Skip to main content

Muscle Strength Determinants and Physiological Adaptations

  • Chapter
  • First Online:
Resistance Training Methods

Abstract

Strength training, also known as weight or resistance training (RT), has become one of the most popular forms of exercise, not only for sport performance but also for improving health-related fitness. A wide variety of physiological adaptations achieved through RT have been documented in the short, medium, and long term. These improvements include changes in body composition, muscle hypertrophy, strength, power and motor performance; as well as other health benefits such as changes in blood pressure, insulin sensitivity, lipid profile, endocrine system, and better performance in daily life activities, among others. This chapter will cover the basic physiological adaptations of RT discussing neurological, musculoskeletal, cardiorespiratory, and endocrine responses and adaptations according to current scientific literature. These physiological concepts will be applied in following chapters in which specific methods and technologies for RT are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American College of Sports Medicine (2009) American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708

    Google Scholar 

  • Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1(3):257–265

    Article  Google Scholar 

  • Amin S, Baker K, Niu J, Clancy M, Goggins J, Guermazi A et al (2009) Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum 60(1):189–198

    Article  Google Scholar 

  • Beck BR, Daly RM, Singh MA, Taaffe DR (2017) Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport 20(5):438–445

    Article  Google Scholar 

  • Bekedam MA, van Beek-Harmsen BJ, Boonstra A, van Mechelen W, Visser FC, van der Laarse WJ (2003) Maximum rate of oxygen consumption related to succinate dehydrogenase activity in skeletal muscle fibres of chronic heart failure patients and controls. Clin Physiol Funct Imaging 23(6):337–343

    Google Scholar 

  • Bigard X (2019) Adaptation of skeletal muscle mass and metabolism to physical exercise. In: Nutrition and skeletal muscle. Elsevier, pp 47–61

    Google Scholar 

  • Bohm S, Mersmann F, Arampatzis A (2015) Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open 1(1):7

    Article  Google Scholar 

  • Bohndorf K (1999) Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skeletal Radiol 28(10):545–560

    Article  Google Scholar 

  • Bompa T, Buzzichelli C (2015) Periodization training for sports, 3e. Human kinetics

    Google Scholar 

  • Braith RW, Stewart KJ (2006) Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation 113(22):2642–2650

    Article  Google Scholar 

  • Bricca A, Juhl CB, Grodzinsky AJ, Roos EM (2017) Impact of a daily exercise dose on knee joint cartilage—a systematic review and meta-analysis of randomized controlled trials in healthy animals. Osteoarthritis Cartilage 25(8):1223–1237

    Article  Google Scholar 

  • Bricca A, Juhl CB, Steultjens M, Wirth W, Roos EM (2019) Impact of exercise on articular cartilage in people at risk of, or with established, knee osteoarthritis: a systematic review of randomised controlled trials. Br J Sports Med 53(15):940–947

    Article  Google Scholar 

  • Carroll TJ, Riek S, Carson RG (2001) Neural adaptations to resistance training: implications for movement control. Sports Med 31(12):829–840

    Article  Google Scholar 

  • Clark EM, Tobias JH, Murray L, Boreham C (2011) Children with low muscle strength are at an increased risk of fracture with exposure to exercise. J Musculoskelet Neuronal Interact 11(2):196–202

    Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2011) Developing maximal neuromuscular power: part 1–biological basis of maximal power production. Sports Med 41(1):17–38

    Article  Google Scholar 

  • Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L (2011) Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension 58(5):950–958

    Article  Google Scholar 

  • Couppe C, Kongsgaard M, Aagaard P, Hansen P, Bojsen-Moller J, Kjaer M et al (2008) Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol (1985) 105(3):805–810

    Google Scholar 

  • Enoka RM (1988) Neuromechanical basis of kinesiology. ERIC

    Google Scholar 

  • Enoka RM (1997) Neural adaptations with chronic physical activity. J Biomech 30(5):447–455

    Article  Google Scholar 

  • Fleck SJ (1988) Cardiovascular adaptations to resistance training. Med Sci Sports Exerc 20(5 Suppl):S146–S151

    Article  Google Scholar 

  • Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37(2):145–168

    Article  Google Scholar 

  • Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679

    Article  MathSciNet  Google Scholar 

  • Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL et al (2013) Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci 68(5):599–607

    Article  Google Scholar 

  • Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 36(2):133–149

    Article  Google Scholar 

  • Geremia JM, Baroni BM, Bobbert MF, Bini RR, Lanferdini FJ, Vaz MA (2018) Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol 118(8):1725–1736

    Article  Google Scholar 

  • Goodman CA, Mayhew DL, Hornberger TA (2011) Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23(12):1896–1906

    Article  Google Scholar 

  • Gregory CM, Vandenborne K, Dudley GA (2001) Metabolic enzymes and phenotypic expression among human locomotor muscles. Muscle Nerve 24(3):387–393

    Article  Google Scholar 

  • Grgic J, Homolak J, Mikulic P, Botella J, Schoenfeld BJ (2018) Inducing hypertrophic effects of type I skeletal muscle fibers: a hypothetical role of time under load in resistance training aimed at muscular hypertrophy. Med Hypotheses 112:40–42

    Article  Google Scholar 

  • Grzelak P, Polguj M, Podgorski M, Majos A, Krochmalski M, Domzalski M (2012a) Patellar ligament hypertrophy evaluated by magnetic resonance imaging in a group of professional weightlifters. Folia Morphol 71(4):240–244

    Google Scholar 

  • Grzelak P, Podgorski M, Stefanczyk L, Krochmalski M, Domzalski M (2012b) Hypertrophied cruciate ligament in high performance weightlifters observed in magnetic resonance imaging. Int Orthop 36(8):1715–1719

    Article  Google Scholar 

  • Haff GG, Stone MH (2015) Methods of developing power with special reference to football players. Strength Cond J 37(6):2–16

    Article  Google Scholar 

  • Hansen S, Kvorning T, Kjaer M, Sjogaard G (2001) The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports 11(6):347–354

    Article  Google Scholar 

  • Hansen D, Abreu A, Doherty P, Voller H (2019) Dynamic strength training intensity in cardiovascular rehabilitation: is it time to reconsider clinical practice? a systematic review. Eur J Prev Cardiol 26(14):1483–1492

    Article  Google Scholar 

  • Heinemeier KM, Kjaer M (2011) In vivo investigation of tendon responses to mechanical loading. J Musculoskelet Neuronal Interact 11(2):115–123

    Google Scholar 

  • Hood DA, Terjung RL (1987) Leucine metabolism in perfused rat skeletal muscle during contractions. Am J Physiol 253(6 Pt 1):E636–E647

    Google Scholar 

  • Hornsby WG, Gentles JA, Haff GG, Stone MH, Buckner SL, Dankel SJ et al (2018) What is the impact of muscle hypertrophy on strength and sport performance? Strength Cond J 40(6):99–111

    Article  Google Scholar 

  • Hudelmaier M, Glaser C, Englmeier KH, Reiser M, Putz R, Eckstein F (2003) Correlation of knee-joint cartilage morphology with muscle cross-sectional areas versus anthropometric variables. Anat Rec A Discov Mol Cell Evol Biol 270(2):175–184

    Google Scholar 

  • Hughes DC, Ellefsen S, Baar K (2018) Adaptations to endurance and strength training. Cold Spring Harb Persp Med 8(6):a029769

    Google Scholar 

  • Hunter DJ, March L, Chew M (2020) Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396(10264):1711–1712

    Article  Google Scholar 

  • Jenkins NDM, Miramonti AA, Hill EC, Smith CM, Cochrane-Snyman KC, Housh TJ et al (2017) Greater neural adaptations following high- versus low-load resistance training. Front Physiol 8:331

    Article  Google Scholar 

  • Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M et al (2007) Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (oxf) 191(2):111–121

    Article  Google Scholar 

  • Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R et al (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol (1985) 69(4):1442–1450

    Google Scholar 

  • Kraemer WJ, Gordon SE, Fleck SJ, Marchitelli LJ, Mello R, Dziados JE et al (1991) Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med 12(2):228–235

    Article  Google Scholar 

  • Kraemer WJ, Fleck SJ, Dziados JE, Harman EA, Marchitelli LJ, Gordon SE et al (1993) Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J Appl Physiol (1985) 75(2):594–604

    Google Scholar 

  • Kraemer WJ, Ratamess NA, Flanagan SD, Shurley JP, Todd JS, Todd TC (2017) Understanding the science of resistance training: an evolutionary perspective. Sports Med 47(12):2415–2435

    Article  Google Scholar 

  • Kubo K, Yata H, Kanehisa H, Fukunaga T (2006) Effects of isometric squat training on the tendon stiffness and jump performance. Eur J Appl Physiol 96(3):305–314

    Article  Google Scholar 

  • Lin I, Wiles L, Waller R, Goucke R, Nagree Y, Gibberd M et al (2020) What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: systematic review. Br J Sports Med 54(2):79–86

    Article  Google Scholar 

  • Maestroni L, Read P, Bishop C, Papadopoulos K, Suchomel TJ, Comfort P et al (2020) The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care. Sports Med 50(8):1431–1450

    Article  Google Scholar 

  • Manini TM, Yarrow JF, Buford TW, Clark BC, Conover CF, Borst SE (2012) Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm IGF Res 22(5):167–172

    Article  Google Scholar 

  • Marin-Pagan C, Blazevich AJ, Chung LH, Romero-Arenas S, Freitas TT, Alcaraz PE (2020) Acute physiological responses to high-intensity resistance circuit training versus traditional strength training in soccer players. Biology 9(11):383

    Google Scholar 

  • Mersmann F, Bohm S, Arampatzis A (2017) Imbalances in the development of muscle and tendon as risk factor for tendinopathies in youth athletes: a review of current evidence and concepts of prevention. Front Physiol 8:987

    Article  Google Scholar 

  • Miller BF, Konopka AR, Hamilton KL (2016) The rigorous study of exercise adaptations: why mRNA might not be enough. J Appl Physiol (1985) 121(2):594–596

    Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, Parise G, Bellamy L, Baker SK, Smith K et al (2014) Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One 9(2):e89431

    Google Scholar 

  • Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130

    Google Scholar 

  • Netreba A, Popov D, Bravyy Y, Lyubaeva E, Terada M, Ohira T et al (2013) Responses of knee extensor muscles to leg press training of various types in human. Ross Fiziol Zh Im I M Sechenova 99(3):406–416

    Google Scholar 

  • Ogasawara R, Jensen TE, Goodman CA, Hornberger TA (2019) Resistance exercise-induced hypertrophy: a potential role for rapamycin-insensitive mTOR. Exerc Sport Sci Rev 47(3):188–194

    Article  Google Scholar 

  • Oiestad BE, Juhl CB, Eitzen I, Thorlund JB (2015) Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 23(2):171–177

    Google Scholar 

  • Parreno M, Pol A, Cadefau J, Parra J, Alvarez L, Membrilla E et al (2001) Changes of skeletal muscle proteases activities during a chronic low-frequency stimulation period. Pflugers Arch 442(5):745–751

    Article  Google Scholar 

  • Parry HA, Roberts MD, Kavazis AN (2020) Human skeletal muscle mitochondrial adaptations following resistance exercise training. Int J Sports Med 41(6):349–359

    Article  Google Scholar 

  • Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB (2015) Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc 47(9):1922–1931

    Article  Google Scholar 

  • Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol (1985) 102(6):2389–2397

    Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2003) Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 548(Pt 3):971–981

    Article  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20(5 Suppl):S135–S145

    Article  Google Scholar 

  • Schoenfeld BJ (2013) Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res 27(6):1720–1730

    Article  Google Scholar 

  • Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW (2017) Strength and hypertrophy adaptations between low- versus high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12):3508–3523

    Google Scholar 

  • Siddique U, Rahman S, Frazer AK, Pearce AJ, Howatson G, Kidgell DJ (2020) Determining the sites of neural adaptations to resistance training: a systematic review and meta-analysis. Sports Med 50(6):1107–1128

    Article  Google Scholar 

  • Solomonow M, Baratta R, Zhou BH, D’Ambrosia R (1988) Electromyogram coactivation patterns of the elbow antagonist muscles during slow isokinetic movement. Exp Neurol 100(3):470–477

    Article  Google Scholar 

  • Soori M, Lu G, Mason RW (2016) Cathepsin inhibition prevents autophagic protein turnover and downregulates insulin growth factor-1 receptor-mediated signaling in neuroblastoma. J Pharmacol Exp Ther 356(2):375–386

    Article  Google Scholar 

  • Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health. 1(6):461–468

    Article  Google Scholar 

  • Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5(2):356–377

    Article  Google Scholar 

  • Suchomel TJ, Nimphius S, Bellon CR, Stone MH (2018) The importance of muscular strength: training considerations. Sports Med 48(4):765–785

    Article  Google Scholar 

  • Taber CB, Vigotsky A, Nuckols G, Haun CT (2019) Exercise-induced myofibrillar hypertrophy is a contributory cause of gains in muscle strength. Sports Med 49(7):993–997

    Article  Google Scholar 

  • Tallent J, Woodhead A, Frazer AK, Hill J, Kidgell DJ, Howatson G (2021) Corticospinal and spinal adaptations to motor skill and resistance training: potential mechanisms and implications for motor rehabilitation and athletic development. Eur J Appl Physiol 121(3):707–719

    Article  Google Scholar 

  • Tipton CM, Matthes RD, Sandage DS (1974) In situ measurement of junction strength and ligament elongation in rats. J Appl Physiol 37(5):758–761

    Article  Google Scholar 

  • Tipton CM, Matthes RD, Maynard JA, Carey RA (1975) The influence of physical activity on ligaments and tendons. Med Sci Sports 7(3):165–175

    Google Scholar 

  • Toth MJ, Tchernof A (2006) Effect of age on skeletal muscle myofibrillar mRNA abundance: relationship to myosin heavy chain protein synthesis rate. Exp Gerontol 41(11):1195–1200

    Article  Google Scholar 

  • Tseng BS, Kasper CE, Edgerton VR (1994) Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers. Cell Tissue Res 275(1):39–49

    Article  Google Scholar 

  • Urhausen A, Gabriel H, Kindermann W (1995) Blood hormones as markers of training stress and overtraining. Sports Med 20(4):251–276

    Article  Google Scholar 

  • van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT (2010) The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 110(4):665–694

    Google Scholar 

  • Vanwanseele B, Eckstein F, Knecht H, Spaepen A, Stussi E (2003) Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheum 48(12):3377–3381

    Article  Google Scholar 

  • Vinogradova OL, Popov DV, Netreba AI, Tsvirkun DV, Kurochkina NS, Bachinin AV et al (2013) Optimization of training: development of a new partial load mode of strength training. Fiziol Cheloveka 39(5):71–85

    Google Scholar 

  • Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG et al (2014) Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 111(14):5337–5342

    Article  Google Scholar 

  • Watson S, Weeks B, Weis L, Harding A, Horan S, Beck B (2019) High-Intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res 34(3):572

    Article  Google Scholar 

  • Weinbaum S, Duan Y, Thi MM, You L (2011) An integrative review of mechanotransduction in endothelial, epithelial (renal) and dendritic cells (osteocytes). Cell Mol Bioeng 4(4):510–537

    Article  Google Scholar 

  • Wilkinson SB, Tarnopolsky MA, Grant EJ, Correia CE, Phillips SM (2006) Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol 98(6):546–555

    Article  Google Scholar 

  • Zhao R, Zhao M, Xu Z (2015) The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int 26(5):1605–1618

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús G. Ponce-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponce-González, J.G., Casals, C. (2022). Muscle Strength Determinants and Physiological Adaptations. In: Muñoz-López, A., Taiar, R., Sañudo, B. (eds) Resistance Training Methods. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81989-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81989-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81988-0

  • Online ISBN: 978-3-030-81989-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics