Skip to main content

Normal Pressure Hydrocephalus

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

Idiopathic normal pressure hydrocephalus (iNPH) is one of the few reversible causes of cognitive impairment, and many patients can be effectively treated with surgical placement of a ventricular shunt. The clinical diagnosis is based on the classic triad of cognitive decline, gait impairment, and urinary incontinence, combined with MRI evidence of ventricular enlargement. However, the underlying pathophysiological processes that lead to the development of iNPH remain unknown. In addition to MRI, 18F-FDG PET can be used to exclude neurodegenerative diseases that mimic iNPH, including Alzheimer’s disease (AD). Improving outcomes will rest upon developing more specific methods of differentiating iNPH from disease mimics and identifying patients that will best respond to shunt surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965;2(4):307–27.

    Article  CAS  PubMed  Google Scholar 

  2. Halperin JJ, Kurlan R, Schwalb JM, Cusimano MD, Gronseth G, Gloss D. Practice guideline: idiopathic normal pressure hydrocephalus: response to shunting and predictors of response. Neurology. 2015;85(23):2063.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hebb AO, Cusimano MD. Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery. 2001;49(5):1166–84; discussion 84-6

    CAS  PubMed  Google Scholar 

  4. Cardoso ER, Piatek D, Del Bigio MR, Stambrook M, Sutherland J. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus. Surg Neurol. 1989;31(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  5. Bradley WG. CSF flow in the brain in the context of normal pressure hydrocephalus. Am J Neuroradiol. 2015;36(5):831.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yokota H, Vijayasarathi A, Cekic M, Hirata Y, Linetsky M, Ho M, et al. Diagnostic performance of glymphatic system evaluation using diffusion tensor imaging in idiopathic normal pressure hydrocephalus and mimickers. Curr Gerontol Geriatr Res. 2019;2019:5675014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691–705.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Silverberg G, Mayo M, Saul T, Fellmann J, Carvalho J, McGuire D. Continuous CSF drainage in AD: results of a double-blind, randomized, placebo-controlled study. Neurology. 2008;71:202–9.

    Article  CAS  PubMed  Google Scholar 

  9. Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab. 2019;39(7):1355–68.

    Article  PubMed  Google Scholar 

  10. Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SS, Emblem KE, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018;3(13):e121537.

    Article  PubMed Central  Google Scholar 

  11. Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, et al. Glymphatic system impairment in Alzheimer’s disease and idiopathic Normal pressure hydrocephalus. Trends Mol Med. 2020;26(3):285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Portenoy RK, Berger A, Gross E. Familial occurrence of idiopathic normal-pressure hydrocephalus. Arch Neurol. 1984;41(3):335–7.

    Article  CAS  PubMed  Google Scholar 

  13. Krefft TA, Graff-Radford NR, Lucas JA, Mortimer JA. Normal pressure hydrocephalus and large head size. Alzheimer Dis Assoc Disord. 2004;18(1):35–7.

    Article  PubMed  Google Scholar 

  14. Wilson RK, Williams MA. Evidence that congenital hydrocephalus is a precursor to idiopathic normal pressure hydrocephalus in only a subset of patients. J Neurol Neurosurg Psychiatry. 2007;78(5):508–11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sato H, Takahashi Y, Kimihira L, Iseki C, Kato H, Suzuki Y, et al. A segmental copy number loss of the SFMBT1 gene is a genetic risk for shunt-responsive, idiopathic Normal pressure hydrocephalus (iNPH): a case-control study. PLoS One. 2016;11(11):e0166615.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Graff-Radford NR, Knopman DS, Penman AD, Coker LH, Mosley TH. Do systolic BP and pulse pressure relate to ventricular enlargement? Eur J Neurol. 2013;20(4):720–4.

    Article  CAS  PubMed  Google Scholar 

  17. Jaraj D, Agerskov S, Rabiei K, Marlow T, Jensen C, Guo X, et al. Vascular factors in suspected normal pressure hydrocephalus: a population-based study. Neurology. 2016;86(7):592–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, et al. Dutch Normal-pressure hydrocephalus study: the role of cerebrovascular disease. J Neurosurg. 1999;90(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  19. Conn HO. Normal pressure hydrocephalus (NPH): more about NPH by a physician who is the patient. Clin Med (Lond). 2011;11(2):162–5.

    Article  Google Scholar 

  20. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Diercks C, Palmie S, et al. Gait analysis in idiopathic normal pressure hydrocephalus--which parameters respond to the CSF tap test? Clin Neurophysiol. 2000;111(9):1678–86.

    Article  CAS  PubMed  Google Scholar 

  21. Williams MA, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum (Minneap Minn). 2016;22(2 Dementia):579–99.

    Google Scholar 

  22. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. N Engl J Med. 2002;347(22):1761–8.

    Article  PubMed  Google Scholar 

  23. Katzen H, Ravdin LD, Assuras S, Heros R, Kaplitt M, Schwartz TH, et al. Postshunt cognitive and functional improvement in idiopathic normal pressure hydrocephalus. Neurosurgery. 2011;68(2):416–9.

    Article  PubMed  Google Scholar 

  24. Capone PM, Bertelson JA, Ajtai B. Neuroimaging of normal pressure hydrocephalus and hydrocephalus. Neurol Clin. 2020;38(1):171–83.

    Article  PubMed  Google Scholar 

  25. Sakakibara R, Kanda T, Sekido T, Uchiyama T, Awa Y, Ito T, et al. Mechanism of bladder dysfunction in idiopathic normal pressure hydrocephalus. Neurourol Urodyn. 2008;27(6):507–10.

    Article  PubMed  Google Scholar 

  26. Anger JT, Saigal CS, Litwin MS, Urologic Diseases of America P. The prevalence of urinary incontinence among community dwelling adult women: results from the national health and nutrition examination survey. J Urol. 2006;175(2):601–4.

    Article  PubMed  Google Scholar 

  27. Stothers L, Thom D, Calhoun E. Urologic diseases in America project: urinary incontinence in males--demographics and economic burden. J Urol. 2005;173(4):1302–8.

    Article  PubMed  Google Scholar 

  28. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4–16; discussion ii-v.

    PubMed  Google Scholar 

  29. Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo). 2012;52(11):775–809.

    Article  Google Scholar 

  30. Savolainen S, Hurskainen H, Paljarvi L, Alafuzoff I, Vapalahti M. Five-year outcome of normal pressure hydrocephalus with or without a shunt: predictive value of the clinical signs, neuropsychological evaluation and infusion test. Acta Neurochir. 2002;144(6):515–23; discussion 23

    Article  CAS  PubMed  Google Scholar 

  31. Damasceno BP. Neuroimaging in normal pressure hydrocephalus. Dementia Neuropsychol. 2015;9(4):350–5.

    Article  Google Scholar 

  32. Anthony M, Harold FY, Gunes AA, Satoshi S, Osamu T, Takuji Y, et al. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102(6):987–97.

    Article  Google Scholar 

  33. Gloeckner SF, Meyne F, Wagner F, Heinemann U, Krasnianski A, Meissner B, et al. Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. J Alzheimers Dis. 2008;14(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  34. Lins H, Wichart I, Bancher C, Wallesch CW, Jellinger KA, Rosler N. Immunoreactivities of amyloid beta peptide((1-42)) and total tau protein in lumbar cerebrospinal fluid of patients with normal pressure hydrocephalus. J Neural Transm (Vienna). 2004;111(3):273–80.

    Article  CAS  Google Scholar 

  35. Kudo T, Mima T, Hashimoto R, Nakao K, Morihara T, Tanimukai H, et al. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin Neurosci. 2000;54(2):199–202.

    Article  CAS  PubMed  Google Scholar 

  36. Ray B, Reyes PF, Lahiri DK. Biochemical studies in normal pressure hydrocephalus (NPH) patients: change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Abeta) peptide and phospho-tau. J Psychiatr Res. 2011;45(4):539–47.

    Article  PubMed  Google Scholar 

  37. Agerskov S, Wallin M, Hellström P, Ziegelitz D, Wikkelsö C, Tullberg M. Absence of disproportionately enlarged subarachnoid space hydrocephalus, a sharp callosal angle, or other morphologic MRI markers should not be used to exclude patients with idiopathic normal pressure hydrocephalus from shunt surgery. Am J Neuroradiol. 2019;40(1):74–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans WA Jr. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatr. 1942;47(6):931–7.

    Article  Google Scholar 

  39. Toma AK, Holl E, Kitchen ND, Watkins LD. Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery. 2011;68(4):939–44.

    Article  PubMed  Google Scholar 

  40. Park JE, Ju H, Im K, Kwon KY. Revisiting the diagnostic value of Evans’ index: lessons from an unusual case of normal pressure hydrocephalus with Evans’ index less than 0.3. Neurol Sci. 2019;40(12):2637–9.

    Article  PubMed  Google Scholar 

  41. Yamada S, Ishikawa M, Yamamoto K. Optimal diagnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. Am J Neuroradiol. 2015;36(12):2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, et al. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18(11):2678–83.

    Article  PubMed  Google Scholar 

  43. Virhammar J, Laurell K, Cesarini KG, Larsson EM. The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J Neurosurg. 2014;120(1):178–84.

    Article  PubMed  Google Scholar 

  44. Grahnke K, Jusue-Torres I, Szujewski C, Joyce C, Schneck M, Prabhu VC, et al. The quest for predicting sustained shunt response in normal-pressure hydrocephalus: an analysis of the callosal angle’s utility. World Neurosurg. 2018;115:e717–e22.

    Article  PubMed  Google Scholar 

  45. Ishii K, Soma T, Shimada K, Oda H, Terashima A, Kawasaki R. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord Extra. 2013;3(1):489–96.

    Article  Google Scholar 

  46. Ishii K. Diagnostic imaging of dementia with Lewy bodies, frontotemporal lobar degeneration, and normal pressure hydrocephalus. Jpn J Radiol. 2020;38(1):64–76.

    Article  PubMed  Google Scholar 

  47. Akiba C, Gyanwali B, Villaraza S, Nakajima M, Miyajima M, Cheng C-Y, et al. The prevalence and clinical associations of disproportionately enlarged subarachnoid space hydrocephalus (DESH), an imaging feature of idiopathic normal pressure hydrocephalus in community and memory clinic based Singaporean cohorts. J Neurol Sci. 2020;408:116510.

    Article  PubMed  Google Scholar 

  48. Hashimoto M, Ishikawa M, Mori E, Kuwana N. Study of Ioni. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010;7:18.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shinoda N, Hirai O, Hori S, Mikami K, Bando T, Shimo D, et al. Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: clinical research. J Neurosurg. 2017;127(6):1436–42.

    Article  PubMed  Google Scholar 

  50. Benedetto N, Gambacciani C, Aquila F, Di Carlo DT, Morganti R, Perrini P. A new quantitative method to assess disproportionately enlarged subarachnoid space (DESH) in patients with possible idiopathic normal pressure hydrocephalus: the SILVER index. Clin Neurol Neurosurg. 2017;158:27–32.

    Article  PubMed  Google Scholar 

  51. Savolainen S, Laakso MP, Paljarvi L, Alafuzoff I, Hurskainen H, Partanen K, et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. AJNR Am J Neuroradiol. 2000;21(2):409–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hurley RA, Bradley WG Jr, Latifi HT, Taber KH. Normal pressure hydrocephalus: significance of MRI in a potentially treatable dementia. J Neuropsychiatry Clin Neurosci. 1999;11(3):297–300.

    Article  CAS  PubMed  Google Scholar 

  53. Hofmann E, Becker T, Jackel M, Metzner D, Schneider M, Meixensberger J, et al. The corpus callosum in communicating and noncommunicating hydrocephalus. Neuroradiology. 1995;37(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  54. Nitz WR, Bradley WG Jr, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, et al. Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992;183(2):395–405.

    Article  CAS  PubMed  Google Scholar 

  55. Atasoy B, Aralasmak A, Cetinkaya E, Toprak H, Toprak A, Tokdemir S, et al. Normal pressure hydrocephalus: clinical symptoms, cerebrospinal fluid flow metrics and white matter changes. J Comput Assist Tomogr. 2020;44(1):59–64.

    Article  PubMed  Google Scholar 

  56. Scollato A, Tenenbaum R, Bahl G, Celerini M, Salani B, Di Lorenzo N. Changes in aqueductal CSF stroke volume and progression of symptoms in patients with unshunted idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2008;29(1):192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shanks J, Markenroth Bloch K, Laurell K, Cesarini KG, Fahlström M, Larsson EM, et al. Aqueductal CSF stroke volume is increased in patients with idiopathic Normal pressure hydrocephalus and decreases after shunt surgery. Am J Neuroradiol. 2019;40(3):453.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kahlon B, Annertz M, Stahlberg F, Rehncrona S. Is aqueductal stroke volume, measured with cine phase-contrast magnetic resonance imaging scans useful in predicting outcome of shunt surgery in suspected normal pressure hydrocephalus? Neurosurgery. 2007;60(1):124–9; discussion 9-30

    Article  PubMed  Google Scholar 

  59. Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, et al. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol. 2015;36(4):623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ishikawa M, Hashimoto M, Mori E, Kuwana N, Kazui H. The value of the cerebrospinal fluid tap test for predicting shunt effectiveness in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2012;9(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sharma AK, Gaikwad S, Gupta V, Garg A, Mishra NK. Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: utility in the management of idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2008;110(4):363–8.

    Article  PubMed  Google Scholar 

  62. Kim MJ, Seo SW, Lee KM, Kim ST, Lee JI, Nam DH, et al. Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(8):1496–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Virhammar J, Ahlgren A, Cesarini KG, Laurell K, Larsson EM. Cerebral perfusion does not increase after shunt surgery for normal pressure hydrocephalus. J Neuroimaging. 2020;30(3):303–7.

    Article  PubMed  Google Scholar 

  64. Younes K, Hasan KM, Kamali A, McGough CE, Keser Z, Hasan O, et al. Diffusion tensor imaging of the superior thalamic radiation and cerebrospinal fluid distribution in idiopathic normal pressure hydrocephalus. J Neuroimaging. 2019;29(2):242–51.

    Article  PubMed  Google Scholar 

  65. Kanno S, Abe N, Saito M, Takagi M, Nishio Y, Hayashi A, et al. White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study. J Neurol. 2011;258(11):1949–57.

    Article  PubMed  Google Scholar 

  66. Hattingen E, Jurcoane A, Melber J, Blasel S, Zanella FE, Neumann-Haefelin T, et al. Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery. 2010;66(5):917–24.

    Article  PubMed  Google Scholar 

  67. Grazzini I, Redi F, Sammartano K, Cuneo GL. Diffusion tensor imaging in idiopathic normal pressure hydrocephalus: clinical and CSF flowmetry correlations. Neuroradiol J. 2019;33(1):66–74.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Osuka S, Matsushita A, Yamamoto T, Saotome K, Isobe T, Nagatomo Y, et al. Evaluation of ventriculomegaly using diffusion tensor imaging: correlations with chronic hydrocephalus and atrophy. J Neurosurg. 2010;112(4):832–9.

    Article  PubMed  Google Scholar 

  69. Hoza D, Vlasák A, Hořínek D, Sameš M, Alfieri A. DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review. Neurosurg Rev. 2015;38(2):239–44.

    Article  PubMed  Google Scholar 

  70. Kang K, Choi W, Yoon U, Lee J-M, Lee H-W. Abnormal white matter integrity in elderly patients with idiopathic normal-pressure hydrocephalus: a tract-based spatial statistics study. Eur Neurol. 2016;75(1–2):96–103.

    Article  PubMed  Google Scholar 

  71. Ivkovic M, Liu B, Ahmed F, Moore D, Huang C, Raj A. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis. AJNR Am J Neuroradiol. 2013;34:1168–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hattori T, Yuasa T, Aoki S, Sato R, Sawaura H, Mori T. Altered microstructure in corticospinal tract in idiopathic normal pressure hydrocephalus: comparison with Alzheimer disease and Parkinson disease with dementia. AJNR Am J Neuroradiol. 2011;32:1681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khoo HM, Kishima H, Tani N, Oshino S, Maruo T, Hosomi K, et al. Default mode network connectivity in patients with idiopathic normal pressure hydrocephalus. J Neurosurg. 2016;124(2):350–8.

    Article  PubMed  Google Scholar 

  74. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.

    Article  CAS  PubMed  Google Scholar 

  75. Griffa A, Van De Ville D, Herrmann FR, Allali G. Neural circuits of idiopathic Normal pressure hydrocephalus: a perspective review of brain connectivity and symptoms meta-analysis. Neurosci Biobehav Rev. 2020;112:452–71.

    Article  PubMed  Google Scholar 

  76. Ogata Y, Ozaki A, Ota M, Oka Y, Nishida N, Tabu H, et al. Interhemispheric resting-state functional connectivity predicts severity of idiopathic normal pressure hydrocephalus. Front Neurosci. 2017;11:470.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jagust WJ, Friedland RP, Budinger TF. Positron emission tomography with [18F]fluorodeoxyglucose differentiates normal pressure hydrocephalus from Alzheimer-type dementia. J Neurol Neurosurg Psychiatry. 1985;48(11):1091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Graff-Radford NR, Jones DT. Normal pressure hydrocephalus. Continuum. 2019;25(1):165–86.

    PubMed  Google Scholar 

  79. Tedeschi E, Hasselbalch SG, Waldemar G, Juhler M, Hogh P, Holm S, et al. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1995;59(6):608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Townley RA, Botha H, Graff-Radford J, Boeve BF, Petersen RC, Senjem ML, et al. (18)F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus. Neuroimage Clin. 2018;18:897–902.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Miyazaki K, Hanaoka K, Kaida H, Chiba Y, Ishii K. Changes in cerebral glucose metabolism caused by morphologic features of prodromal idiopathic normal pressure hydrocephalus. EJNMMI Res. 2019;9(1):111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rinne JO, Suotunen T, Rummukainen J, Herukka SK, Nerg O, Koivisto AM, et al. [11C]PIB PET is associated with the brain biopsy amyloid-beta load in subjects examined for normal pressure hydrocephalus. J Alzheimers Dis. 2019;67(4):1343–51.

    Article  CAS  PubMed  Google Scholar 

  83. Meltzer C, Cantwell M, Greer P, Ben-Eliezer D, Smith G, Frank G. Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction. J Nucl Med. 2000;41:1842–8.

    CAS  PubMed  Google Scholar 

  84. Klinge P, Brooks D, Samii A, Weckesser E, van den Hoff J, Fricke H. Correlates of local cerebral blood flow (CBF) in normal pressure hydrocephalus patients before and after shunting—a retrospective analysis of [15O]H2O PET-CBF studies in 65 patients. Clin Neurol Neurosurg. 2008;110:369–75.

    Article  PubMed  Google Scholar 

  85. Owler B, Pena A, Momjian S, Czosnyka Z, Czosnyka M, Harris N. Changes in cerebral blood flow during cerebrospinal fluid pressure manipulation in patients with normal pressure hydrocephalus: a methodological study. J Cereb Blood Flow Metab. 2004;24:579–87.

    Article  PubMed  Google Scholar 

  86. Keong NCH, Pena A, Price SJ, Czosnyka M, Czosnyka Z, Pickard JD. Imaging normal pressure hydrocephalus: theories, techniques, and challenges. Neurosurg Focus. 2016;41(3):E11.

    Article  PubMed  Google Scholar 

  87. Klinge P, Berding G, Brinker T, Knapp W, Samii M. A positron emission tomography study of cerebrovascular reserve before and after shunt surgery in patients with idiopathic chronic hydrocephalus. J Neurosurg. 1999;91:605–9.

    Article  CAS  PubMed  Google Scholar 

  88. Kawaguchi T, Hirata Y, Bundo M, Kondo T, Owaki H, Ito S, et al. Role of computerized tomographic cisternography in idiopathic normal pressure hydrocephalus. Acta Neurochir. 2011;153(10):2041–8; discussion 8

    Article  PubMed  Google Scholar 

  89. Waitman M, Coutinho A, Nunes R, Trindade M, Zaniboni E, Bastos L, et al. Radionuclide cisternography revisited in the SPECT/CT era: applications in normal pressure hydrocefalus and in the detection of cerebrospinal fistulas in comparison with magnetic resonance imaging techniques. 2019.

    Google Scholar 

  90. Ohmichi T, Kondo M, Itsukage M, Koizumi H, Matsushima S, Kuriyama N, et al. Usefulness of the convexity apparent hyperperfusion sign in 123I-iodoamphetamine brain perfusion SPECT for the diagnosis of idiopathic normal pressure hydrocephalus. J Neurosurg. 2018;130(2):398–405.

    Article  PubMed  Google Scholar 

  91. Ishii K, Hashimoto M, Hayashida K, Hashikawa K, Chang CC, Nakagawara J, et al. A multicenter brain perfusion SPECT study evaluating idiopathic normal-pressure hydrocephalus on neurological improvement. Dement Geriatr Cogn Disord. 2011;32(1):1–10.

    Article  PubMed  Google Scholar 

  92. Isaacs AM, Williams MA, Hamilton MG. Current update on treatment strategies for idiopathic normal pressure hydrocephalus. Curr Treat Options Neurol. 2019;21(12):65.

    Article  PubMed  Google Scholar 

  93. Kazui H, Miyajima M, Mori E, Ishikawa M, Investigators S. Lumboperitoneal shunt surgery for idiopathic normal pressure hydrocephalus (SINPHONI-2): an open-label randomised trial. Lancet Neurol. 2015;14(6):585–94.

    Article  PubMed  Google Scholar 

  94. Vanneste JA. Diagnosis and management of normal-pressure hydrocephalus. J Neurol. 2000;247(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  95. Spetzler R. Normal pressure hydrocephalus. Barrow Quart. 2003;19:1.

    Google Scholar 

  96. Ivkovic M, Reiss-Zimmermann M, Katzen H, Preuss M, Kovanlikaya I, Heier L, et al. MRI assessment of the effects of acetazolamide and external lumbar drainage in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2015;12:9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Halperin JJ, Kurlan R, Schwalb JM, Cusimano MD, Gronseth G, Gloss D. Practice guideline: idiopathic normal pressure hydrocephalus: response to shunting and predictors of response: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of Neurology. Neurology. 2015;85(23):2063–71.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang L, Hussain Z, Ren Z. Recent advances in rational diagnosis and treatment of normal pressure hydrocephalus: a critical appraisal on novel diagnostic, therapy monitoring and treatment modalities. Curr Drug Targets. 2019;20(10):1041–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria C. Chiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovanlikaya, I., Chiang, G.C. (2022). Normal Pressure Hydrocephalus. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics