Skip to main content

Multiple System Atrophy

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

Multiple system atrophy (MSA) is a rapidly progressive sporadic neurodegenerative disease that may share clinical and imaging features with Parkinson’s disease and other atypical parkinsonian disorders. Patients present with autonomic failure usually in the form of genitourinary syndromes, severe orthostatic hypotension, and sleep disorders, among others. The disease is classified based on the predominant motor manifestations into MSA-P (parkinsonian) or MSA-C (cerebellar), although patients may have overlapping clinical and imaging findings. Poor sustained response to levodopa is a hallmark of MSA. Certain imaging features support a diagnosis of MSA, including atrophy of the putamen (posterolateral predominance), pons, brainstem, or cerebellum on MRI and hypometabolism of the putamen, brainstem, or cerebellum on FDG-PET imaging. There are other characteristic features of MSA-P on MRI such as putaminal hypointensity on T2 or T2*/SWI sequences due to iron deposition and the presence of a T2-FLAIR hyperintense putaminal rim. In MSA-C, there is profound atrophy of the pons, medulla, cerebellum, and middle cerebellar peduncles with a characteristic cruciform T2-FLAIR hyperintensity in the pons. In addition to FDG, several other PET tracers have been studied in MSA which allow evaluation of the dopaminergic and cholinergic systems as well as changes in microglial activation secondary to neuroinflammation, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999;354:1771–5.

    Article  CAS  PubMed  Google Scholar 

  3. Tison F, Yekhlef F, Chrysostome V, et al. Prevalence of multiple system atrophy. Lancet. 2000;355:495–6.

    Article  CAS  PubMed  Google Scholar 

  4. Bower JH, Maraganore DM, McDonnell SK, et al. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology. 1997;49:1284–8.

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Shlomo Y, Wenning GK, Tison F, et al. Survival of patients with pathologically proven multiple system atrophy: a meta-analysis. Neurology. 1997;48:384–93.

    Article  CAS  PubMed  Google Scholar 

  6. Ozawa T, Tada M, Kakita A, et al. The phenotype spectrum of Japanese multiple system atrophy. J Neurol Neurosurg Psychiatry. 2010;81:1253–5.

    Article  CAS  PubMed  Google Scholar 

  7. Ozawa T, Revesz T, Paviour D, et al. Difference in MSA phenotype distribution between populations: genetics or environment? J Parkinsons Dis. 2012;2:7–18.

    Article  CAS  PubMed  Google Scholar 

  8. Ozawa T, Paviour D, Quinn NP, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain. 2004;127:2657–71.

    Article  PubMed  Google Scholar 

  9. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta Neuropathol. 2010;120:131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jellinger KA. Multiple system atrophy: an Oligodendroglioneural Synucleinopathy. J Alzheimers Dis. 2018;62:1141–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valera E, Masliah E. The neuropathology of multiple system atrophy and its therapeutic implications. Auton Neurosci. 2018;211:1–6.

    Article  CAS  PubMed  Google Scholar 

  12. Lee HJ, Cho ED, Lee KW, et al. Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein. Exp Mol Med. 2013;45:e22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372:249–63.

    Article  PubMed  CAS  Google Scholar 

  14. Jellinger KA. Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Mov Disord. 2014;29:1720–41.

    Article  CAS  PubMed  Google Scholar 

  15. Courte J, Bousset L, Boxberg YV, et al. The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding. Sci Rep. 2020;10:4895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Visanji NP, Collingwood JF, Finnegan ME, et al. Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson's disease and multiple system atrophy. J Parkinsons Dis. 2013;3:523–37.

    Article  CAS  PubMed  Google Scholar 

  17. Kaindlstorfer C, Jellinger KA, Eschlbock S, et al. The relevance of Iron in the pathogenesis of multiple system atrophy: a viewpoint. J Alzheimers Dis. 2018;61:1253–73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cykowski MD, Coon EA, Powell SZ, et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain. 2015;138:2293–309.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Coon EA, Sletten DM, Suarez MD, et al. Clinical features and autonomic testing predict survival in multiple system atrophy. Brain. 2015;138:3623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wenning GK, Ben Shlomo Y, Magalhaes M, et al. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain. 1994;117(Pt 4):835–45.

    Article  PubMed  Google Scholar 

  21. Sakakibara R, Hattori T, Uchiyama T, et al. Urinary dysfunction and orthostatic hypotension in multiple system atrophy: which is the more common and earlier manifestation? J Neurol Neurosurg Psychiatry. 2000;68:65–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beck RO, Betts CD, Fowler CJ. Genitourinary dysfunction in multiple system atrophy: clinical features and treatment in 62 cases. J Urol. 1994;151:1336–41.

    Article  CAS  PubMed  Google Scholar 

  23. Peeraully T. Multiple system atrophy. Semin Neurol. 2014;34:174–81.

    Article  PubMed  Google Scholar 

  24. Brown RG, Lacomblez L, Landwehrmeyer BG, et al. Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain. 2010;133:2382–93.

    Article  PubMed  Google Scholar 

  25. Trojanowski JQ, Revesz T, Neuropathology Working Group on MSA. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol. 2007;33:615–20.

    Article  CAS  PubMed  Google Scholar 

  26. Hwang I, Sohn CH, Kang KM, et al. Differentiation of parkinsonism-predominant multiple system atrophy from idiopathic Parkinson disease using 3T susceptibility-weighted MR imaging, focusing on Putaminal change and lesion asymmetry. AJNR Am J Neuroradiol. 2015;36:2227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kraft E, Schwarz J, Trenkwalder C, et al. The combination of hypointense and hyperintense signal changes on T2-weighted magnetic resonance imaging sequences: a specific marker of multiple system atrophy? Arch Neurol. 1999;56:225–8.

    Article  CAS  PubMed  Google Scholar 

  28. Aquino D, Bizzi A, Grisoli M, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology. 2009;252:165–72.

    Article  PubMed  Google Scholar 

  29. Lee WH, Lee CC, Shyu WC, et al. Hyperintense putaminal rim sign is not a hallmark of multiple system atrophy at 3T. AJNR Am J Neuroradiol. 2005;26:2238–42.

    PubMed  PubMed Central  Google Scholar 

  30. Tha KK, Terae S, Tsukahara A, et al. Hyperintense putaminal rim at 1.5 T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol. 2012;12:39.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwarz ST, Afzal M, Morgan PS, et al. The 'swallow tail' appearance of the healthy nigrosome - a new accurate test of Parkinson's disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One. 2014;9:e93814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang N, Yang H, Li C, et al. Using 'swallow-tail' sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson's disease: a susceptibility-weighted imaging study. Eur Radiol. 2017;27:3174–80.

    Article  PubMed  Google Scholar 

  33. Ito S, Shirai W, Hattori T. Putaminal hyperintensity on T1-weighted MR imaging in patients with the Parkinson variant of multiple system atrophy. AJNR Am J Neuroradiol. 2009;30:689–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bajaj S, Krismer F, Palma JA, et al. Diffusion-weighted MRI distinguishes Parkinson disease from the parkinsonian variant of multiple system atrophy: a systematic review and meta-analysis. PLoS One. 2017;12:e0189897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bhattacharya K, Saadia D, Eisenkraft B, et al. Brain magnetic resonance imaging in multiple-system atrophy and Parkinson disease: a diagnostic algorithm. Arch Neurol. 2002;59:835–42.

    Article  PubMed  Google Scholar 

  36. Schrag A, Good CD, Miszkiel K, et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology. 2000;54:697–702.

    Article  CAS  PubMed  Google Scholar 

  37. Brettschneider J, Irwin DJ, Boluda S, et al. Progression of alpha-synuclein pathology in multiple system atrophy of the cerebellar type. Neuropathol Appl Neurobiol. 2017;43:315–29.

    Article  CAS  PubMed  Google Scholar 

  38. Kim M, Ahn JH, Cho Y, et al. Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci Rep. 2019;9:17329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nicoletti G, Fera F, Condino F, et al. MR imaging of middle cerebellar peduncle width: differentiation of multiple system atrophy from Parkinson disease. Radiology. 2006;239:825–30.

    Article  PubMed  Google Scholar 

  40. Perani D, Bressi S, Testa D, et al. Clinical/metabolic correlations in multiple system atrophy. A fludeoxyglucose F 18 positron emission tomographic study. Arch Neurol. 1995;52:179–85.

    Article  CAS  PubMed  Google Scholar 

  41. Lyoo CH, Jeong Y, Ryu YH, et al. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy. Brain. 2008;131:438–46.

    Article  CAS  PubMed  Google Scholar 

  42. Teune LK, Bartels AL, de Jong BM, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord. 2010;25:2395–404.

    Article  PubMed  Google Scholar 

  43. Meyer PT, Frings L, Rucker G, et al. (18)F-FDG PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med. 2017;58:1888–98.

    Article  CAS  PubMed  Google Scholar 

  44. Matthews DC, Lerman H, Lukic A, et al. FDG PET Parkinson's disease-related pattern as a biomarker for clinical trials in early stage disease. Neuroimage Clin. 2018;20:572–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ishii K. PET approaches for diagnosis of dementia. AJNR Am J Neuroradiol. 2014;35:2030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Otsuka M, Kuwabara Y, Ichiya Y, et al. Differentiating between multiple system atrophy and Parkinson's disease by positron emission tomography with 18F-dopa and 18F-FDG. Ann Nucl Med. 1997;11:251–7.

    Article  CAS  PubMed  Google Scholar 

  47. Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990;28:547–55.

    Article  CAS  PubMed  Google Scholar 

  48. Berti V, Pupi A, Mosconi L. PET/CT in diagnosis of movement disorders. Ann N Y Acad Sci. 2011;1228:93–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewis SJ, Pavese N, Rivero-Bosch M, et al. Brain monoamine systems in multiple system atrophy: a positron emission tomography study. Neurobiol Dis. 2012;46:130–6.

    Article  CAS  PubMed  Google Scholar 

  50. Antonini A, Leenders KL, Vontobel P, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease. Brain. 1997;120(Pt 12):2187–95.

    Article  PubMed  Google Scholar 

  51. Henry JP, Scherman D. Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem Pharmacol. 1989;38:2395–404.

    Article  CAS  PubMed  Google Scholar 

  52. Raffel DM, Koeppe RA, Little R, et al. PET measurement of cardiac and nigrostriatal denervation in parkinsonian syndromes. J Nucl Med. 2006;47:1769–77.

    CAS  PubMed  Google Scholar 

  53. Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using (18)F-FP-CIT PET/CT in patients with parkinsonism. Am J Nucl Med Mol Imaging. 2018;8:360–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang S, Che T, Levit A, et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. 2018;555:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain. 2011;4:26.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bonci A, Hopf FW. The dopamine D2 receptor: new surprises from an old friend. Neuron. 2005;47:335–8.

    Article  CAS  PubMed  Google Scholar 

  57. Van Laere K, Clerinx K, D'Hondt E, et al. Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med. 2010;51:588–95.

    Article  PubMed  CAS  Google Scholar 

  58. Shinotoh H, Fukushi K, Nagatsuka S, et al. Acetylcholinesterase imaging: its use in therapy evaluation and drug design. Curr Pharm Des. 2004;10:1505–17.

    Article  CAS  PubMed  Google Scholar 

  59. Benarroch EE, Schmeichel AM, Parisi JE. Depletion of cholinergic neurons of the medullary arcuate nucleus in multiple system atrophy. Auton Neurosci. 2001;87:293–9.

    Article  CAS  PubMed  Google Scholar 

  60. Gilman S, Koeppe RA, Nan B, et al. Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology. 2010;74:1416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chauveau F, Boutin H, Van Camp N, et al. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304–19.

    Article  PubMed  Google Scholar 

  62. Lecours C, Bordeleau M, Cantin L, et al. Microglial implication in Parkinson's disease: loss of beneficial physiological roles or gain of inflammatory functions? Front Cell Neurosci. 2018;12:282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Liu GJ, Middleton RJ, Hatty CR, et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol. 2014;24:631–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Edison P, Archer HA, Gerhard A, et al. Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32:412–9.

    Article  CAS  PubMed  Google Scholar 

  65. Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis. 2006;21:404–12.

    Article  CAS  PubMed  Google Scholar 

  66. Gerhard A, Banati RB, Goerres GB, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology. 2003;61:686–9.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, Gao F, Wang D, et al. Tau pathology in Parkinson's disease. Front Neurol. 2018;9:809.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Iqbal K, Liu F, Gong CX, et al. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7:656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arai T, Ikeda K, Akiyama H, et al. Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick's disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol. 2001;101:167–73.

    Article  CAS  PubMed  Google Scholar 

  70. Armstrong RA, Cairns NJ. Spatial patterns of the tau pathology in progressive supranuclear palsy. Neurol Sci. 2013;34:337–44.

    Article  PubMed  Google Scholar 

  71. Katzeff JS, Phan K, Purushothuman S, et al. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun. 2019;7:117.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cairns NJ, Atkinson PF, Hanger DP, et al. Tau protein in the glial cytoplasmic inclusions of multiple system atrophy can be distinguished from abnormal tau in Alzheimer's disease. Neurosci Lett. 1997;230:49–52.

    Article  CAS  PubMed  Google Scholar 

  73. Perez-Soriano A, Arena JE, Dinelle K, et al. PBB3 imaging in parkinsonian disorders: evidence for binding to tau and other proteins. Mov Disord. 2017;32:1016–24.

    Article  CAS  PubMed  Google Scholar 

  74. Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.

    Article  CAS  PubMed  Google Scholar 

  75. Cho H, Choi JY, Lee SH, et al. (18) F-AV-1451 binds to putamen in multiple system atrophy. Mov Disord. 2017;32:171–3.

    Article  PubMed  Google Scholar 

  76. Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry. 2018;89:175–84.

    Article  PubMed  Google Scholar 

  77. Lee PH, Lee JE, Kim HS, et al. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol. 2012;72:32–40.

    Article  PubMed  Google Scholar 

  78. Lee PH, Kim JW, Bang OY, et al. Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther. 2008;83:723–30.

    Article  CAS  PubMed  Google Scholar 

  79. Staff NP, Jones DT, Singer W. Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc. 2019;94:892–905.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Zamora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamora, C., Muhleman, M.A., Castillo, M. (2022). Multiple System Atrophy. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics