Skip to main content

Utilization of Jerusalem Artichoke (Helianthus tuberosus L.) Tuber as a Prebiotic and a Synbiotic

  • Chapter
  • First Online:
African Fermented Food Products- New Trends

Abstract

Jerusalem artichoke is among the underutilized crops in the world, and it is known to possess health benefits when consumed. This chapter provides Jerusalem artichoke’s nutritional and phytochemical value, chemical composition and uses of Jerusalem artichoke tuber inulin and fructo-oligosaccharides, as well as, the utilization of Jerusalem artichoke tuber as a prebiotic and synbiotic. The tuber of Jerusalem artichoke contains various nutrients namely mono-unsaturated and polyunsaturated fatty-acids, proteins, minerals, inulin and fructo-oligosaccharides. It contains phenolic compounds, which have antioxidant, antimutagenic and antitumor capabilities. It has been showed that, the incorporation of inulin and fructo-oligosaccharides as prebiotics and synbiotics can reduce pathological disorders. Also, inulin and fructo-oligosaccharides when fermented by intestinal microflora (bifidobacterium), exhibits health properties including making minerals bioavailable, ensuring fat absorption and inhibition of constipation, again it has anti-diabetic, cardioprotective, hepatoprotective, anti-inflammatory, antimicrobial, anti-obesity and anti-inflammatory properties. Jerusalem artichoke tuber inulin can be utilized as functional foods, which may enhance the health of the microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82(2):471–476. https://doi.org/10.1093/ajcn.82.2.471

    CAS  Google Scholar 

  • Afoakwah NA, Dong Y, Zhao Y, Xiong Z, Owusu J, Wang Y, Zhang J (2015) Characterization of Jerusalem artichoke (Helianthus tuberosus L.) powder and its application in emulsion-type sausage. LWT Food Sci Technol 64(1):74–81. https://doi.org/10.1016/j.lwt.2015.05.030

    CAS  Google Scholar 

  • Ahmed MS, El-Sakhawy FS, Soliman SN, Abou HDMR (2005) Phytochemical and biological study of Helianthus tuberosus L. Egypt J Biomed Sci 18:134–147

    CAS  Google Scholar 

  • Baba H, Yaoita Y, Kikuchi M (2005) Sesquiterpenoids from the leaves of Helianthus tuberosus L. J Tohoku Med Pharm Univ 52:21–25

    CAS  Google Scholar 

  • Bach V, Jensen S, Kidmose U, Sørensen JN, Edelenbos M (2013) The effect of culinary preparation on carbohydrate composition, texture and sensory quality of Jerusalem artichoke tubers (Helianthus tuberosus L.). LWT Food Sci Technol 54(1):165–170. https://doi.org/10.1016/j.lwt.2013.05.003

    CAS  Google Scholar 

  • Barclay T, Ginic-markovic M, Cooper P, Petrovsky N (2010) Inulin: a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Exipients Food Chem 1(3):27–50

    CAS  Google Scholar 

  • Birkeland E, Gharagozlian S, Birkeland KI et al (2020) Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr 59:3325–3338. https://doi.org/10.1007/s00394-020-02282-5

    CAS  Google Scholar 

  • Boeckner LS, Schnepf MI, Tungland BC (2001) Inulin: A review of nutritional and health implications. Adv Food Nutr Res 43(C). https://doi.org/10.1016/S1043-4526(01)43002-6

  • Cabello HF, Durst F, Jorrin JV, Werck RD (1998) Coumarins in Helianthus tuberosus: characterization, induced accumulation and biosynthesis. Phytochemistry 49(4):1029–1036

    Google Scholar 

  • Costa GT, Abreu GC, Guimaraes AB, Vasconcelos PR, Guimaraes SB (2015) Fructo-oligosaccharide effects on serum cholesterol levels: an overview. Acta Cir Bras 30(5):366–370

    Google Scholar 

  • Coudray C, Demigné C, Rayssiguier Y (2003) Effects of dietary fibers on magnesium absorption in animals and humans. J Nutr 133(1):1–4. https://doi.org/10.1093/jn/133.1.1

    CAS  Google Scholar 

  • Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10(1/2):37

    CAS  Google Scholar 

  • De-Sousa VMC, Dos-Santos EF, Sgarbieri VC (2011) The importance of prebiotics in functional foods and clinical practice. Food Nutritinal Science 2:133–144

    Google Scholar 

  • Duke JA (1983) Handbook on energy crops. Purdue University, Center for New Crops & Plants Products

    Google Scholar 

  • Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J, Ovaskainen M-L (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495. https://doi.org/10.1016/j.jfca.2007.02.007

    CAS  Google Scholar 

  • Franck A (2002) Technological functionality of inulin and oligofructose. Br J Nutr 87(S2):S287–S291. https://doi.org/10.1079/bjn/2002550

    CAS  Google Scholar 

  • Franck A (2005) Prebiotics stimulate calcium absorption: a review. Food Australia 57(12):530–532

    CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412. https://doi.org/10.1093/jn/125.6.1401

    CAS  Google Scholar 

  • Gibson GR, Beatty ER, Wang XIN, Cummings JH (1995) Selective stimulation of Bifidobacteria in the human colon by oligofructose and inulin. Am Gastroent Assoc 108:975–982

    CAS  Google Scholar 

  • González-Herrera S, Herrera RR, López M, Rutiaga O, Aguilar C, Esquivel JC, Martínez LO (2015) Inulin in food products: prebiotic and functional ingredient. Br Food J 117(1):1–21

    Google Scholar 

  • Gupta D, Chaturvedi N (2020) Prebiotic potential of underutilized Jerusalem artichoke in human health: a comprehensive review. Int J Environ Agric Biotechnol 5(1):97–103. https://doi.org/10.22161/ijeab

    Google Scholar 

  • Hai-wei L, Zhao-pu L, Ling L, Geng-mao Z (2007) Studies on the antifungal activities and chemical components of extracts from Helianthus tuberosus leaves. Liu Hai-Wei; Liu Zhao-Pu; Liu Ling; Zhao Geng-Mao 19(3):405–409

    Google Scholar 

  • Hinrichs WLJ, Prinsen MG, Frijlink HW (2001) Inulin glasses for the stabilization of therapeutic proteins. Int J Pharm 215(1–2):163–174. https://doi.org/10.1016/S0378-5173(00)00677-3

    CAS  Google Scholar 

  • Honda-Okubo Y, Saade F, Petrovsky N (2012) Advax™, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad- based enhancement of adaptive immune responses. Vaccine 30(36):5373–5381. https://doi.org/10.1038/jid.2014.371

    CAS  Google Scholar 

  • Howard F, Root MD, Baker ML (2015) Insulin and artichokes in the treatment of diabetes. Arch Intern Med 36(1):126. https://en.wikipedia.org/wiki/Respiratory_quotient

    Google Scholar 

  • Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134(6):1523–1528. https://doi.org/10.1093/jn/134.6.1523

    CAS  Google Scholar 

  • Ibrahim OO (2018) Functional oligosaccharides: chemicals structure, manufacturing, health benefits, applications and regulations. J Food Chem Nanotechnol 4(4):65–76

    Google Scholar 

  • Jackson KG, Taylor GRJ, Clohessy AM, Williams CM (1999) The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women Kim. Br J Nutr 82:23–30

    CAS  Google Scholar 

  • Justimenko G, Usanova Z, Ratushenko O (1976) The role of leaves and shoots at different position on tuber formation in Jerusalem artichoke. Izv Timiryazevsk S-Kh Acad 3:67–76

    Google Scholar 

  • Kalyani Nair K, Kharb S, Thompkinson DK (2010) Inulin dietary fiber with functional and health attributes - a review. Food Rev Intl 26(2):189–203. https://doi.org/10.1080/87559121003590664

    CAS  Google Scholar 

  • Karimi R, Azizi MH, Ghasemlou M, Vaziri M (2015) Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review. Carbohydr Polym 119:85–100. https://doi.org/10.1016/j.carbpol.2014.11.029

    CAS  Google Scholar 

  • Kaur H, Gupta AK, Saiipal S, Gupta PPI (1989) Triglyceride and cholesterol lowering effect of chicory roots in the liver of dexamethosone-injected rat. Med Sci Res 17:1009–1010

    CAS  Google Scholar 

  • Kaur N, Gupta AK, Saijpaul B (1988) Hypotriglyceridaemic effect of cichorium intybus roots in ethanol injected and saturated fat-fed rats. J Ethnopharmacol 23(2–3):343

    Google Scholar 

  • Kays SJ, Nottingham SF (2007) Biology and chemistry of Jeruslem artichoke:Helianthus tuberosus L. CRC/Taloy and Francis, Boca Raton

    Google Scholar 

  • Kelly G (2008) Inulin-type prebiotics - a review: part 1. Altern Med Rev 13(4):315–329

    Google Scholar 

  • Kolida S, Gibson GR (2007) Prebiotic capacity of inulin type fructans. J Nutr 137(11):2503–2506

    Google Scholar 

  • Kuntz MGF, Fiates GMR, Teixeira E (2013) Characteristics of prebiotic food products containing inulin. Br Food J 115(2):235–251. https://doi.org/10.1108/00070701311302212

    Google Scholar 

  • Kuo SM (2013) The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv Nutr 4(1):16–28. https://doi.org/10.3945/an.112.003046

    CAS  Google Scholar 

  • Levrat MA, Remesy C, Demigne C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121(11):1730–1737. https://doi.org/10.1093/jn/121.11.1730

    CAS  Google Scholar 

  • Liong MT, Dunshea FR, Shah NP (2007) Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high- and low-fat diets. Br J Nutr 98(4):736–744. https://doi.org/10.1017/S0007114507747803

    CAS  Google Scholar 

  • Long XH, Shao HB, Liu L, Liu LP, Liu ZP (2016) Jerusalem artichoke: a sustainable biomass feedstock for biorefinery. Renew Sust Energ Rev 54:1382–1388. https://doi.org/10.1016/j.rser.2015.10.063

    CAS  Google Scholar 

  • Van Loo J, Coussement P, De Leenheer L, Hoebreg H, Smits G (1995) On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit Rev Food Sci Nutr 35(6):525–552. https://doi.org/10.1080/10408399509527714

    Google Scholar 

  • Ma XY, Zhang LH, Shao HB, Xu G, Zhang F, Ni FT, Brestic M (2011) Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J Med Plants Res 5(8):1275–1282

    Google Scholar 

  • Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24(5):701–714. https://doi.org/10.1111/j.1365-2036.2006.03042.x

    CAS  Google Scholar 

  • Matías J, González J, Royano L, Barrena RA (2011) Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass Bioenergy 35(5):2006–2012. https://doi.org/10.1016/j.biombioe.2011.01.056

    CAS  Google Scholar 

  • Matsuura H, Yoshihara T, Ichihara A (1993) Four new polyacetylenic glucosides, methyl, β-d-glucopyranosyl helianthenate C-F, from Jerusalem Artichoke (Helianthus tuberosus L.). Biosci Biotechnol Biochem 57(9):1492–1498. https://doi.org/10.1271/bbb.57.1492

    CAS  Google Scholar 

  • Meyer D, Bayarri S, Tárrega A, Costell E (2011) Inulin as texture modifier in dairy products. Food Hydrocoll 25(8):1881–1890. https://doi.org/10.1016/j.foodhyd.2011.04.012

    CAS  Google Scholar 

  • Meyer DJP (2009) Blaauwhoed. In: Handbook of Hydrocolloids, 2nd edn. Woodhead Publishing Series in Food Science, Technology and Nutrition

    Google Scholar 

  • Miyazawa M, Kameoka H (1983) Chemical constituents of naturalized plants of Japan. Part X. Helianthol a, a sesquiterpene alcohol from Helianthus tuberosus. Phytochemistry 22:1040–1042

    CAS  Google Scholar 

  • Morimoto H, Sanno Y, Oshio H (1966) Chemical studies on Heliangine. Tetrahedron 22(9):3173–3179. https://doi.org/10.1016/s0040-4020(01)82296-1

    CAS  Google Scholar 

  • Moskovitz J, Yim MB, Chock PB (2002) Free radicals and disease. Arch Biochem Biophys 397(2):354–359. https://doi.org/10.1006/abbi.2001.2692

    CAS  Google Scholar 

  • Muir JG, Rose R, Rosella O, Liels K, Barrett JS, Shepherd SJ, Gibson PR (2009) Measurement of short chain carbohydrates in common Australian vegetables and fruits by highperformance chromatography (HPLC). J Agric Food Chem 57(2):554–565

    CAS  Google Scholar 

  • Nakagawa R, Yasokawa D, Ikeda T, Nagashima K (1996). Purificatio and characterization of two lectins from callus of Helianthus tuberosus. Biosci Biotech Bioch 60(2):259–262

    Google Scholar 

  • Nguyen TDT, Kang JH, Lee MS (2007) Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 113(3):358–361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015

    CAS  Google Scholar 

  • Niness KR (1999a) Inulin and Oligofructose: what are they? Am Soc Nutr Sci 129:1402S–1406S

    CAS  Google Scholar 

  • Niness KR (1999b) Nutritional and health benefits of inulin and Oligofructose. J Nutr 129:1402S–1406S

    CAS  Google Scholar 

  • Orlando R, Floreani M, Padrini R, Palatini P (1998) Determination of inulin clearance by bolus intravenous injection in healthy subjects and ascitic patients: equivalence of systemic and renal clearances as glomerular filtration markers. Br J Clin Pharmacol 46(6):605–609. https://doi.org/10.1046/j.1365-2125.1998.00824.x

    CAS  Google Scholar 

  • Pan L, Sinden MR, Kennedy AH, Chai H, Watson LE, Graham TL, Kinghorn AD (2009) Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochem Lett 2(1):15–18. https://doi.org/10.1016/j.phytol.2008.10.003

    CAS  Google Scholar 

  • Panchev I, Delchev N, Kovacheva D, Slavov A (2011) Physicochemical characteristicsof inulins obtained from Jerusalem artichoke (Helianthus tuberosus L.). Eur Food Res Technol 233(5):889–896. https://doi.org/10.1007/s00217-011-1584-8

    CAS  Google Scholar 

  • Panda AK, Rama Rao SV, Raju MVLN, Sharma SR (2006) Dietary supplementation of Lactobacillus sporogenes on performance and serum biochemico - lipid profile of broiler chickens. J Poul Sci 43(3):235–240. https://doi.org/10.2141/jpsa.43.235

    CAS  Google Scholar 

  • Parnell JA, Reimer RA (2010) Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: a dose-response study in JCR:LA-cp rats. Br J Nutr 103(11):1577–1584. https://doi.org/10.1017/S0007114509993539

    CAS  Google Scholar 

  • Pedersen A, Sandström B, Van Amelsvoort JMM (1997) The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br J Nutr 78(2):215–222. https://doi.org/10.1079/bjn19970141

    CAS  Google Scholar 

  • Praznik W, Cieślik E, Filipiak-Florkiewicz A (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung – Food 46(3):151–157. https://doi.org/10.1002/1521-3803(20020501)46:3<151::AID-FOOD151>3.0.CO;2-4

    CAS  Google Scholar 

  • Rodriguez Furlán LT, Pérez Padilla A, Campderrós ME (2015) Improvement of gluten-free bread properties by the incorporation of bovine plasma proteins and different saccharides into the matrix. Food Chem 170:257–264. https://doi.org/10.1016/j.foodchem.2014.08.033

    CAS  Google Scholar 

  • Rumessen JJ, Bode S, Hamberg O, Gudmand-Hoyer E (1990) Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. Am J Clin Nutr 52(4):675–681. https://doi.org/10.1093/ajcn/52.4.675

    CAS  Google Scholar 

  • Schley PD, Field CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87(Suppl 2):S221–S230. https://doi.org/10.1079/BJNBJN/2002541

    CAS  Google Scholar 

  • Slimestad R, Seljaasen R, Meijer K, Skar SL (2010) Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): morphology and content of sugars and fructo-oligosaccharides in stems and tubers. J Sci Food Agric 90(6):956–964. https://doi.org/10.1002/jsfa.3903

    CAS  Google Scholar 

  • Spring O (1991) Sesquiterpene lactones from Helianthus tuberosus. Phytochemistry 30(2):519–522

    CAS  Google Scholar 

  • Swanton CJ, Hamill AS (1994) Jerusalem Artichoke

    Google Scholar 

  • Szambelan K, Nowak J, Jeleń H (2005) The composition of Jerusalem artichoke (Helianthus tuberosus L.) spirits obtained from fermentation with bacteria and yeasts. Eng Life Sci 5(1):68–71. https://doi.org/10.1002/elsc.200400052

    CAS  Google Scholar 

  • Tchoné M, Bärwald G, Annemüller G, Fleischer LG (2006) Separation and identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.). Sci Aliment 26(5):394–408. https://doi.org/10.3166/sda.26.394-408

    Google Scholar 

  • Tonnis WF, Mensink MA, De Jager A, Van Der Voort Maarschalk K, Frijlink HW, Hinrichs WLJ (2015) Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Mol Pharm 12(3):684–694. https://doi.org/10.1021/mp500423z

    CAS  Google Scholar 

  • Trowell H, Burkitt D (1986) Physiological role of dietary fiber: a ten-year review. ASDC J Dent Child 53(6):444–447

    CAS  Google Scholar 

  • Tungland BC, Meyer D (2002) Nondigestible oligo-and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 1(3):90–109. https://doi.org/10.1111/j.1541-4337.2002.tb00009.x

    CAS  Google Scholar 

  • de Vrese M, Schrezenmeir J (2016) Probiotics, prebiotics and synbiotics. Adv Biochem Eng/Biotechnol 111:1–66. https://doi.org/10.1201/b15561-2

    Google Scholar 

  • Watson D, O’Connell Motherway M, Schoterman MHC, van Neerven RJJ, Nauta A, Van Sinderen D (2013) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114(4):1132–1146. https://doi.org/10.1111/jam.12105

    CAS  Google Scholar 

  • Wichienchot S, Jatupornpipat M, Rastall RA (2010) Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem 120(3):850–857. https://doi.org/10.1016/j.foodchem.2009.11.026

    CAS  Google Scholar 

  • Yuan X, Gao M, Xiao H, Tan C, Du Y (2012) Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem 133(1):10–14. https://doi.org/10.1016/j.foodchem.2011.09.071

    CAS  Google Scholar 

  • Zhang MM, Cheng JQ, Lu YR, Yi ZH, Yang P, Wu XT (2010) Use of pre-, pro-and synbiotics in patients with acute pancreatitis: a meta-analysis. World J Gastroenterol 16(31):3970–3978. https://doi.org/10.3748/wjg.v16.i31.3970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Komla Mahunu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afoakwah, N.A., Mahunu, G.K. (2022). Utilization of Jerusalem Artichoke (Helianthus tuberosus L.) Tuber as a Prebiotic and a Synbiotic. In: Elhadi Sulieman, A.M., Adam Mariod, A. (eds) African Fermented Food Products- New Trends. Springer, Cham. https://doi.org/10.1007/978-3-030-82902-5_35

Download citation

Publish with us

Policies and ethics