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Abstract. The study of the visual system of the brain has attracted
the attention and interest of many neuro-scientists, that derived compu-
tational models of some types of neuron that compose it. These findings
inspired researchers in image processing and computer vision to deploy
such models to solve problems of visual data processing.

In this paper, we review approaches for image processing and com-
puter vision, the design of which is based on neuro-scientific findings
about the functions of some neurons in the visual cortex. Furthermore,
we analyze the connection between the hierarchical organization of the
visual system of the brain and the structure of Convolutional Networks
(ConvNets). We pay particular attention to the mechanisms of inhibition
of the responses of some neurons, which provide the visual system with
improved stability to changing input stimuli, and discuss their imple-
mentation in image processing operators and in ConvNets.
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1 Introduction

The development of the visual system of humans takes a number of phases, which
include tuning the synaptic connections between neurons in the different areas
devoted to the processing of different visual stimuli. In newborns, for instance,
many connections between the Lateral Geniculate Nucleus (LGN), which is the
first part of the brain devoted to visual processing, and the area V1 of the visual
cortex are not formed yet. Similarly, the connections between neurons in the
area V1 and subsequent areas start developing after the first month of life.

The tuning process of the receptive fields of the neurons of the visual sys-
tem and the development of their inter-connected network can be compared to
the training process of Artificial Neural Networks (ANNs). Since the beginning
of their development, indeed, the design of ANNs has been largely inspired by
the way the brain works, i.e. processing information via a network of neurons
organized in a hierarchical fashion. Despite the resemblance of the Rosenblatt’s
perceptron with the physiological structure of a neuron, there is no actual rela-
tion between the processing of ANNs and the neural processes in the brain.
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Many researchers in computer vision and image processing found inspira-
tions from neuro-physiological studies of the visual system of the brain to design
novel computational models that could process visual data. In 1959, Hubel and
Wiesel carried out experiments on the visual cortex of cats and demonstrated
the existence of the simple cells, which are neurons with an elongated receptive
field. Their primary function is to detect edges and lines. Originally, the simple
cells were modeled using Gabor functions [11,24] and used in image processing
and computer vision applications, especially for texture description and analy-
sis [16]. Subsequently, Hubel and Wiesel precised that simple cells receive inputs
from certain co-linear configurations of the circular receptive field of neurons in
the LGN [20]. Computational models based on Gabor functions were not able
to describe all the properties of simple cells and ignored the contribution of
LGN neurons for the processing of visual stimulti. In [4], a computational model
based on the combination of the responses of Difference-of-Gaussians functions,
which modeled the LGN receptive fields, was proposed. It achieved better con-
tour detection performance than models based on Gabor functions and showed
more properties of the simple cells in area V1 of the visual system of the brain,
such as contrast invariant orientation tuning and cross orientation suppression.

Artificial neural networks (ANNs) and, in particular, convolutional neural
networks (ConvNets) received much attention and showed some similarities with
the visual system of the brain especially regarding its hierarchical organization.
Although the training of neural network is formulated as an optimization prob-
lem and does not relate with biological processes, in [25] it was shown that the
convolutional kernels learned in the first layer of AlexNet resembled the Gabor
functions that were used to model the receptive field of neurons in the area V1
of the visual system. Similarly, unsupervised approaches for image analysis like
Independet Component Analysis also learned features for image processing that
resemble the Gabor-like receptive fields of neurons in area V1 [18].

Neuro-scientific and neuro-physiological studies of the mechanisms and sys-
tems that our brains uses to process external inputs have influenced also the
developement of other branches of pattern recognition and artificial intelligence,
such as sound signal processing. Patterson et al., in 1986, modeled the response
of the cochlea membrane in the inner auditory system as a bank of Gamma-
tone filters [33]. They called Gammatonegram the result of the processing of
an input signal by a Gammatone filter bank. Similarly to the spectogram, the
Gammatonegram is a time-frequency representation of the sound in which the
energy distribution over time and specific bandwidths is described. Parts of
higher energy intensity correspond to regions of the cochlea membrane that
vibrates more according to the energy of the mechanical sound pressure waves
that hit the outer part of the auditory system. This model was exploited in
[45–47] as input to a trainable feature extractor, the design of which was inspired
by the activation of the inner hair cells, placed behind the cochlea, which convert
the vibration into electrical stimuli on the auditory nerve.

This paper focuses on the relation between neuro-scientific studies and
progress in Computer Vision and Image Processing, providing an overview of
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methods and aspects that concern detection and processing of low-level features
in images until more complex computations in convolutional networks.

2 Brain-Inspired Processing of Visual Data

One of the pioneering architectures for image processing and computer vision
inspired by knowledge of the brain processes of vision was the neocognitron
network [13]. It modeled the hierarchical arrangement of the visual system of the
brain by layers of S- and C-cell components, which are computational models of
the simple and complex cells discovered by Hubel and Wiesel [20]. The weights
of the neocognitron network were learned via an unsupervised training process,
based on self-organizing maps. This training resulted in a hierarchy of S- and
C-cell units that resembled the organization of the human visual system.

In the following of the section, some of these approaches are discussed, and
part of the focus is given to the phenomena of inhibition that contribute to
increase the selectivity of neurons to specific visual stimuli and how they are
embedded in operators for processing of visual data.

2.1 Edge and Line Detection

Simple cells in area V1 of the visual cortex receive inputs from LGN cells in the
thalamus of the brain and have the function of detecting elongated structures
that contain high contrast information. The receptive fields of LGN cells are
modeled by on- and off-center Difference-of-Gaussians (DoG) functions, while
those of simple cells are modeled as co-linear arrangement of DoG functions.
Originally, simple cells were modeled with Gabor functions, bypassing the con-
tribution of the LGN cells. Computational models based on Gabor filters were
used for contour and line detection and included in hierarchical architectures for
object detection [36] and face recognition [34] tasks.

Although Gabor filters were used, initially, to model the simple cell receptive
fields [24], they did not reproduce certain properties, such as contrast invari-
ant orientation tuning and cross orientation suppression. These properties were
achieved by a non-linear model, named CORF (Combination of Receptive Fields)
for contour detection [4]. It is based on the combination of co-linearly aligned
DoG functions, modeling the way simple cells combine the response of LGN
cells. A mechanism for tolerance to curvature of lines and contours, based on
a non-linear blurring, was proposed in the CORF model to improve the results
when deployed in image processing pipelines.

An implementation of CORF, named (B-)COSFIRE (Combination of Shifted
Filter Responses), where B- stands for bar-selective, was demonstrated to be
successful for the detection of thick lines in images and applied to blood vessel
delineation in retinal images (see Fig. 1) [7,41], road and river segmentation
in aerial images [44], crack detection in pavement images [38]. An example of
the response map computed by a B-COSFIRE filter and its thresholded binary
map are shown in Fig. 1b and Fig. 1c, respectively. A curved receptive field was
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configured in [35], to detect high curvature points of the retinal vessel tree. In
[40,42], the authors demonstrated that a bank of B-COSFIRE filters, configured
to delineate lines of different thickness, can be used as feature extractors and
combined with a classifier to perform complex decisions.

Fig. 1. (a) Example retinal image, the (b) response of the B-COSFIRE filter and (c)
the corresponding binary map.

2.2 Object(-part) Detection

The response of neurons in area V1 are forwarded for further processing to
neurons in areas V2 an V4 of the visual cortex, which are tuned to respond to sets
of curved segments or vertices of some preferred orientation and badnwidth [32].
These properties can be interpreted as functions for detection of parts of objects.

Based on the principle of combining the responses of line and edge detectors
at different orientations and with a certain spatial arrangement, an implemen-
tation of the COSFIRE model that takes as input a bank of Gabor filters of
different orientation was released [3]. In this case, the receptive fields of neurons
in area V1 that give input to those in area V4 were modeled by means of Gabor
functions. However, a hierarchical structure of COSFIRE models can be real-
ized for more complex tasks like object recognition or scene understanding [5].
The COSFIRE model of neurons in area V4 can be trained to detect parts of
object and used in applications of object recognition. In Fig. 2, we show some
examples of the parts of objects on which V4-COSFIRE models are trained.
The light-blue ellipses indicate the location and the orientation at which the
V1-like neuron responses are considered and their combination models a part of
the object of interest. The configured models can be used to recognize parts of
objects in other images or together in a filter-bank to extract feature vectors to
be used in combination with a classifier.

2.3 Inhibition for Image Processing

One important aspect of the visual processes that happens in the visual system is
the mechanism of inhibition. The receptive field of a simple cell, known as ‘clas-
sical receptive field’ [19], is composed of an excitatory and an inhibitory region.
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Fig. 2. The configured COSFIRE filters are represented by the set of light blue ellipses
in the top row, whose orientation indicates the preferred orientation of the Gabor filter.
In the bottom row, the part of the object that the corresponding COSFIRE filter is
able to detect (figure from [3]). (Color figure online)

Many simple cells are know to receive push-pull (or antiphase) inhibition [21].
This form of inhibition happens when visual stimuli of given orientation and
opposite polarity evoke responses of opposite sign [10,12,31]. Furthermore, it
is known to be the most diffuse form of inhibition in the visual cortex [1]. In
practice, for a stimulus of given polarity the response of the inhibitory receptive
field suppresses the response of the excitatory receptive field.

This phenomenon was implemented in the CORF operator and it was demon-
strated to be beneficial for improving contour detection in presence of texture [6].
More recently, the effect of the push-pull inhibition was shown to increase the
robustness of line detection to various types of noise and textured background:
a novel RUSTICO (Robust Inhibition-augmented curvilinear operator) opera-
tor was proposed in [37,39]. It was shown to be very effective for line detection
in presence of noise and texture. RUSTICO is designed as an extension of the
B-COSFIRE filter for line detection, by including an inhibitory component. In
Fig. 3a and Fig. 3b, an aerial image of a river and the corresponding ground-truth
are shown. The binary response map produced by RUSTICO (Fig. 3d) shows a
more complete reconstruction of the line pattern of interest, i.e. the river, than
that in the binary map produced by B-COSFIRE (Fig. 3c).

Fig. 3. (a) Aerial image of a river and (b) the ground truth of the river area. The (c)
binary response map obtained by the B-COSFIRE filter is more noisy and contains
less of the detected river patterns than the (d) binary response map of RUSTICO.



110 N. Strisciuglio and N. Petkov

Another phenomenon of inhibition found in the visual cortex is the surround
suppression. It consists of neurons, whose response is suppressed by that of
neighbor neurons in the surrounding of their receptive field [9,49]. The cells
that exhibit this type of inhibition have a non-classical receptive field (NCRF).
Practically, this means that the response to a certain stimulus can be influenced
by the presence of similar stimuli in the surrounding of the receptive field. This
mechanism of surround suppression was included in image processing operators
to extend the Canny edge detector [14], a Gabor filter based contour detector [15]
and in an operator with a butterfly-shaped receptive field [50].

More recently, the push-pull inhibition and surround suppression were com-
bined in a single operator for contour detection, which outperformed its coun-
terpart operators with single or none inhibition mechanism [30].

3 Convolutional Networks for Visual Data Processing

Convolutional Neural Networks (ConvNets) became the de facto standard for
image processing and computer vision, because of their effectiveness in deal-
ing with various visual recognition tasks. Successful applications of ConvNets
are image and object recognition [17], semantic segmentation [8], place recogni-
tion [2,27], image generation and image-to-image translation [22], among others.

ConvNets are based on convolution operations and exploit the characteristic
of locality of the patterns of interest. This means that the value at a certain pixel
location of a response map is detemined by the linear combination of the values
of a small neighborhood of the corresponding pixel in the input image. From this
perspective, ConvNets can be considered as a regularized version of multi-layer
perceptron (MLP) networks. The fully-connectedness means that each neuron at
a certain layer receives input from all the neurons in the previous layer. In a Con-
vNet, instead, each neuron (i.e. a convolution kernel) has a very limited number
of inputs, and it slides over the input signal to compute its response. Although a
single convolution catches local proprieties of the input signal in small-size neigh-
boroods, the hierarchical organization of ConvNets allows to assemble more and
more complex patterns in subsequent steps.

The hierarchical organization of ConvNets, which arranges a stack of con-
volutional layers, non-linear activation functions and sub-sampling operations
resembles the hierarchy of the visual system of the brain. Speculations of this
type were reinforced by the results obtained by the AlexNet network [25]. On top
of the improvement of the classification accuracy by a large margin with respect
to previous approaches, it was shown that the filters learned in the first layer
of AlexNet resembled Gabor-like receptive fields (see Fig. 4), which are accepted
computational models of neurons in the area V1 of the visual system of the
brain [29]. Hence, in the first layer of AlexNet edge and elongated structures of
different bandwidth are detected. The interpretations consist in that in subse-
quent layers, the detected edge and line patterns are combined into corner-like
structures, similarly to the area V2 and V4 of the visual cortex, and into parts
of objects (anterior and posterior TEO).
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Fig. 4. Visualization of the convolutional kernels learned in the first layer of AlexNet.

The convolutions used in ConvNet architectures are linear operators and
are not able to fully model some non-linear properties of the neurons in the
visual cortex, e.g. response saturation or cross-orientation suppression. In [51],
quadradic convolutions, in the form of Volterra kernels, were investigated and
deployed as substitute of the convolution operations in existing architectures.
This type of convolutions is more suited for a better approximation of the profile
of the receptive fields of some neurons in the visual system. The approach was
extended in [23], in which quadratic convolutional kernels contributed to reduce
the depth, i.e. the total number of convolutional layers, of existing architectures
while keeping the detection and classification performance of the corresponding
deeper original networks.

On the one hand, the use of quadratic convolutions is justified by the closer
connection with the function of the receptive field of the complex cells in the
visual system, and contributed to a relatively small increase of performance. On
the other hand, they require a much larger number of parameters to be learned,
slowing down the training and increasing the complexity of the functions to
be learned. In [51], indeed, due to computational limits, only the first layer of
convolutions was replaced by Volterra kernels.

Another type of non-linear unit was proposed in [28], which incorporate the
framework of the COSFIRE model of the neurons in the area V4 of the visual
system into a new type of layer for ConvNets. The response of this layer is
computed by combining the response maps of local simpler features according
to a spatial structure that is determined in an automatic configuration step.
During the training of the network, the CNN-COSFIRE layer can be configured
to detect a certain arrangement of local features, so allowing for a larger receptive
field that can catch non-local characteristics of the patterns of interest, such as
parts of or entire objects. It was successfully demonstrated in applications of
object detection and place recognition where few training samples are available.

3.1 Inhibition in Convolutional Networks

ConvNets learn representations, disentangling complex features of the training
data. Inhibition is believed to be a mechanism for regularization and stability of
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the processes that happens in the visual system [26], and forms of inhibition are
learned in ConvNets as well [48].

AlexNet deployed a layer called Local Response Normalizer (LRN), which
implemented a surround suppression mechanism called lateral inhibition. This
type of inhibition creates a form of competition among neurons in a local neigh-
boround. The LRN builds on the idea of enhancing peak responses and penalizing
flat ones on the feature map, making relevant features stand out more clearly.
Thus, in the implementation, high local responses of one convolutional kernel
inhibit weaker responses of other convolutional kernels in the same local neigh-
bourhood. This serves as a form of regularization of the network and improves
recognition performance.

In [43], a new type of layer that implements the push-pull inhibition mech-
anism was proposed, which can be used as a substitute of the convolutional
layer. The push-pull layer can be trained with back-propagation of the gradient
of the error and is interchangeable with any convolutional layer in the network.
However, as it is inspired by neuroscientific evidence of inhibition mechanisms
that occur in the early stages of the visual cortex, it was deployed as a sub-
stitute of the first convolutional layer only [43]. Using the push-pull layer in
ConvNet architectures achieves better performance on image classification tasks
when dealing with images that have been corrupted with noise or other types of
artefacts (e.g. jpeg compression, blur, contrast changes and so on). Furthermore,
when deploying the push-pull layer in ConvNets instead of a convolutional layer,
the number of parameters to learn does not increase.

4 Conclusions

The research fields of image processing and computer vision were influenced by
discoveries and progress in the understanding of the functions of neurons in the
visual system. Computational models of different types of neurons formalized
by neuro-physiological studies of their responses to visual stimuli have been
deployed for image processing, especially related to low-level tasks such as line
and contour detection.

In this paper, we reviewed the developments of edge and contour detec-
tion algorithms influenced by progress made in the understanding of the visual
processes that occur in the visual cortex. We paid large attention to the impor-
tance that inhibitory mechanisms, namely push-pull inhibition and surround
suppression, have on the robustness of the processing of visual stimuli in noisy
and textured scenes. Furthermore, we covered the connections that neuro-
physiological findings have with the development of Convolutional Networks
and how inhibitory phenomena were explicitly implemented in the architecture
of these networks with the aim of improving their stability to varying input
stimuli.
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