Skip to main content

Decellularization of Nervous Tissues and Clinical Application

  • Chapter
  • First Online:
Decellularization Methods of Tissue and Whole Organ in Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1345))

Abstract

The nervous system is an ensemble of organs that transmit and process external information and are responsible for the adaption to the external environment and homeostasis control of the internal environment. The nervous system of vertebrates is divided into the central nervous system (CNS) and peripheral nervous system (PNS) due to its structural features. The CNS, which includes the brain and the spinal cord, processes information from external stimuli and assembles orders suitable for these stimuli. The CNS then sends signals to control other organs/tissues. On the other hand, the PNS connects the CNS to other organs/tissues and functions as a signal pathway. Therefore, the decline and loss of various functions due to injuries of the nervous system cause an impaired quality of life (QOL) and eventually the termination of life activities. Here, we report mainly on decellularized neural tissue and its application as a substrate for the regeneration of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald SJ, Krarup C, Shefner J, Li ST, Madison RD (1991) A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol 306(4):685–696

    Article  CAS  PubMed  Google Scholar 

  • Berry M, Hall S, Follows R, Rees L, Gregson N, Sievers J (1988) Response of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts. J Neurocytol 17(6):727–744

    Article  CAS  PubMed  Google Scholar 

  • Berry M, Rees L, Hall S, Yiu P, Sievers J (1988) Optic axons regenerate into sciatic nerve isografts only in the presence of Schwann cells. Brain Res Bull 20(2):223–231

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Huang T, Hou B, Guo Y (2017) Role of demyelination efficiency within acellular nerve scaffolds during nerve regeneration across peripheral defects. Biomed Res Int 2017:1–10

    CAS  Google Scholar 

  • Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, Wang CC, Wang WY, Huang YS, Hsu SH (2007) Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 204(1):443–453

    Article  CAS  PubMed  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crapo PM, Tottey S, Slivka PF, Badylak SF (2014) Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng Part A 20(1–2):313–323

    Article  CAS  PubMed  Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214(4523):931–933

    Article  CAS  PubMed  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109

    Article  PubMed  Google Scholar 

  • De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89(2–3):267–270

    Article  PubMed  CAS  Google Scholar 

  • DeQuach JA, Yuan SH, Goldstein LS, Christman KL (2011) Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng Part A 17(21–22):2583–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati AK (1988) Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. J Neurosurg 68(1):117–123

    Article  CAS  PubMed  Google Scholar 

  • Guo SZ, Ren XJ, Wu B, Jiang T (2010) Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility. Spinal Cord 48(7):576–581

    Article  PubMed  Google Scholar 

  • Hadlock T, Elisseeff J, Langer R, Vacanti J, Cheney M (1998) A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg 124(10):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Hoben G, Yan Y, Iyer N, Newton P, Hunter DA, Moore AM, Sakiyama-Elbert SE, Wood MD, Mackinnon SE (2015) Comparison of acellular nerve allograft modification with Schwann cells or VEGF. Hand (n y) 10(3):396–402

    Article  Google Scholar 

  • Huang H, Xiao H, Liu H, Niu Y, Yan R, Hu M (2015) A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects. Mol Med Rep 12(4):6330–6336

    Article  CAS  PubMed  Google Scholar 

  • Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Lee K, Schmidt CE (2004) Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 10(11–12):1641–1651

    Article  CAS  PubMed  Google Scholar 

  • Hudson TW, Liu SY, Schmidt CE (2004) Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 10(10–12):1346–1358

    Article  CAS  PubMed  Google Scholar 

  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207(2):267–274

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang X, Cao R, Yu B, Liang H, Zhou M, Li D, Wang Y, Liu E (2012) Allografts of the acellular sciatic nerve and brain-derived neurotrophic factor repair spinal cord injury in adult rats. PLoS One 7(8):e42813

    Google Scholar 

  • Liu G, Cheng Y, Guo S, Feng Y, Li Q, Jia H, Wang Y, Tong L, Tong X (2011) Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med 28(4):565–572

    PubMed  Google Scholar 

  • Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X, Xu S, Chen T, Wang L, Zhang Z, Bai X, Jin D (2013) Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 325(1–2):127–136

    Article  PubMed  Google Scholar 

  • Marquardt LM, Ee X, Iyer N, Hunter D, Mackinnon SE, Wood MD, Sakiyama-Elbert SE (2015) Finely tuned temporal and spatial delivery of GDNF promotes enhanced nerve regeneration in a long nerve defect model. Tissue Eng Part A 21(23–24):2852–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo K, Shimizu Y (2000) Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 868(2):315–328

    Article  CAS  PubMed  Google Scholar 

  • McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359(9304):417–425

    Article  PubMed  Google Scholar 

  • Medberry CJ, Crapo PM, Siu BF, Carruthers CA, Wolf MT, Nagarkar SP, Agrawal V, Jones KE, Kelly J, Johnson SA, Velankar SS, Watkins SC, Modo M, Badylak SF (2013) Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34(4):1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Nagao RJ, Lundy S, Khaing ZZ, Schmidt CE (2011) Functional characterization of optimized acellular peripheral nerve graft in a rat sciatic nerve injury model. Neurol Res 33(6):600–608

    Article  PubMed  Google Scholar 

  • Nakamura T, Inada Y, Fukuda S, Yoshitani M, Nakada A, Itoi S, Kanemaru S, Endo K, Shimizu Y (2004) Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube. Brain Res 1027(1–2):18–29

    Article  CAS  PubMed  Google Scholar 

  • Neubauer D, Graham JB, Muir D (2007) Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol 207(1):163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoli Aldini N, Perego G, Cella GD, Maltarello MC, Fini M, Rocca M, Giardino R (1996) Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials 17(10):959–962

    Article  CAS  PubMed  Google Scholar 

  • Philips C, Campos F, Roosens A, Sánchez-Quevedo MDC, Declercq H, Carriel V (2018) Qualitative and quantitative evaluation of a novel detergent-based method for decellularization of peripheral nerves. Ann Biomed Eng 46(11):1921–1937

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Saheb-Al-Zamani M, Yan Y, Farber SJ, Hunter DA, Newton P, Wood MD, Stewart SA, Johnson PJ, Mackinnon SE (2013) Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp Neurol 247:165–177

    Article  CAS  PubMed  Google Scholar 

  • Sondell M, Lundborg G, Kanje M (1998) Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res 795(1–2):44–54

    Article  CAS  PubMed  Google Scholar 

  • Szynkaruk M, Kemp SW, Wood MD, Gordon T, Borschel GH (2013) Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev 19(1):83–96

    Article  CAS  PubMed  Google Scholar 

  • Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE (1999) Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 14(6):602–615

    Article  CAS  PubMed  Google Scholar 

  • Volpato FZ, Führmann T, Migliaresi C, Hutmacher DW, Dalton PD (2013) Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials 34(21):4945–4955

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Liou A, Ren ZH, Zhang L, Brown BN, Cui XT, Badylak SF, Cai YN, Guan YQ, Leak RK, Chen J, Ji X, Chen L (2013) Neurorestorative effect of urinary bladder matrix-mediated neural stem cell transplantation following traumatic brain injury in rats. CNS Neurol Disord Drug Targets 12(3):413–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, Moore AM, Tong AY, Mackinnon SE, Borschel GH (2009) Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 39(6):787–799

    Article  CAS  PubMed  Google Scholar 

  • Whitworth IH, Brown RA, Doré C, Green CJ, Terenghi G (1995) Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. J Hand Surg Br 20(4):429–436

    Article  CAS  PubMed  Google Scholar 

  • Wood MD, Kemp SW, Liu EH, Szynkaruk M, Gordon T, Borschel GH (2014) Rat-derived processed nerve allografts support more axon regeneration in rat than human-derived processed nerve xenografts. J Biomed Mater Res A 102(4):1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang J, Shi Y, Pu H, Leak RK, Liou AKF, Badylak SF, Liu Z, Zhang J, Chen J, Chen L (2017) Implantation of brain-derived extracellular matrix enhances neurological recovery after traumatic brain injury. Cell TransplAnt 26(7):1224–1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue H, Zhang XY, Liu JM, Song Y, Li YF, Chen D (2013) Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair. J Biomed Mater Res A 101(1):145–156

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57(2):276–289

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wood MD, Hunter DA, Ee X, Mackinnon SE, Moore AM (2016) The effect of short nerve grafts in series on axonal regeneration across isografts or acellular nerve allografts. J Hand Surg Am 41(6):e113–e121

    Article  PubMed  Google Scholar 

  • Yin H, Jiang T, Deng X, Yu M, Xing H, Ren X (2018) A cellular spinal cord scaffold seeded with rat adipose-derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats. Mol Med Rep 17(2):2998–3004

    CAS  PubMed  Google Scholar 

  • Zhang XY, Xue H, Liu JM, Chen D (2012) Chemically extracted acellular muscle: a new potential scaffold for spinal cord injury repair. J Biomed Mater Res A 100(3):578–587

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhang F, Weng Z, Brown BN, Yan H, Ma XM, Vosler PS, Badylak SF, Dixon CE, Cui XT, Chen J (2013) Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury. Tissue Eng Part A 19(17–18):1909–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang H, Katiella K, Huang W (2014) Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair. Neural Regen Res 9(14):1358–1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Zhu Q, Liu X, Huang X, He C, Jiang L, Quan D (2014) Improved peripheral nerve regeneration using acellular nerve allografts loaded with platelet-rich plasma. Tissue Eng Part A 20(23–24):3228–3240

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, He B, Zhu Z, He X, Zheng C, Xu J, Jiang L, Gu L, Zhu J, Zhu Q, Liu X (2014) Etifoxine provides benefits in nerve repair with acellular nerve grafts. Muscle Nerve 50(2):235–243

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Lou W (2014) Regeneration of facial nerve defects with xenogeneic acellular nerve grafts in a rat model. Head Neck 36(4):481–486

    Article  PubMed  Google Scholar 

  • Zhu J, Lu Y, Yu F, Zhou L, Shi J, Chen Q, Ding W, Wen X, Ding YQ, Mei J, Wang J (2018) Effect of decellularized spinal scaffolds on spinal axon regeneration in rats. J Biomed Mater Res A 106(3):698–705

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ijima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikegami, Y., Ijima, H. (2021). Decellularization of Nervous Tissues and Clinical Application. In: Kajbafzadeh, AM. (eds) Decellularization Methods of Tissue and Whole Organ in Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1345. Springer, Cham. https://doi.org/10.1007/978-3-030-82735-9_19

Download citation

Publish with us

Policies and ethics