Skip to main content

Resistance Training for the Maximisation of the Vertical Force Production: Jumps

  • Chapter
  • First Online:
Resistance Training Methods

Abstract

In this chapter, the authors explore jump training exercises as a mean to maximise vertical force production and related physical fitness traits. Jump training may enhance muscular force, the rate of force development, muscular power, muscle contraction velocity, cross-sectional area, muscle stiffness, among other biological and biomechanical factors associated with enhanced physical function and athletic performance. Jump training exercises are characterised by the stretch–shortening cycle of the muscle–tendon complex, usually involving a pre-activation, stretching, and a shortening phase. Athletes have used jumps as a training method at least in the last 3000 years. From a scientific perspective, the number of scientific publications increased tremendously in recent years, with a 25-fold increase between 2000 and 2017. Scientific evidence supports the role of jump training for the improvement of physical performance in male and female athletes, from pre-pubertal to adult and senior age. However, evidence also supports the role of modified jump training exercises for several health-related outcomes (e.g., fat mass; muscle hypertrophy; bone density). In this chapter, the reader will find a summary of current scientific evidence regarding the biological foundations for jump training exercises, the scientifically proven methodological principles and practical guidelines regarding the programming of jump training exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderst WJ, Eksten F, Koceja DM (1994) Effects of plyometric and explosive resistance training on lower body power. Med Sci Sports Exerc 26:S31

    Google Scholar 

  • Asadi A, Ramirez-Campillo R, Meylan C, Nakamura FY, Cañas-Jamett R, Izquierdo M (2017) Effects of volume-based overload plyometric training on maximal-intensity exercise adaptations in young basketball players. J Sports Med Phys Fitness 57(12):1557–1563

    Article  Google Scholar 

  • Asmussen E, Bonde-Petersen F (1974) Storage of elastic energy in skeletal muscle in man. Acta Physiol Scand 92:385–392

    Article  Google Scholar 

  • Bauer T, Thayer RE, Baras G (1990) Comparison of training modalities for power development in the lower extremity. J Appl Sport Sci Res. 4:115–121

    Google Scholar 

  • Bobbert MF (1990a) Drop jumping as a training method for jumping ability. Sports Med 9:7–22

    Article  Google Scholar 

  • Bobbert MF (1990b) Drop jumping as a training method for jumping ability. Sports Med 9(1):7–22

    Article  Google Scholar 

  • Bobbert MJ, Mackay M, Schinkelshoek D, Huijing P, Van Ingen Schenau GJ (1986) Biomechanical analysis of drop and countermovement jumps. Eur J Appl Physiol 54:566–573

    Article  Google Scholar 

  • Bobbert MF, Gerritsen KGM, Litjsens CA, Van Soest AJ (1996) Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 28:1402–1412

    Article  Google Scholar 

  • Bosco C, Komi PV (1979) Potentiation of the mechanical behaviour of the human skeletal muscle through pre-stretching. Acta Physiol Scand 106:467–472

    Article  Google Scholar 

  • Bosco C, Komi PV, Ito A (1981) Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol Scand 111:135–140

    Article  Google Scholar 

  • Bosco C, Vitasolo JT, Komi PV, Luhtanen P (1982a) Combined effect of elastic energy and myoelectrical potentiation during stretch shortening cycle exercise. Acta Physiol Scand 114:557–565

    Article  Google Scholar 

  • Bosco C, Tihanyi J, Komi P, Fekete G, Apor P (1982b) Store and recoil of elastic energy in slow and fast types of human skeletal muscles. Acta Physiol Scand 116:343–349

    Article  Google Scholar 

  • Cavagna GA, Dusman B, Margaria R (1968) Positive work done by a previously stretched muscle. J Appl Physiol 24:21–32

    Article  Google Scholar 

  • Elnaggar RK (2020) Effects of plyometric exercises on muscle-activation strategies and response-capacity to balance threats in children with hemiplegic cerebral palsy. Physiother Theory Pract:1–9

    Google Scholar 

  • Ettema GJC, Van Soest J, Huijing PA (1990) The role of series elastic structures in pre-stretch induced work enhancement during isotonic and isokinetic contractions. J Exp Biol 154:121–136

    Google Scholar 

  • Ferragut F, Lopez-Calbet JA (1998) Mecanismos responsables de la potenciación de la contracción muscular concéntrica en el curso del ciclo estiramiento-acortamiento. Revista De Entrenamiento Deportivo 12:5–10

    Google Scholar 

  • Gentil P, Ramirez-Campillo R, Souza D (2020) Resistance training in face of the coronavirus outbreak: time to think outside the box. Front Physiol 11(859)

    Google Scholar 

  • González-Agüero A, Vicente-Rodríguez G, Gómez-Cabello A et al (2012) A 21-week bone deposition promoting exercise programme increases bone mass in young people with down syndrome. Dev Med Child Neurol 54:552–556

    Article  Google Scholar 

  • Grgic J, Schoenfeld B, Mikulic P (2020) Effects of plyometric versus resistance training on skeletal muscle hypertrophy: a review. J Sport Health Sci S2095-2546(20)30076-4

    Google Scholar 

  • Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes—a prospective study. Am J Sports Med 27(6):699–706

    Article  Google Scholar 

  • Hewett TE, Myer GD, Ford KR (2005) Reducing knee and anterior cruciate ligament injuries among female athletes: a systematic review of neuromuscular training interventions. J Knee Surg 18(1):82–88

    Article  Google Scholar 

  • Jacobs R, Van Ingen Schenau GJ (1992) Control of external force in leg extensions in humans. J Physiol 457:611–626

    Article  Google Scholar 

  • Kilani HA, Palmer SS, Adrian MJ, Gapsis JJ (1989) Block of the stretch reflex of vastus lateralis during vertical jumps. Hum Mov Sci 8(3):247–269

    Article  Google Scholar 

  • Komi PV (1992) Stretch-shortening cycle. In: Komi PV (ed) Strength and power in sport. Oxford, Blackwell Scientific Publications, pp 169–179

    Google Scholar 

  • Komi PV, Bosco C (1978) Utilisation of stored elastic energy in leg extensor muscle by men and women. Med Sci Sports Exerc 10:261–265

    Google Scholar 

  • Kramer A, Kümmel J, Gollhofer A, Armbrecht G, Ritzmann R, Belavy D, Felsenberg D, Gruber M (2018) Plyometrics can preserve peak power during 2 months of physical inactivity: an RCT including a one-year follow-up. Front Physiol 9:633

    Article  Google Scholar 

  • López-Calbet JA, Arteaga R, Chavaren J, Dorado C (1995) Comportamiento mecánico del músculo durante el ciclo estiramientoacortamiento. Factores neuromusculares. Archivos de Medicina del Deporte 12(47):219–223

    Google Scholar 

  • Marginson V, Rowlands AV, Gleeson NP, Eston RG (2005) Comparison of the symptoms of exercise-induced muscle damage after an initial and repeated bout of plyometric exercise in men and boys. J Appl Physiol 99(3):1174–1181

    Article  Google Scholar 

  • Markovic G (2007) Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med 41:349–355

    Article  Google Scholar 

  • Markovic G, Mikulic P (2010) Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med 40(10):859–895

    Article  Google Scholar 

  • Minetti AE, Ardigo LP (2002) Halteres used in ancient Olympic long jump. Nature 420(6912):141–142

    Article  Google Scholar 

  • Moran JJ, Sandercock GR, Ramirez-Campillo R, Meylan CM, Collison JA, Parry DA (2017) Age-related variation in male youth athletes’ countermovement jump after plyometric training: a meta-analysis of controlled trials. J Strength Cond Res 31(2):552–565

    Article  Google Scholar 

  • Moran J, Ramirez-Campillo R, Granacher U (2018) Effects of jumping exercise on muscular power in older adults: a meta-analysis. Sports Med 48(12):2843–2857

    Article  Google Scholar 

  • Moran J, Ramirez-Campillo R, Liew B, Chaabene H, Behm DG, García-Hermoso A, Izquierdo M, Granacher U (2020) Effects of bilateral and unilateral resistance training on horizontally orientated movement performance: a systematic review and meta-analysis. Sports Med 51(2):225–242

    Google Scholar 

  • Moran J, Ramirez-Campillo R, Liew B, Chaabene H, Behm DG, García-Hermoso A, Izquierdo M, Granacher U (2021) Effects of vertically and horizontally orientated plyometric training on physical performance: a meta-analytical comparison. Sports Med 51(1):65–79

    Article  Google Scholar 

  • Mouche M (2001) Evaluación de la potencia anaeróbica con Ergojump. Lecturas Educación Física y Deportes. Revista Dig 30

    Google Scholar 

  • Racil G, Zouhal H, Elmontassar W, Ben Abderrahmane A, De Sousa MV, Chamari K, Amri M, Coquart JB (2016) Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab 41(1):103–109

    Article  Google Scholar 

  • Ramírez-Campillo R, Andrade DC, Izquierdo M (2013) Effects of plyometric training volume and training surface on explosive strength. J Strength Cond Res 27(10):2714–2722

    Article  Google Scholar 

  • Ramirez-Campillo R, Burgos CH, Henríquez-Olguín C, Andrade DC, Martínez C, Álvarez C, Castro-Sepúlveda M, Marques MC, Izquierdo M (2015) Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J Strength Cond Res 29(5):1317–1328

    Article  Google Scholar 

  • Ramirez-Campillo R, Abad-Colil F, Vera M, Andrade DC, Caniuqueo A, Martínez-Salazar C, Nakamura FY, Arazi H, Cerda-Kohler H, Izquierdo M, Alonso-Martínez AM (2016a) Men and women exhibit similar acute hypotensive responses after low, moderate, or high-intensity plyometric training. J Strength Cond Res 30(1):93–101

    Article  Google Scholar 

  • Ramírez-Campillo R, González-Jurado JA, Martínez C, Nakamura FY, Peñailillo L, Meylan CM, Caniuqueo A, Cañas-Jamet R, Moran J, Alonso-Martínez AM, Izquierdo M (2016b) Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J Sci Med Sport 19(8):682–687

    Article  Google Scholar 

  • Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A et al (2018a) Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Med 48:1059–1081

    Article  Google Scholar 

  • Ramirez-Campillo R, Alvarez C, Gentil P, Moran J, García-Pinillos F, Alonso-Martínez AM, Izquierdo M (2018b) Inter-individual variability in responses to 7 weeks of plyometric jump training in male youth soccer players. Front Physiol 9:1156

    Article  Google Scholar 

  • Ramirez-Campillo R, Alvarez C, García-Pinillos F, Sanchez-Sanchez J, Yanci J, Castillo D, Loturco I, Chaabene H, Moran J, Izquierdo M (2018c) Optimal reactive strength index: is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J Strength Cond Res 32(4):885–893

    Article  Google Scholar 

  • Ramirez-Campillo R, Sanchez-Sanchez J, Gonzalo-Skok O, Rodríguez-Fernandez A, Carretero M, Nakamura FY (2018d) Specific changes in young soccer player's fitness after traditional bilateral vs. unilateral combined strength and plyometric training. Front Physiol 9:265

    Google Scholar 

  • Ramirez-Campillo R, Moran J, Drury B, Williams M, Keogh JW, Chaabene H, Granacher U (2019) Effects of equal volume but different plyometric jump training intensities on components of physical fitness in physically active young males. J Strength Cond Res

    Google Scholar 

  • Ramirez-Campillo R, Moran J, Chaabene H et al (2020) Methodological characteristics and future directions for plyometric jump training research: a scoping review update. Scand J Med Sci Sports 30(6):983–997

    Article  Google Scholar 

  • Ramirez-Campillo R, Pereira LA, Andrade DC, Mendez-Rebolledo G, De La Fuente CI, Castro-Sepulveda M, Garcia-Pinillos F, Freitas TT, Loturco I (2021) Tapering strategies applied to plyometric jump training: a systematic review with meta-analysis of randomized-controlled trials. J Sports Med Phys Fitness 61(1):53–62

    Google Scholar 

  • Saez de Villarreal E, Kellis E, Kraemer WJ, Izquierdo M (2009) Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res 23(2):495–506

    Google Scholar 

  • Steben RE, Steben AH (1981) The validity of the stretch-shortening cycle in selected jumping events. J Sports Med 21:28–37

    Google Scholar 

  • Ter Stege MHP, Dallinga JM, Benjaminse A, Lemmink KAPM (2014) Effect of interventions on potential, modifiable risk factors for knee injury in team ball sports: a systematic review. Sports Med 44(10):1403–1426

    Article  Google Scholar 

  • Thapa R, Lum D, Moran J, Ramirez-Campillo R (2021) Effects of complex training on sprint, jump, and change of direction ability of soccer players: a systematic review and meta-analysis. Front Psychol 11:627869

    Google Scholar 

  • Van Ingen Schenau GJ, Bobbert MF, Rozendal RH (1987) The unique action of biarticular muscles. J Anat 155:1–15

    Google Scholar 

  • Van Ingen Schenau GJ, Boots PJM, De Groot G, Snackers RJ, Van Woensel WWLM (1992) The constrained control offorce and position in multi-joint movements. Neuroscience 46:197–207

    Article  Google Scholar 

  • Verhoshanski Y (1966) Perspectives in improvement of speed-strength preparation of jumpers. Track Field. 9:11–12

    Google Scholar 

  • Ward P, Hodges N, Williams AM (2007) The road excellence in soccer: deliberate practice and the development of expertise. High Abil Stud 18(2):119–153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Sáez de Villarreal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sáez de Villarreal, E., Ramírez-Campillo, R. (2022). Resistance Training for the Maximisation of the Vertical Force Production: Jumps. In: Muñoz-López, A., Taiar, R., Sañudo, B. (eds) Resistance Training Methods. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81989-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81989-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81988-0

  • Online ISBN: 978-3-030-81989-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics