Skip to main content

Programing and Periodization for Individual Sports

  • Chapter
  • First Online:
Resistance Training Methods

Abstract

Despite the controversy surrounding periodization, it has been assumed over the years as the key tool in training planning for the development and achievement of high-level performance, in individual sports. Given the enormous density of nowadays competitive calendar and the athletes’ responsibilities towards their sponsors, the challenge is to train with quality, managing fatigue through specific training programs that correctly handle the load applied to the athlete. The scientific boom experienced today and the availability of information from areas such as physiology, biomechanics, biochemistry and sports training, allowed to overcome myths, improve training prescription/control and the development of new approaches to training periodization in elite athletes. The model presented here has as main characteristics to be timeless and dimensionless. That is, each “momentum” depends exclusively on the athlete’s body feedback in relation to the training loads, indicated by the biomarkers used. The duration of “momentums” and “macrocycles” depends on the athlete’s performance, ballast and physiological wear (internal biomonitored load). The purpose of this chapter is to present an overview of the components to be considered in individual sports training, their control and how the theory is translated into practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increase rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93(4):1318–1326

    Article  Google Scholar 

  • Affonso H, Silva A (2018) Um novo conceito de periodização do treinamento desportivo. Personal Communication

    Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332

    Article  Google Scholar 

  • Ament W, Verkerke GJ (2009) Exercise and fatigue. Sports Med 39(5):389–422

    Article  Google Scholar 

  • Andersen L, Aagaard P (2006) Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol 96(1):46–52

    Google Scholar 

  • Aubry A, Hausswirth C, Louis J, Coutts AJ, Meur YL (2014) Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc 46(9):1769–1777

    Article  Google Scholar 

  • Bohm S, Mersmann F, Arampatzis A (2015) Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open 1(1):1–18

    Article  Google Scholar 

  • Bompa TO (1984) Theory and methodology of training: the key to athletic performance. Kendall Hunt, Boca Raton, Florida

    Google Scholar 

  • Bondarchuk AP (1986) Training of track and field athletes. Health Publisher, Kiev

    Google Scholar 

  • Bondarchuk AP (2007) Transfer of training in sports: ultimate athlete concepts

    Google Scholar 

  • Borresen J, Lambert MI (2009) The quantification of training load, the training response and the effect on performance. Sports Med 39(9):779–795

    Article  Google Scholar 

  • Brooks GA (2020) Lactate as a fulcrum of metabolism. Redox Biol 35

    Google Scholar 

  • Brown LE, Weir JP (2001) ASEP procedures recommendation I: accurate assessment of muscular strength. Jeponline 4(3):1–21

    Google Scholar 

  • Carfagno DG (2014) 3rd JCH. Overtraining syndrome in the athlete: current clinical practice. Curr Sports Med Rep 13(1):45–51

    Google Scholar 

  • Cissik J, Hedrick A, Barnes M (2008) Challenges applying research on periodization. Strength Conditioning J 30:45–51

    Article  Google Scholar 

  • Conceição F (2004) Estudo biomecânico do salto em comprimento: modelação, simulação e optimização da chamada. Universidade Porto, Porto, Portugal

    Google Scholar 

  • Cormie P, McGuigan MR, Newton RU (2011) Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports med 41(2):125–146

    Google Scholar 

  • Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG et al (2018) The general adaptation syndrome: a foundation for the concept of periodization. Sports Med 48(4):787–797

    Article  Google Scholar 

  • D’Alessandro A (2019) High-throughput metabolomics: methods and protocols, methods in molecular biology. Springer Nature, New York, p 459

    Book  Google Scholar 

  • Dick FW (1997) Sport training principles. A&C Black, London

    Google Scholar 

  • Durell D, Puyol T, Barnes J (2003) A survey of the scientific data and training methods utilized by collegiate strength and conditioning coaches. J Strength Conditioning Res 17:368–373

    Google Scholar 

  • Ebben W, Carroll R, Simenz C (2004) Strength and conditioning practices of National Hockey League strength and conditioning coaches. J Strength Conditioning Res 18:889–897

    Google Scholar 

  • Fleck S (1999) Periodized strength training: a critical review. J Strength Conditioning Res 13:82–89

    Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    Article  Google Scholar 

  • Garhammer J (1993) A review of power output studies of Olympic and power lifting: methodology, performance prediction, and evaluation tests. J Strength Cond Res 7(2):76–89

    Google Scholar 

  • Gonzalez-Badillo JJ (2000) Bases teóricas y experimentales para la aplicación del entrenamiento de fuerza al entrenamiento deportivo. Infocoes. 5(2):3–14

    Google Scholar 

  • González-Badillo JJ, Sánchez-Medina L (2010) Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med 31:347–352

    Article  Google Scholar 

  • González-Badill JJ, Rodríguez-Rosell D, Sánchez-Medina L, Ribas J, López-López C, Mora-Custodio R et al (2016) Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med 37(4):295–304

    Google Scholar 

  • Grandou C, Wallace L, Impellizzeri FM, Allen NG, Coutts AJ (2020) An exploratory systematic review and methodological appraisal of the literature. Sports Med 50(4):815–828

    Article  Google Scholar 

  • Haff G (2004) Roundtable discussion: periodization of training—Part 1. Strength Conditioning J 26:50–69

    Article  Google Scholar 

  • Harris GR, Stone MH, O’Bryant HS, Proulx CM, Johnson RL (2000) Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res 14(1):14–20

    Google Scholar 

  • Issurin VB (2008) Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness 48(1):65–75

    Google Scholar 

  • Issurin VB (2013) Training transfer: scientific background and insights for practical application. Sports Med 43:675–694

    Article  Google Scholar 

  • Issurin VB (2016) Block periodization versus traditional training theory: a review. Sports Med 46(3):329–338

    Article  Google Scholar 

  • Jovanović M, Flanagan E (2014) Researched applications of velocity based strength training. J Aust Strength Cond. 22(2):58–69

    Google Scholar 

  • Kiely J (2018) Periodization theory: confronting an inconvenient truth. Sports Med 48:753–764

    Article  Google Scholar 

  • Komi PV (2000) Stretch-shortening cycle: a powerful model to study normal and fatigue muscle. J Biomech 33(10):1197–1206

    Article  Google Scholar 

  • Kuitunen S, Komi PV, Kyröläinen H (2002) Knee and ankle joint stiffness in sprint running. Med Sci Sports Exer 34(1):166–173

    Google Scholar 

  • Kulig K, Andrews JG, Hay JG (1984) Human strength curves. Exerc Sport Sci Rev 12:417–466

    Article  Google Scholar 

  • Kurz T (2001) Science of sports training: how to plan and control training for peak performance. Stadion Publishing Company, Island Pond, Vermont

    Google Scholar 

  • Loturco I, Nakamura FY (2016) Training periodisation: an obsolete methodology. Aspetar Sports Med J. 5:110–115

    Google Scholar 

  • Matveyev LP (1972) Periodisierang des SprotichenTraining. Berles and Wernitz, Berlin, Germany

    Google Scholar 

  • McBride JM, Triplett-McBride T, Davie A, Newton RU (2002) The effect of heavy vs. lightload jump squats on the development of strength, power, and speed. J Strength Cond Res 16(1):75–82

    Google Scholar 

  • Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H (1999) Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 86(5):1527–1533

    Article  Google Scholar 

  • Robinson JM, Stone MH, Johnson RL, Penland CM, Warren BJ, Lewis RD (1995) Effects of different weight training exercise/rest intervals on strength, power, and high intensity exercise endurance. J Sports Sci Med 9(4):216–221

    Google Scholar 

  • Samozino P, Morin JB, Hintzy F, Belli A (2008) A simple method for measuring force, velocity and power output during squat jump. J Biomech 41(14):2940–2945

    Article  Google Scholar 

  • Samozino P, Rejc E, Prampero PED, Belli A, Morin JB (2012) Optimal force–velocity profile in ballistic movements—Altius. Med Sci Sports Exer 44(2):313–322

    Article  Google Scholar 

  • Samozino P, Edouard P, Sangnier S, Brughelli M, Jimenez P, Morin J-B (2014) Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med 35(6):505–510

    Google Scholar 

  • Schmidtbleicher D (1992) Training for power events. In: Komi PV (ed) Strength and power in sport. Blackwell, Oxford, England, pp 381–385

    Google Scholar 

  • Schmidtbleicher D (1993) Personal communication

    Google Scholar 

  • Sundberg CW, Hunter SK, Trappe SW, Smith CS, Fitts RH (2018) Effects of elevated H+ and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: implications for muscle fatigue in humans. J Physiol 596(17):3993–4015

    Article  Google Scholar 

  • Trappe S, Luden N, Minchev K, Raue U, Jemiolo B, Trappe TA (2015) Skeletal muscle signature of a champion sprint runner. J Appl Physiol 118(12):1460–1466

    Article  Google Scholar 

  • Verkhoshansky YV (1985) Programming and organization of training process. FiS Publisher, Moscow

    Google Scholar 

  • Verkhoshansky YV (2006) Special strength training. A practical manual for coaches. Ultimate Athlete Concepts, Muskegon

    Google Scholar 

  • Verkhoshansky YV, Charniga A (1986) Fundamentals of special strength-training in sport (A. Charniaga, Trans). Sportivny Press, Livonia, MI

    Google Scholar 

  • Wahl P, Güldner M, Mester J (2014) Effects and sustainability of a 13-day high-intensity shock microcycle in soccer. J Sports Sci Med 13(2)

    Google Scholar 

  • Wilson GJ, Newton RU, Murphy AJ, Humphries BJ (1993) The optimum training load for the development of dynamic athletic performance. Med Sci Sports Exer 25(11):1279–1286

    Article  Google Scholar 

  • Young WB (1987) The triple jump and plyometrics. Strength Conditioning J 9(2):22–25

    Article  Google Scholar 

  • Young WB (1995) Laboratory strength assessment of athletes. New Stud Athletics 10:89–96

    Google Scholar 

  • Young WB (2006) Transfer of strength and power training to sports performance. Int J Sports Physiol Perform 1(1):74–83

    Google Scholar 

  • Zatsiorsky VM (1995) Science and practice of strength training. Human Kinetics, Champaign, Illinois

    Google Scholar 

  • Zatsiorsky VM (2003) Biomechanics of strength and strength training. In: Komi PV (ed) Strength and power in sport. Blackwell Science, Oxford, pp 439–487

    Chapter  Google Scholar 

  • Zatsiorsky V, Kraemer W (2006) Science and practice of strength training, 2nd edn. Human Kinetics

    Google Scholar 

  • Zwarts MJ, Bleijenberg G, Engelen BV (2008) Clinical neurophysiology of fatigue. Clin Neurophysiol 119(1):2–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Almeida Viana Conceiçao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conceiçao, F.A.V., Affonso, H. (2022). Programing and Periodization for Individual Sports. In: Muñoz-López, A., Taiar, R., Sañudo, B. (eds) Resistance Training Methods. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81989-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81989-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81988-0

  • Online ISBN: 978-3-030-81989-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics