First Online:
Joint Function Preservation

Abstract

Subchondral bone pathology (SBP) includes a wide range of pathologies, including trauma, post-cartilage surgery, osteoarthritis, transient bone marrow lesions (BML) syndromes, spontaneous insufficiency fractures, and osteonecrosis. They show common magnetic resonance imaging (MRI) findings termed bone marrow lesions (BMLs). However, the etiology and evolution of SBP in multiple conditions remains unclear. A key factor to address when studying a patient with BMLs is the distinction between reversible and irreversible lesions. MRI plays a significant role in the differential diagnosis based on recognizable typical patterns that have to be considered together with coexistent abnormalities, age, and clinical history. This chapter will focus on the current understanding of subchondral bone pathologies. Future research of BML will be mandatory to address the different pathologies better and determining appropriate treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kon E, Ronga M, Filardo G, et al. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24:1797–814.

    Article  PubMed  Google Scholar 

  2. Roemer FW, Frobell R, Hunter DJ, et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr Cartil. 2009;17:1115–31.

    Article  CAS  Google Scholar 

  3. Yates PJ, Calder JD, Stranks GJ, Early MRI. Diagnosis and non-surgical management of spontaneous osteonecrosis of the knee. Knee. 2007;14(2):112–6.

    Article  PubMed  Google Scholar 

  4. Mont M, Marker DR, Zywiel MG, et al. Osteonecrosis of the knee and related conditions. J Am Acad Orthop Surg. 2011;19:482–94.

    Article  PubMed  Google Scholar 

  5. Marcacci M, Andriolo L, Kon E, et al. Etiology and pathogenesis of bone marrow lesions and osteonecrosis of the knee. EFORT Open Rev. 2016;1:219–24.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lecouvet FE, Van de Berg BC, Be M, et al. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am J Roentgenol. 1998;170:71–7.

    Article  PubMed  CAS  Google Scholar 

  7. Viskontas DG, Giuffre BM, Duggal N, et al. Bone bruises associated with ACL rupture: correlation with injury mechanism. Am J Sports Med. 2008;36:927–33.

    Article  PubMed  Google Scholar 

  8. Soder RB, Simões JD, Soder JB, et al. MRI of the knee joint in asymptomatic adolescent soccer players: a controlled study. AJR Am J Roentgenol. 2011;196(1):W61–5.

    Article  PubMed  Google Scholar 

  9. Pappas GP, Vogelsong MA, Staroswiecki E, et al. Magnetic resonance imaging of asymptomatic knees in collegiate basketball players: the effect of one season of play. Clin J Sport Med. 2016;26(6):483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR Am J Roentgenol. 2002;179:641–4.

    Article  PubMed  Google Scholar 

  11. Sanders T, Medynski MA, Feller JF, et al. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics. 2000;20 Spec No:S135–51.

    Article  PubMed  CAS  Google Scholar 

  12. Berger N, Andreisek G, Karer AT, et al. Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries. Eur Radiol. 2017;27(1):393–403.

    Article  PubMed  Google Scholar 

  13. Koga H, Nakamae A, Shima Y, et al. Mechanisms for noncontact anterior cruciate ligament injuries. Am J Sports Med. 2010;38(11):2218–25.

    Article  PubMed  Google Scholar 

  14. Bretlau T, Tuxøe J, Larsen L, et al. Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthros. 2002;10:96–101.

    Article  Google Scholar 

  15. Lee BK, Nam SW. Rupture of posterior cruciate ligament: diagnosis and treatment principles. Knee Surg Relat Res. 2011;23(3):135–41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sonin AH, Fitzgerald SW, Hoff FL, et al. MR imaging of the posterior cruciate ligament: nor- mal, abnormal, and associated injury patterns. Radiographics. 1995;15(3):551–61.

    Article  PubMed  CAS  Google Scholar 

  17. Sanders TG, Paruchuri NB, Zlatkin MB. MRI of osteochondral defects of the lateral femoral condyle: incidence and pattern of injury after transient lateral dislocation of the patella. AJR Am J Roentgenol. 2006;187:1332–7.

    Article  PubMed  Google Scholar 

  18. Rangger C, Kathrein A, Freund MC, et al. Bone bruise of the knee: histology and cryosections in 5 cases. Acta Orthop Scand. 1998;69:291–4.

    Article  PubMed  CAS  Google Scholar 

  19. Miller M, Osborne JR, Gordon WT, et al. The natural history of bone bruises. A prospective study of magnetic resonance imaging-detected trabecular microfractures in patients with isolated medial collateral ligament injuries. Am J Sports Med. 1998;26:15–9.

    Article  PubMed  CAS  Google Scholar 

  20. Costa-Paz M, Muscolo D, Ayerza M, et al. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy. 2001;17:445–9.

    Article  PubMed  CAS  Google Scholar 

  21. Vellet A, Marks P, Fowler P. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology. 1991;178:271–6.

    Article  PubMed  CAS  Google Scholar 

  22. Nakamae A, Engebretsen L, Bahr R, et al. Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Sports Traumatol Arthrosc. 2006;14:1252–8.

    Article  PubMed  Google Scholar 

  23. Johnson DL, Bealle DP, Brand JC Jr, et al. The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med. 2000;28(2):152–5.

    Article  PubMed  CAS  Google Scholar 

  24. Filardo G, Kon E, Tentoni F, et al. Anterior cruciate ligament injury: post-traumatic bone marrow edema correlates with long-term prognosis. Int Orthop. 2016;40(1):183–90.

    Article  PubMed  Google Scholar 

  25. Lee JW, Lee SK, Choy WS. Complex regional pain syndrome type 1: diagnosis and management. J Hand Surg Asian Pac Vol. 2018;23(1):1–10.

    Article  PubMed  Google Scholar 

  26. Kotwal A, Hurtado MD, Sfeir JG. Transient osteoporosis: clinical spectrum in adults and associated risk factors. Endocr Pract. 2019;25(7):648–56.

    Article  PubMed  Google Scholar 

  27. Takeda M, Higuchi H, Kimura M, et al. Spontaneous osteonecrosis of the knee: histopathological differences between early and progressive cases. J Bone Joint Surg Br. 2008;90(3):324–9.

    Article  PubMed  CAS  Google Scholar 

  28. Karantanas AH, Drakonaki E, Karachalios T, et al. Acute non-traumatic marrow Edema syndrome in the knee: MRI findings at presentation, correlation with spinal DEXA and outcome. Eur J Radiol. 2008;67(1):22–33.

    Article  PubMed  Google Scholar 

  29. Gorbachova T, Melenevsky Y, Cohen M, et al. Osteochondral lesions of the knee: differentiating the Most common entities at MRI. Radiographics. 2018;38(5):1478–95.

    Article  PubMed  Google Scholar 

  30. Vidoni A, Shah R, Mak D, et al. Metaphyseal burst sign: a secondary sign on MRI of subchondral insufficiency fracture of the knee. J Med Imaging Radiat Oncol. 2018;62(6):764–8.

    Article  PubMed  Google Scholar 

  31. Pareek A, Parkes CW, Bernard C, et al. Spontaneous osteonecrosis/subchondral insufficiency fractures of the knee: high rates of conversion to surgical treatment and arthroplasty. J Bone Joint Surg Am. 2020;102(9):821–9.

    Article  PubMed  Google Scholar 

  32. Plett SK, Hackney LA, Heilmeier U, et al. Femoral condyle insufficiency fractures: associated clinical and morphologi- cal findings and impact on outcome. Skelet Radiol. 2015;44(12):1785–94.

    Article  Google Scholar 

  33. Sayyid S, Younan Y. Sharma Gulshan. Subchondral insufficiency fracture of the knee: grading, risk factors, and outcome. Skelet Radiol. 2019;48(12):1961–74.

    Article  Google Scholar 

  34. Yao L, Stanczak J, Boutin RD. Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skelet Radiol. 2004;33(5):260–4.

    Article  Google Scholar 

  35. Roemer FW, Neogi T, Nevitt MC, et al. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthr Cartil. 2010;18(1):47–53.

    Article  CAS  Google Scholar 

  36. Ahlbäck S, Bauer GC, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum. 1968;11:705–33.

    Article  PubMed  Google Scholar 

  37. Karim A, Cherian JJ, Jauregui J, et al. Osteonecrosis of the knee: review. Ann Transl Med. 2015;3(1):6.

    PubMed  PubMed Central  Google Scholar 

  38. Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am. 2000;82(6):858–66.

    Article  PubMed  CAS  Google Scholar 

  39. Hussain ZB, Chahla J, Mandelbaum BR, et al. The role of meniscal tears in spontaneous osteonecrosis of the knee: a systematic review of suspected Etiology and a call to revisit nomenclature. Am J Sports Med. 2019;47(2):501–7.

    Article  PubMed  Google Scholar 

  40. Shah KN, Racine J, Jones LC, Aaron RK. Pathophysiology and risk factors for osteonecrosis. Curr Rev Musculoskelet Med. 2015 Sep;8(3):201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sakai T, Sugano N, Ohzono K, Matsui M, Hiroshima K, Ochi T. MRI evaluation of steroid- or alcohol-related osteonecrosis of the femoral condyle. Acta Orthop Scand. 1998;69(6):598.

    Article  PubMed  CAS  Google Scholar 

  42. Pape D, Seil R, Anagnostakos K, Kohn D. Postarthroscopic osteonecrosis of the knee. Arthroscopy. 2007;23(04):428–38.

    Article  PubMed  Google Scholar 

  43. Brahme SK, Fox JM, Ferkel RD, Friedman MJ, Flannigan BD, Resnick DL. Osteonecrosis of the knee after arthroscopic surgery: diagnosis with MR imaging. Radiology. 1991;178(03):851–3.

    Article  PubMed  CAS  Google Scholar 

  44. Fukuda Y, Takai S, Yoshino N, et al. Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage. Clin Biomech (Bristol, Avon). 2000;15(7):516–21.

    Article  CAS  Google Scholar 

  45. Jones RS, Keene GC, Learmonth DJ, et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon). 1996;11(5):295–300.

    Article  Google Scholar 

  46. MacDessi SJ, Brophy RH, Bullough PG, Windsor RE, Sculco TP. Subchondral fracture following arthroscopic knee surgery. A series of eight cases. J Bone Joint Surg Am. 2008;90(5):1007–12.

    Article  PubMed  Google Scholar 

  47. Hall FM. Osteonecrosis in the postoperative knee. Radiology. 2005;236(01):370–1. author reply 371

    Article  PubMed  Google Scholar 

  48. Roemer FW, Guermazi A, Javaid MK, et al. MOST study investigators. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis. 2009;68:1461–5.

    Article  PubMed  CAS  Google Scholar 

  49. Hunter DJ, Zhang Y, Niu J, et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 2006;54:1529–35.

    Article  PubMed  Google Scholar 

  50. PR K, Kloppenburg M, Sharma R, et al. Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features. Eur Radiol. 2007;17:3073–8.

    Article  Google Scholar 

  51. Xu L, Hayashi D, Roemer FW, et al. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum. 2012;42(2):105–18.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Felson DT, Niu J, Guermazi A, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 2007;56:2986–92.

    Article  PubMed  Google Scholar 

  53. Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis. 2011;70:60–7.

    Article  PubMed  Google Scholar 

  54. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22:1986–96.

    Article  PubMed  Google Scholar 

  55. Niethammer TR, Valentin S, Gülecyüz MF, et al. Bone marrow edema in the knee and its influence on clinical outcome after matrix-based autologous chondrocyte implantation: results after 3-year follow-up. Am J Sports Med. 2015;43:1172–9.

    Article  PubMed  Google Scholar 

  56. Orth P, Goebel L, Wolfram U, et al. Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months. Am J Sports Med. 2012;40:828–36.

    Article  PubMed  Google Scholar 

  57. Filardo G, Kon E, Di Martino A, et al. Is the clinical outcome after cartilage treatment affected by subchondral bone edema? Knee Surg Sports Traumatol Arthrosc. 2014;22:1337–44.

    Article  PubMed  Google Scholar 

  58. Ebert JR, Smith A, Fallon M, et al. Degree of preoperative subchondral bone Edema is not associated with pain and graft outcomes after matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2014;42(11):2689–98.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gobbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gobbi, A., Alvarez, R., Irlandini, E., Dallo, I. (2022). Current Concepts in Subchondral Bone Pathology. In: Gobbi, A., Lane, J.G., Longo, U.G., Dallo, I. (eds) Joint Function Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-82958-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82958-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82957-5

  • Online ISBN: 978-3-030-82958-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics