Skip to main content

Cell Therapy and Transplantation

  • Chapter
  • First Online:
Textbook of Liver Transplantation

Abstract

Cell therapy is the most effective therapeutic alternative to liver transplantation for advanced liver diseases. Primary hepatocyte transplantation was the first procedure of cell therapy investigated. Although promising preclinical and clinical results have been achieved with this technique, it shown some of the limitations described for liver transplantation such as the shortage of liver tissues for hepatocytes isolation, and the risk of rejection against allogeneic cell.

Consequently, other cell types have been considered, mainly focusing on the promising therapeutic potential of stem cells, including embryonic stem cells, bone marrow-derived hematopoietic stem cells, mesenchymal stem cells and, most recently, induced pluripotent stem cells. Here we summarize the state of the art of cell therapy strategies for the treatment of liver disease, highlighting their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Starzl TE, Marchioro TL, Porter KA, Brettschneider L. Homotransplantation of the liver. Transplantation. 1967;5(4):790–803.

    Article  PubMed Central  Google Scholar 

  2. Kim WR, Therneau TM, Benson JT, Kremers WK, Rosen CB, Gores GJ, et al. Deaths on the liver transplant waiting list: an analysis of competing risks. Hepatology. 2006;43(2):345–51.

    Article  CAS  PubMed  Google Scholar 

  3. Toniutto P, Zanetto A, Ferrarese A, Burra P. Current challenges and future directions for liver transplantation. Liver Int. 2017;37(3):317–27.

    Article  PubMed  Google Scholar 

  4. Bartlett DC, Newsome PN. Hepatocyte cell therapy in liver disease. Expert Rev Gastroenterol Hepatol. 2015;9(10):1261–72.

    Article  CAS  PubMed  Google Scholar 

  5. Puppi J, Strom SC, Hughes RD, Bansal S, Castell JV, Dagher I, et al. Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant. 2012;21:1–10.

    Article  PubMed  Google Scholar 

  6. Matas AJ, Sutherland DE, Steffes MW, Mauer SM, Sowe A, Simmons RL, et al. Hepatocellular transplantation for metabolic deficiencies: decrease of plasms bilirubin in Gunn rats. Science. 1976;192(4242):892–4.

    Article  CAS  PubMed  Google Scholar 

  7. Groth CG, Arborgh B, Bjorken C, Sundberg B, Lundgren G. Correction of hyperbilirubinemia in the glucuronyltransferase-deficient rat by intraportal hepatocyte transplantation. Transplant Proc. 1977;9(1):313–6.

    CAS  PubMed  Google Scholar 

  8. Sutherland DE, Numata M, Matas AJ, Simmons RL, Najarian JS. Hepatocellular transplantation in acute liver failure. Surgery. 1977;82(1):124–32.

    CAS  PubMed  Google Scholar 

  9. Mito M, Kusano M, Kawaura Y. Hepatocyte transplantation in man. Transplant Proc. 1992;24(6):3052–3.

    CAS  PubMed  Google Scholar 

  10. Hansel MC, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, et al. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. Curr Protoc Toxicol. 2014;62:14.2.1-23.

    Article  Google Scholar 

  11. Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo Clin Proc. 2014;89(3):414–24.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrer JR, Chokechanachaisakul A, Wertheim JA. New tools in experimental cellular therapy for the treatment of liver diseases. Curr Transplant Rep. 2015;2(2):202–10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang LJ, Chen YM, George D, Smets F, Sokal EM, Bremer EG, et al. Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y chromosome sequences. Liver Transpl. 2002;8(9):822–8.

    Article  PubMed  Google Scholar 

  14. Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol. 2010;7(5):288–98.

    Article  PubMed  Google Scholar 

  15. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5):639–48.

    Article  CAS  PubMed  Google Scholar 

  16. Forbes SJ, Newsome PN. New horizons for stem cell therapy in liver disease. J Hepatol. 2012;56(2):496–9.

    Article  PubMed  Google Scholar 

  17. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  CAS  PubMed  Google Scholar 

  18. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  19. Brolen G, Sivertsson L, Bjorquist P, Eriksson G, Ek M, Semb H, et al. Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. J Biotechnol. 2010;145(3):284–94.

    Article  CAS  PubMed  Google Scholar 

  20. Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RCJ, Snoeys J, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A. 2008;105(34):12301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology. 2012;142(3):602–11.

    Article  CAS  PubMed  Google Scholar 

  22. Duan YY, Catana A, Meng Y, Yamamoto N, He SQ, Gupta S, et al. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells. 2007;25(12):3058–68.

    Article  CAS  PubMed  Google Scholar 

  23. Lavon N, Yanuka O, Benvenisty N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation. 2004;72(5):230–8.

    Article  CAS  PubMed  Google Scholar 

  24. Basma H, Soto-Gutierrez A, Yannam GR, Liu LP, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136(3):990–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto H, Quinn G, Asari A, Yamanokuchi H, Teratani T, Terada M, et al. Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology. 2003;37(5):983–93.

    Article  CAS  PubMed  Google Scholar 

  26. Tolosa L, Caron J, Hannoun Z, Antoni M, Lopez S, Burks D, et al. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther. 2015;6

    Google Scholar 

  27. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  28. Kia R, Sison RL, Heslop J, Kitteringham NR, Hanley N, Mills JS, et al. Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: are we there yet? Br J Clin Pharmacol. 2013;75(4):885–96.

    Article  PubMed  Google Scholar 

  29. Gomez-Lechon MJ, Tolosa L. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol. 2016;90(9):2049–61.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao TB, Zhang ZN, Rong ZL, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–U51.

    Article  CAS  PubMed  Google Scholar 

  31. Tolosa L, Pareja E, Gomez-Lechon M. Clinical application of pluripotent stem cells: an alternative cell-based therapy for treating liver diseases? Transplantation. 2016;100(12):2548–57.

    Article  CAS  PubMed  Google Scholar 

  32. Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494:100.

    Article  CAS  PubMed  Google Scholar 

  33. Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Res. 1956:142–8.

    Google Scholar 

  34. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, et al. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30(6):1425–33.

    Article  CAS  PubMed  Google Scholar 

  35. Lazaro CA, Rhim JA, Yamada Y, Fausto N. Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 1998;58(23):5514–22.

    CAS  PubMed  Google Scholar 

  36. Dunsford HA, Karnasuta C, Hunt JM, Sell S. Different lineages of chemically-induced hepatocellular-carcinoma in rats defined by monoclonal-antibodies. Cancer Res. 1989;49(17):4894–900.

    CAS  PubMed  Google Scholar 

  37. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. J Hepatol. 2012;57(3):692–4.

    Article  PubMed  Google Scholar 

  38. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39(6):1739–45.

    Article  PubMed  Google Scholar 

  39. Stueck AE, Wanless IR. Hepatocyte buds derived from progenitor cells repopulate regions of parenchymal extinction in human cirrhosis. Hepatology. 2015;61(5):1696–707.

    Article  CAS  PubMed  Google Scholar 

  40. Zajicek G, Oren R, Weinreb M. The streaming liver. Liver. 1985;5(6):293–300.

    Article  CAS  PubMed  Google Scholar 

  41. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MMA, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160(1–2):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lanzoni G, Cardinale V, Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology. 2016;64(1):277–86.

    Article  PubMed  Google Scholar 

  43. Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 2007;204(8):1973–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Libbrecht L. Hepatic progenitor cells in human liver tumor development. World J Gastroenterol. 2006;12(39):6261–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hofling AA, Vogler C, Creer MH, Sands MS. Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood. 2003;101(5):2054–63.

    Article  CAS  PubMed  Google Scholar 

  46. Salama H, Zekri AR, Bahnassy AA, Medhat E, Halim HA, Ahmed OS, et al. Autologous CD34+ and CD133+ stem cells transplantation in patients with end stage liver disease. World J Gastroenterol. 2010;16(42):5297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rossi L, Challen GA, Sirin O, Lin KK-Y, Goodell MA. Hematopoietic stem cell characterization and isolation. Methods Mol Biol (Clifton, NJ). 2011;750:47–59.

    Article  CAS  Google Scholar 

  48. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6(11):1229–34.

    Article  CAS  PubMed  Google Scholar 

  49. Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis L, Kaloyannidis P, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol. 2005;33(1):108–19.

    Article  CAS  PubMed  Google Scholar 

  50. https://clinicaltrials.gov.

  51. Vainshtein JM, Kabarriti R, Mehta KJ, Roy-Chowdhury J, Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2014;89(4):786–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Austin TW, Lagasse E. Hepatic regeneration from hematopoietic stem cells. Mech Dev. 2003;120(1):131–5.

    Article  CAS  PubMed  Google Scholar 

  53. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol. 2004;6(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  54. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;422(6934):901–4.

    Article  CAS  PubMed  Google Scholar 

  55. Thorgeirsson SS, Grisham JW. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology. 2006;43(1):2–8.

    Article  PubMed  Google Scholar 

  56. Larrivée B, Karsan A. Involvement of marrow-derived endothelial cells in vascularization. Handb Exp Pharmacol. 2007;(180):89–114.

    Google Scholar 

  57. Duffield JS, Forbes SJ, Constandinou CM. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fallowfield JA, Mizuno M, Kendall TJ. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178(8):5288–95.

    Article  CAS  PubMed  Google Scholar 

  59. Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011;53(6):2003–15.

    Article  CAS  PubMed  Google Scholar 

  60. Bird TG, Lu WY, Boulter L, Gordon-Keylock S, Ridgway RA, Williams MJ, et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc Natl Acad Sci U S A. 2013;110(16):6542–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moroni F, Dwyer BJ, Graham C, Pass C, Bailey L, Ritchie L, et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat Med. 2019;25(10):1560–5.

    Article  CAS  PubMed  Google Scholar 

  62. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  63. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92.

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005;87(1):125–8.

    Article  CAS  PubMed  Google Scholar 

  65. Poulsom R, Alison MR, Forbes SJ, Wright NA. Adult stem cell plasticity. J Pathol. 2002;197(4):441–56.

    Article  PubMed  Google Scholar 

  66. Araujo AB, Furlan JM, Salton GD, Schmalfuss T, Rohsig LM, Silla LMR, et al. Isolation of human mesenchymal stem cells from amnion, chorion, placental decidua and umbilical cord: comparison of four enzymatic protocols. Biotechnol Lett. 2018;40(6):989–98.

    Article  CAS  PubMed  Google Scholar 

  67. Burra P, Arcidiacono D, Bizzaro D, Chioato T, Di Liddo R, Banerjee A, et al. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury. BMC Gastroenterol. 2012;12:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther. 2006;1(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  69. Salama H, Zekri AR, Medhat E, Al Alim SA, Ahmed OS, Bahnassy AA, et al. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res Ther. 2014;5(3):70.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang L, Han Q, Chen H, Wang K, Shan GL, Kong F, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resistant primary biliary cirrhosis. Stem Cells Dev. 2014;23(20):2482–9.

    Article  CAS  PubMed  Google Scholar 

  71. Jang YO, Kim YJ, Baik SK, Kim MY, Eom YW, Cho MY, et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int. 2014;34(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  72. Gomez-Aristizabal A, Keating A, Davies JE. Mesenchymal stromal cells as supportive cells for hepatocytes. Mol Ther. 2009;17(9):1504–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banerjee A, Bizzaro D, Burra P, Di Liddo R, Pathak S, Arcidiacono D, Cappon A, Bo P, Conconi MT, Crescenzi M, et al. Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem Cell Res. Ther. 2015;6.

    Google Scholar 

  74. Fitzpatrick E, Wu Y, Dhadda P, Hughes RD, Mitry RR, Qin H, et al. Coculture with mesenchymal stem cells results in improved viability and function of human hepatocytes. Cell Transplant. 2015;24(1):73–83.

    Article  PubMed  Google Scholar 

  75. Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells. 2019;37(7):855–64.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Houlihan DD, Newsome PN. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology. 2008;135(2):438–50.

    Article  CAS  PubMed  Google Scholar 

  77. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology. 2006;130(6):1807–21.

    Article  PubMed  Google Scholar 

  78. Wu XZ, Chen D. Origin of hepatocellular carcinoma: role of stem cells. J Gastroenterol Hepatol. 2006;21(7):1093–8.

    Article  CAS  PubMed  Google Scholar 

  79. Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med. 2013;8(4):385–7.

    Article  CAS  PubMed  Google Scholar 

  80. Willyard C. The boom in mini stomachs, brains, breasts, kidneys and more. Nature. 2015;523:520–2.

    Article  CAS  PubMed  Google Scholar 

  81. Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development. 2015;142(18):3113–25.

    Article  CAS  PubMed  Google Scholar 

  82. Bizzaro D, Russo FP, Burra P. New perspectives in liver transplantation: from regeneration to bioengineering. Bioengineering (Basel). 2019;6(3).

    Google Scholar 

  83. Chen FM, Liu XH. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.

    Article  CAS  PubMed  Google Scholar 

  84. Richert L, Binda D, Hamilton G, Viollon-Abadie C, Alexandre E, Bigot-Lasserre D, et al. Evaluation of the effect of culture configuration on morphology, survival time, antioxidant status and metabolic capacities of cultured rat hepatocytes. Toxicol In Vitro. 2002;16(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  85. Jain E, Damania A, Kumar A. Biomaterials for liver tissue engineering. Hepatol Int. 2014;8(2):185–97.

    Article  PubMed  Google Scholar 

  86. Liu WJ, Zhang YS, Heinrich MA, De Ferrari F, Jang HL, Bakht SM, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater. 2017;29(3).

    Google Scholar 

  87. Shafiee A, Atala A. Tissue engineering: toward a new era of medicine. Annu Rev Med. 2017;68:29–40.

    Article  CAS  PubMed  Google Scholar 

  88. Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today. 2016;21(9):1399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolo Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Russo, F.P., Bizzaro, D. (2022). Cell Therapy and Transplantation. In: Burra, P. (eds) Textbook of Liver Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-030-82930-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82930-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82929-2

  • Online ISBN: 978-3-030-82930-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics