Skip to main content

The Future of the Automated City: Social, Technical and Ethical Perspectives

  • Chapter
  • First Online:
The Automated City

Abstract

The previous chapter discussed particular issues in relation to Automated Vehicles, urban robots and urban drones. This chapter discusses visions, perspectives and challenges of the Automated City more generally, including aspirational visions of future cities, what must be overcome or addressed towards a favourable notion of the Automated City, and issues of governance, new business models, city transportation, sustainability, real-time tracking, urban edge computing, blockchain, technical challenges of cooperation, and trust, fairness and ethics in relation to AI and algorithms in the city—we elaborate on the last two aspects in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.nationalgeographic.com/magazine/2019/04/see-sustainable-future-city-designed-for-people-and-nature/ [last accessed: 28/1/2021].

  2. 2.

    https://www.fastcompany.com/90456312/pariss-mayor-has-a-dream-for-a-15-minute-city [last accessed: 28/1/2021].

  3. 3.

    https://www.britannica.com/topic/Our-Future-Eco-Cities-Beyond-Automobile-Dependence-2118409 [last accessed: 22/1/2021].

  4. 4.

    https://www.theguardian.com/cities/2018/sep/18/paradise-life-spanish-city-banned-cars-pontevedra [last accessed: 22/1/2021].

  5. 5.

    https://www.renotalk.com/article/singapore-greenest-city [last accessed: 28/1/2021].

  6. 6.

    http://senseable.mit.edu/treepedia/cities/singapore [last accessed: 28/1/2021].

  7. 7.

    https://futurereality.wordpress.com/2012/05/10/green-cities-possibilities-of-the-future/ [22/1/2021].

  8. 8.

    As noted by Brownell (a previous CEO of D-Wave, a quantum computing company; https://qz.com/1566061/quantum-computing-will-change-the-way-the-world-uses-energy/ [last accessed: 15/2/2021]):

    Most modern classical supercomputers use between 1 to 10 megawatts of power on average, which is enough electricity to meet the instantaneous demand of almost 10,000 homes. As a year’s worth of electricity at 1 megawatt costs about $1 million in the US, this leads to multimillion-dollar price tags for operating these classical supercomputers.

    Brownell also says:

    In contrast, each comparable quantum computer using 25 kW of power costs about $25,000 per unit per year to run.

    The emerging paradigm of quantum computing then becomes a powerful alternative for compute-intensive applications, not only due to potential speed-ups (which could also imply less energy used), but also from the perspective of energy efficiency per unit of computation work done.

  9. 9.

    https://thedigestonline.com/community-human-interest/sustainable-cities-of-the-future/ [last accessed: 28/1/2021].

  10. 10.

    https://www.biophiliccities.org/our-vision [last accessed: 28/1/2021].

  11. 11.

    https://www.smartcitiesworld.net/news/news/tencent-unveils-plans-for-futuristic-net-city-in-shenzhen-5362 [last accessed: 28/1/2021].

  12. 12.

    See https://akoncity.com, and https://www.youtube.com/watch?v=8pff0k_dirE, https://www.youtube.com/watch?v=Tt45h7d6_4Q [last accessed: 22/1/2021].

  13. 13.

    https://blog.toyota.co.uk/toyota-woven-city-hydrogen-power [last accessed: 22/1/2021].

  14. 14.

    https://www.arch2o.com/city-in-the-sky-concept-tsvetan-toshkov/ [last accessed: 22/1/2021].

  15. 15.

    A discussion on social media’s contribution to political misperceptions in presidential elections in the US is available at https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213500 [last accessed: 16/6/2021].

  16. 16.

    A discussion on this issue is at https://www.medicalnewstoday.com/articles/exercise-and-mental-health-during-covid-19-study-explores-link-trends [last accessed: 16/6/2021].

  17. 17.

    https://qz.com/911968/bill-gates-the-robot-that-takes-your-job-should-pay-taxes/ [last accessed: 15/2/2021].

  18. 18.

    https://www.futureofworkhub.info/comment/2019/12/4/robot-tax-the-pros-and-cons-of-taxing- robotic-technology-in-the-workplace [last accessed: 15/2/2021].

  19. 19.

    See also the summary at https://clsbluesky.law.columbia.edu/2017/06/06/how-tax-policy-favors-robots-over-workers-and-what-to-do-about-it/.

  20. 20.

    https://www.enterprisesg.gov.sg/financial-assistance/grants/for-local-companies/enterprise-development-grant/innovation-and-productivity/automation [last accessed: 15/2/2021].

  21. 21.

    It is interesting to note the word-of-machine effect supported by experiments: “if someone is focused on utilitarian and functional qualities, then, from a marketer’s perspective, the word of a machine is more effective than the word of human recommenders. For someone focused on experiential and sensory qualities, human recommenders are more effective.”—quoted from https://hbr.org/2020/10/when-do-we-trust-ais-recommendations-more-than-peoples.

  22. 22.

    As an example, a discussion of smart city technologies and new business models, perhaps starting from informal enterprises, in Sub-Saharan Africa is in https://www.intechopen.com/online-first/orchestrating-smart-cities-new-disruptive-business-models-and-informal-enterprises [last accessed: 17/2/2021]. Other examples of new business models arising from smart city projects are at https://www.capgemini.com/2019/02/smart-cities-emergence-of-new-business-models/ [last accessed: 17/2/2021].

  23. 23.

    https://www.smh.com.au/education/university-degrees-obsolete-report-ernst-young-20180501-p4zcn5.html [last accessed: 17/2/2021].

  24. 24.

    See https://www.wionews.com/technology/new-normal-robots-being-used-for-home-deliveries- due-to-surge-in-covid-cases-377223; the robots were developed by OTSAW, http://otsaw.com [last accessed: 20/4/2021].

  25. 25.

    See https://dominos.gcs-web.com/news-releases/news-release-details/dominosr-and-nuro-launch-autonomous-pizza-delivery-road-robot—the vehicles are called R2, by a company called Nuro, https://www.nuro.ai/ [last accessed: 20/4/2021].

  26. 26.

    For example, see https://www.forbes.com/sites/forbestechcouncil/2020/06/24/autonomous-driving-business-models-part-one/ [last accessed: 17/2/2021] for a discussion.

  27. 27.

    For example, see https://techcrunch.com/2020/08/16/autox-launches-its-robotaxi-service-in-shanghai-competing-with-didis-pilot-program/ and https://techcrunch.com/2020/06/30/momenta-robotaxis/ [last accessed: 13/4/2021].

  28. 28.

    See https://www.forbes.com/sites/lanceeliot/2019/06/11/making-money-on-self-driving-cars-the-roving-eye-will-be-golden/ [last accessed: 13/4/2021].

  29. 29.

    For example, see the role of LIDAR in relation to weather at https://lidarmag.com/2019/12/04/not-just-for-surveying-lidars-big-impact-in-weather/ [last accessed: 17/6/2021].

  30. 30.

    See https://www.forbes.com/sites/bernardmarr/2019/08/05/robots-as-a-service-a-technology-trend-every-business-must-consider/ and https://insights.rlist.io/p/report-robot-as-service-companies.html [last accessed: 17/2/2021].

  31. 31.

    See Deloitte report: https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/micro-mobility-is-the-future-of-urban-transportation.html [last accessed: 1/5/2021].

  32. 32.

    For example, from https://www.bbc.com/future/article/20200608-how-sustainable-are-electric-scooters [last accessed: 1/5/2021], by 2020, there were over 100 cities with e-scooter deployments around the world, with several million e-scooters in use.

  33. 33.

    https://www.li.me/en-us/home [last accessed: 1/5/2021].

  34. 34.

    https://www.voiscooters.com/how-to-voi/ [last accessed: 1/5/2021].

  35. 35.

    https://www.superpedestrian.com/en [last accessed: 1/5/2021].

  36. 36.

    https://www.link.city [last accessed: 1/5/2021].

  37. 37.

    See https://www.theverge.com/2020/3/20/21188119/electric-scooter-coronavirus-bird-lime-spin-suspend-bikes [last accessed: 1/5/2021].

  38. 38.

    For example, see https://ideas.ted.com/zoom-fatigue-is-real-heres-why-video-calls-are-so-draining/ [last accessed: 4/4/2021].

  39. 39.

    https://www.cityoflondon.police.uk/police-forces/city-of-london-police/areas/city-of-london/campaigns/campaigns/2020/secure-city/ [last accessed: 15/5/2021].

  40. 40.

    See the book How People Judge Machines, at https://www.judgingmachines.com/ [last accessed: 5/4/2021].

  41. 41.

    https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/ and https://www.equinix.com.au/resources/analyst-reports/edge-computing-strategies-gartner-2021/ [last accessed: 7/4/2021].

  42. 42.

    See also https://www.i-scoop.eu/industry-4-0/ [last accessed: 7/4/2021].

  43. 43.

    For example, it was reported that Walmart has plans to utilise its 3500 supercenters (stores) as edge computing hubs—see https://techhq.com/2020/04/why-the-edge-computing-hasnt-taken-off-yet/ and https://techhq.com/2020/01/can-walmarts-supercenter-footprint-fend-off-amazon/, Amazon provides Local Zones to provide cloud computing resources within certain cities—see https://aws.amazon.com/about-aws/global-infrastructure/localzones/, and Microsoft’s Cloud Platform Azure provides Azure Edge Zones—see https://azure.microsoft.com/en-us/solutions/low-latency-edge-computing/, and Google provides edge computing solutions, e.g., https://cloud.google.com/solutions/anthos-edge and https://cloud.google.com/edge-tpu [last accessed: 7/4/2021].

  44. 44.

    For examples, see the 2019 Symposium on Blockchain for Robotics and AI Systems at https://www.blockchainrobotics.org, and the European Horizon 2020 project “Blockchain: a new framework for swarm RObotic Systems” at https://cordis.europa.eu/project/id/751615 [last accessed: 6/6/2021].

  45. 45.

    See https://store.segway.com/segway-loomo-mini-transporter-robot-sidekick.

  46. 46.

    See https://www.iso.org/standard/80257.html [last accessed: 14/6/2021].

  47. 47.

    See also https://spectrum.ieee.org/cars-that-think/transportation/efficiency/cooperative-route-planning-could-make-driving-slightly-less-terrible-for-everyone [last accessed: 6/4/2021].

  48. 48.

    https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/intelligent-cars-could-boost-highway-capacity-by-273 [last accessed: 6/4/2021].

  49. 49.

    For an overview in relation to facial recognition, see https://www.nature.com/articles/d41586-020-03186-4.

  50. 50.

    See also https://emcrit.org/pulmcrit/racism-oximetry/ [last accessed: 27/5/2021].

  51. 51.

    See the discussion on trust in technology at https://www.technologyreview.com/2021/05/13/1024874/ai-ayanna-howard-trust-robots/ [last accessed: 15/5/2021]. In a study done, people trusted robots to lead them out of an emergency situation rather than use their own judgement of exiting safely where they came in [58].

  52. 52.

    A quick reference is at https://www.dsef.org/wp-content/uploads/2012/07/EthicalTheories.pdf [last accessed: 15/5/2021].

  53. 53.

    This is also discussed in [41] in connection with the convergence of automation with Internet connected things.

  54. 54.

    https://www.congress.gov/bill/116th-congress/house-bill/1668 [last accessed: 15/5/2021].

  55. 55.

    https://www.iotworldtoday.com/2021/02/02/new-iot-cybersecurity-improvement-act-creating-a-floor-for-iot-security/ [last accessed: 15/5/2021].

  56. 56.

    See The Short Anthropological Guide to the Study of Ethical AI, at https://montrealethics.ai/the-short-anthropological-guide-to-the-study-of-ethical-ai/ [last accessed: 27/5/2021]

  57. 57.

    https://aiethicslab.com/big-picture/ [last accessed: 28/5/2021].

  58. 58.

    The following white paper proposes component reuse for robotics: https://www.researchgate.net/publication/251871874_The_Use_of_Reuse_for_Designing_and_Manufacturing_Robots/stats [last accessed: 15/5/2021].

  59. 59.

    See https://theconversation.com/this-is-how-we-create-the-age-friendly-smart-city-152973 and https://ec.europa.eu/eip/ageing/file/2624/download_en%3Ftoken=1Em_qTx7 [last accessed: 13/6/2021].

  60. 60.

    See also https://theconversation.com/ageing-in-neighbourhood-what-seniors-want-instead-of-retirement-villages-and-how-to-achieve-it-138729 for a case in Australia [last accessed: 14/6/2021].

References

  1. Abbott, R., & Bogenschneider, B. (2017). Should robots pay taxes? Tax policy in the age of automation. Harvard Law and Policy Review, 12. Available at SSRN: https://ssrn.com/abstract=2932483 or https://doi.org/10.2139/ssrn.2932483

  2. Aceto, G., Persico, V., & Pescapé, A. (2019). A survey on information and communication technologies for industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Communications Surveys Tutorials, 21(4), 3467–3501

    Article  Google Scholar 

  3. Aliedani, A., & Loke, S. W. (2018). Cooperative autonomous vehicles: An investigation of the drop-off problem. IEEE Transactions on Intelligent Vehicles, 3(3), 310–316.

    Article  Google Scholar 

  4. Aliedani, A., & Loke, S. W. (2019). Cooperative car parking using vehicle-to-vehicle communication: An agent-based analysis. Computers, Environment and Urban Systems, 77, 101256.

    Article  Google Scholar 

  5. Almannaa, M. H., Ashqar, H. I., Elhenawy, M., Masoud, M., Rakotonirainy, A., & Rakha, H. (2021). A comparative analysis of e-scooter and e-bike usage patterns: Findings from the city of Austin, TX. International Journal of Sustainable Transportation, 15(7), 571–579.

    Article  Google Scholar 

  6. Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59–64.

    Article  Google Scholar 

  7. Bagloee, S. A., Heshmati, M., Dia, H., Ghaderi, H., Pettit, C., & Asadi, M. (2021). Blockchain: The operating system of smart cities. Cities, 112, 103104.

    Article  Google Scholar 

  8. Baltazar, A. R., Petry, M. R., Silva, M. F., & Moreira, A. P. (2021). Autonomous wheelchair for patient’s transportation on healthcare institutions. SN Applied Sciences, 3(3), 354.

    Article  Google Scholar 

  9. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.

    Article  Google Scholar 

  10. Bartneck, C., Lütge, C., Wagner, A., & Welsh, S. (2021). An introduction to ethics in robotics and AI. Cham: Springer Nature.

    Book  Google Scholar 

  11. Bastos, D., Giubilo, F., Shackleton, M., & El-Mousa, F. (2018). GDPR privacy implications for the internet of things. In Proceedings of the 4th Annual IoT Security Foundation Conference.

    Google Scholar 

  12. Batty, M. (2018). Inventing future cities. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  13. Ben Messaoud, R. (2017). Towards Efficient Mobile Crowdsensing Assignment and Uploading Schemes. Theses, Université Paris-Est, July 2017.

    Google Scholar 

  14. Brilhante, O., & Klaas, J. (2018). Green city concept and a method to measure green city performance over time applied to fifty cities globally: Influence of GDP, population size and energy efficiency. Sustainability, 10(6), 2031.

    Article  Google Scholar 

  15. Bucher, T. (2018). IF…THEN: Algorithmic power and politics. Oxford: Oxford University Press.

    Book  Google Scholar 

  16. Calvaresi, D., Appoggetti, K., Lustrissimi, L., Marinoni, M., Sernani, P., Dragoni, A. F., & Schumacher, M. (2018). Multi-agent systems’ negotiation protocols for cyber-physical systems: Results from a systematic literature review. In Proceedings of the 10th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, INSTICC (pp. 224–235). Setúbal: SciTePress.

    Chapter  Google Scholar 

  17. Canca, C. (2020). Operationalizing ai ethics principles. Communications of the ACM, 63(12), 18–21.

    Article  Google Scholar 

  18. Capponi, A., Fiandrino, C., Kantarci, B., Foschini, L., Kliazovich, D., & Bouvry, P. (2019). A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities. IEEE Communications Surveys Tutorials, 21(3), 2419–2465.

    Article  Google Scholar 

  19. Darling, K. (2021). The new breed: How to think about robots. London: Penguin.

    Google Scholar 

  20. Desai, P., Loke, S. W., Desai, A., & Singh, J. (2013). CARAVAN: Congestion avoidance and route allocation using virtual agent negotiation. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1197–1207.

    Article  Google Scholar 

  21. Dignum, V. (2019). Responsible artificial intelligence - How to develop and use AI in a responsible way. Artificial intelligence: Foundations, theory, and algorithms. Cham: Springer.

    Book  Google Scholar 

  22. Downton, P., Jones, D., Zeunert, J., & Roös, P. (2017). Biophilic design applications: Putting theory and patterns into built environment practice. KnE Engineering, 2(1), 59–65.

    Article  Google Scholar 

  23. El-Gazzar, R., & Stendal, K. (2020). Examining how GDPR challenges emerging technologies. Journal of Information Policy, 10, 237–275.

    Article  Google Scholar 

  24. Elhenawy, M., Glaser, S., Bond, A., Rakotonirainy, A., Demmel, S., & Masoud, M. (2020). A framework for testing independence between lane change and cooperative intelligent transportation system. PLoS One, 15(2), e0229289.

    Article  Google Scholar 

  25. Fan, T., Long, P., Liu, W., Pan, J. (2020). Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. The International Journal of Robotics Research, 39(7), 856–892.

    Article  Google Scholar 

  26. Feiner, J. R., Severinghaus, J. W., & Bickler, P. E. (2007). Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: The effects of oximeter probe type and gender. Anesthesia & Analgesia, 105(6 Suppl.), S18–23.

    Article  Google Scholar 

  27. Ferrer, E. C., Rudovic, O., Hardjono, T., & Pentland, A. (2018). Robochain: A secure data-sharing framework for human-robot interaction. CoRR abs/1802.04480.

    Google Scholar 

  28. Gates, B. (2021). How to avoid a climate disaster: The solutions we have and the breakthroughs we need. Allen Lane.

    Google Scholar 

  29. Gerety, R. M. (2021). Neighborhood watch. MIT Technology Review, 124, 30–40.

    Google Scholar 

  30. Hagerty, A., & Rubinov, I. (2019). Global AI ethics: A review of the social impacts and ethical implications of artificial intelligence. CoRR abs/1907.07892.

    Google Scholar 

  31. Higuchi, T., Rabsatt, R. V., Gerla, M., Altintas, O., & Dressler, F. (2019). Cooperative downloading in vehicular heterogeneous networks at the edge. In 2019 IEEE Globecom Workshops (GC Wkshps) (pp. 1–5).

    Google Scholar 

  32. Hlldobler, B., & Wilson, E. (2018). The superorganism: The beauty, elegance, and strangeness of insect societies (1st Ed.). New York: W.W. Norton and Company.

    Google Scholar 

  33. Kapitonov, A., Lonshakov, S., Berman, I., Ferrer, E. C., Bonsignorio, F. P., Bulatov, V., & Svistov, A. (2019). Robotic services for new paradigm smart cities based on decentralized technologies. Ledger, 4.

    Google Scholar 

  34. Kaye, S.-A., Lewis, I., Buckley, L., Gauld, C., & Rakotonirainy, A. (2020). To share or not to share: A theoretically guided investigation of factors predicting intentions to use fully automated shared passenger shuttles. Transportation Research Part F: Traffic Psychology and Behaviour, 75, 203–213.

    Article  Google Scholar 

  35. Khawalid, A., Acristinii, D., van Toor, H., & Ferrer, E. C. (2019). Grex: A decentralized hive mind. Ledger, 4. https://doi.org/10.5195/ledger.2019.176

  36. Kolias, C., Seliem, M., Elgazzar, K., & Khalil, K. (2018). Towards privacy preserving iot environments: A survey. Wireless Communications and Mobile Computing, 2018, 1032761.

    Google Scholar 

  37. Liyanage, M., Dar, F., Sharma, R., & Flores, H. (2021). GEESE: Edge computing enabled by UAVs. Pervasive and Mobile Computing, 72, 101340.

    Article  Google Scholar 

  38. Loke, S. W. (2019). Cooperative automated vehicles: A review of opportunities and challenges in socially intelligent vehicles beyond networking. IEEE Transactions on Intelligent Vehicles, 4(4), 509–518.

    Article  Google Scholar 

  39. Loke, S. W. (2015). The internet of flying-things: Opportunities and challenges with airborne fog computing and mobile cloud in the clouds. CoRR abs/1507.04492.

    Google Scholar 

  40. Loke, S. W. (2019). Achieving ethical algorithmic behaviour in the internet-of-things: A review. CoRR abs/1910.10241.

    Google Scholar 

  41. Loke, S. W. (2019). Achieving ethical algorithmic behaviour in the internet-of-things: A review. CoRR abs/1910.10241.

    Google Scholar 

  42. Lovén, L., Lähderanta, T., Ruha, L., Leppänen, T., Peltonen, E., Riekki, J., & Sillanpää, M. J. (2020). Scaling up an edge server deployment. In 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (pp. 1–7).

    Google Scholar 

  43. Lähderanta, T., Leppänen, T., Ruha, L., Lovén, L., Harjula, E., Ylianttila, M., Riekki, J., & Sillanpää, M. J. (2021). Edge computing server placement with capacitated location allocation. Journal of Parallel and Distributed Computing, 153, 130–149.

    Article  Google Scholar 

  44. Majeed, U., Khan, L. U., Yaqoob, I., Ahsan Kazmi, S. M., Salah, K., & Hong, C. S. (2021). Blockchain for iot-based smart cities: Recent advances, requirements, and future challenges. Journal of Network and Computer Applications, 181, 103007.

    Article  Google Scholar 

  45. Marston, H. R., Shore, L., & White, P. J. (2020). How does a (smart) age-friendly ecosystem look in a post-pandemic society? International Journal of Environmental Research and Public Health, 17(21), 7701–8291.

    Article  Google Scholar 

  46. Merlin, L. A., Yan, X., Xu, Y., & Zhao, X. (2021). A segment-level model of shared, electric scooter origins and destinations. Transportation Research Part D: Transport and Environment, 92, 102709.

    Article  Google Scholar 

  47. Mitra, R., & Hess, P. M. (2021). Who are the potential users of shared e-scooters? An examination of socio-demographic, attitudinal and environmental factors. Travel Behaviour and Society, 23, 100–107.

    Article  Google Scholar 

  48. Mora, H., Mendoza-Tello, J. C., Varela-Guzmán, E. G., & Szymanski, J. (2021). Blockchain technologies to address smart city and society challenges. Computers in Human Behavior, 122, 106854.

    Article  Google Scholar 

  49. Morishita, S., Maenaka, S., Nagata, D., Tamai, M., Yasumoto, K., Fukukura, T., & Sato, K. (2015). Sakurasensor: Quasi-realtime cherry-lined roads detection through participatory video sensing by cars. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15 (pp. 695–705). New York, NY: Association for Computing Machinery.

    Chapter  Google Scholar 

  50. Nguyen, T. T., Nguyen, C. M., Nguyen, D. T., Nguyen, D. T., & Nahavandi, S. (2019). Deep learning for deepfakes creation and detection. CoRR abs/1909.11573.

    Google Scholar 

  51. ÓhÉigeartaigh, S. S., Whittlestone, J., Liu, Y., Zeng, Y., Liu, Z. (2020). Overcoming barriers to cross-cultural cooperation in ai ethics and governance. Philosophy & Technology, 33(4), 571–593.

    Article  Google Scholar 

  52. Ollevier, A., Aguiar, G., Palomino, M., & Simpelaere, I. S. (2020). How can technology support ageing in place in healthy older adults? A systematic review. Public Health Reviews, 41(1), 26.

    Article  Google Scholar 

  53. Parris, K. M., Amati, M., Bekessy, S. A., Dagenais, D., Fryd, O., Hahs, A. K., Hes, D., Imberger, S. J., Livesley, S. J., Marshall, A. J., Rhodes, J. R., Threlfall, C. G. , Tingley, R., van der Ree, R., Walsh, C. J., Wilkerson, M. L. , & Williams, N. S. G. (2018). The seven lamps of planning for biodiversity in the city. Cities, 83, 44–53.

    Article  Google Scholar 

  54. Pimm, S., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., Joppa, L., Kays, R., & Loarie, S. (2015). Emerging technologies to conserve biodiversity. Trends in Ecology and Evolution, 30, 10.

    Article  Google Scholar 

  55. Powers, T. M. (2006). Prospects for a kantian machine. IEEE Intelligent Systems, 21(4), 46–51.

    Article  Google Scholar 

  56. Queralta, J. P., Qingqing, L., Zou, Z., & Westerlund, T. (2020). Enhancing autonomy with blockchain and multi-access edge computing in distributed robotic systems. In 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC) (pp. 180–187).

    Google Scholar 

  57. Rakotonirainy, A., Schroeter, R., & Soro, A. (2014). Three social car visions to improve driver behaviour. Pervasive and Mobile Computing, 14, 147–160. Special Issue on Pervasive Education Special Issue on The Social Car: Socially-inspired Mechanisms for Future Mobility Services.

    Google Scholar 

  58. Robinette, P., Li, W., Allen, R., Howard, A. M., & Wagner, A. R. (2016). Overtrust of robots in emergency evacuation scenarios. In The Eleventh ACM/IEEE International Conference on Human Robot Interaction, HRI ’16 (pp. 101–108). New York: IEEE Press.

    Google Scholar 

  59. Roemer, J. E. (2019). How we cooperate: A theory of Kantian optimization. New Haven: Yale University Press.

    Book  Google Scholar 

  60. Sanders, R. L., Branion-Calles, M., & Nelson, T. A. (2020). To scoot or not to scoot: Findings from a recent survey about the benefits and barriers of using e-scooters for riders and non-riders. Transportation Research Part A: Policy and Practice, 139, 217–227.

    Google Scholar 

  61. Schröder-Bäck, P., Duncan, P., Sherlaw, W., Brall, C., & Czabanowska, K. (2014). Teaching seven principles for public health ethics: towards a curriculum for a short course on ethics in public health programmes. BMC Medical Ethics, 15. Article number: 73.

    Google Scholar 

  62. Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63.

    Article  Google Scholar 

  63. Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E., & Valley, T. S. (2020). Racial bias in pulse oximetry measurement. New England Journal of Medicine, 383(25), 2477–2478.

    Article  Google Scholar 

  64. Socha, R., & Kogut, B. (2020). Urban video surveillance as a tool to improve security in public spaces. Sustainability, 12(15), 6210.

    Article  Google Scholar 

  65. Strobel, V., Castelló Ferrer, E., & Dorigo, M. (2018). Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18 (pp. 541–549), Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.

    Google Scholar 

  66. Tang, X., Chen, X., Geng, Z., & Chen, W. (2020). Cooperative content downloading in vehicular ad hoc networks. Procedia Computer Science, 174, 224–230. 2019 International Conference on Identification, Information and Knowledge in the Internet of Things.

    Google Scholar 

  67. Tun, S. Y. Y., Madanian, S., & Mirza, F. (2021). Internet of things (IoT) applications for elderly care: A reflective review. Aging Clinical and Experimental Research, 33(4), 855–867.

    Article  Google Scholar 

  68. van Hoof, J., Marston, H. R., Kazak, J. K., & Buffel, T. (2021). Ten questions concerning age-friendly cities and communities and the built environment. Building and Environment, 199, 107922.

    Article  Google Scholar 

  69. Wang, S., Zhao, Y., Xu, J., Yuan, J., & Hsu, C.-H. (2019). Edge server placement in mobile edge computing. Journal of Parallel and Distributed Computing, 127, 160–168.

    Article  Google Scholar 

  70. Wu, D., Bi, Y., & Liang, J. (2014). Cooperative downloading by multivehicles in urban vanet. International Journal of Distributed Sensor Networks, 10(2), 319514.

    Article  Google Scholar 

  71. Xiang, S., Li, L., Lo, S. M., & Li, X. (2017). People-centric mobile crowdsensing platform for urban design. In G. Cong, W.-C. Peng, W. E. Zhang, C. Li, & A. Sun (Eds.), Advanced data mining and applications (pp. 569–581), Cham: Springer International Publishing.

    Chapter  Google Scholar 

  72. Zambonelli, F., Salim, F., Loke, S. W., De Meuter, W., & Kanhere, S. (2018). Algorithmic governance in smart cities: The conundrum and the potential of pervasive computing solutions. IEEE Technology and Society Magazine, 37(2), 80–87.

    Article  Google Scholar 

  73. Zhang, J., Henein, M., Mahony, R. E., & Ila, V. (2020). VDO-SLAM: A visual dynamic object-aware SLAM system. CoRR abs/2005.11052.

    Google Scholar 

  74. Zhu, L., Xu, X., Lu, Q., Governatori, G., & Whittle, J. (2021). AI and ethics - operationalising responsible AI. CoRR abs/2105.08867.

    Google Scholar 

  75. Złotowski, J., Proudfoot, D., Yogeeswaran, K., & Bartneck, C. (2015). Anthropomorphism: Opportunities and challenges in human–robot interaction. International Journal of Social Robotics, 7(3), 347–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loke, S.W., Rakotonirainy, A. (2021). The Future of the Automated City: Social, Technical and Ethical Perspectives. In: The Automated City. Springer, Cham. https://doi.org/10.1007/978-3-030-82318-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82318-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82317-7

  • Online ISBN: 978-3-030-82318-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics