Skip to main content

Infected Nonunions Around the Knee

  • Chapter
  • First Online:
Knee Fractures

Part of the book series: Strategies in Fracture Treatments ((SFT))

  • 631 Accesses

Abstract

Infected nonunion around the knee is a challenging complication to manage. This chapter summarises the problems caused by fracture-related infection and reviews concepts important in maximising successful treatment. An appreciation of the host and local factors that impact outcome is key. The important principles of management include thorough debridement, adequate microbiological sampling, dead space management, osseous stabilisation and soft-tissue coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pollard TC, Newman JE, Barlow NJ, Price JD, Willett KM. Deep wound infection after proximal femoral fracture: consequences and costs. J Hosp Infect. 2006;63(2):133.

    Article  CAS  PubMed  Google Scholar 

  2. Olesen UK, Pedersen NJ, Eckardt H, Lykke-Meyer L, Bonde CT, Singh UM, McNally M. The cost of infection in severe open tibial fractures treated with a free flap. Int Orthop. 2017;41(5):1049–55.

    Article  PubMed  Google Scholar 

  3. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9.

    Article  CAS  PubMed  Google Scholar 

  4. Napierala MA, Rivera JC, Burns TC, Murray CK, Wenke JC, Hsu JR, Consortium STRE. Infection reduces return-to-duty rates for soldiers with type III open tibia fractures. J Trauma Acute Care Surg. 2014;77(3):S194–7.

    Article  PubMed  Google Scholar 

  5. Metsemakers WJ, Kortram K, Morgenstern M, Moriarty TF, Meex I, Kuehl R, et al. Definition of infection after fracture fixation: a systematic review of randomized controlled trials to evaluate current practice. Injury. 2018;49(3):497–504.

    Article  CAS  PubMed  Google Scholar 

  6. McNally M, Govaert G, Dudareva M, Morgenstern M, Metsemakers W-J. Definition and diagnosis of fracture-related infection. EFORT Open Rev 2020;5:614–619. https://doi.org/10.1302/2058-5241.5.190072.

  7. Lammens J, Ochsner PE, McNally M. Infected nonunion. In: Kates SL, Borens O, editors. Principles of orthopedic infection management. New York: AO Foundation, Thieme; 2017. p. 167–88.

    Google Scholar 

  8. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37(2):S59–66.

    Article  PubMed  Google Scholar 

  9. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. JBJS. 1976;58(4):453–8.

    Article  CAS  Google Scholar 

  10. Zalavras CG, Marcus RE, Levin LS, Patzakis MJ. Management of open fractures and subsequent complications. JBJS. 2007;89(4):884–95.

    Article  Google Scholar 

  11. Patzakis MJ, Wilkins J. Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res. 1989;243:36–40.

    Article  Google Scholar 

  12. Fang C, Wong T-M, Lau T-W, To KK, Wong SS, Leung F. Infection after fracture osteosynthesis—part I: pathogenesis, diagnosis and classification. J Orthop Surg. 2017;25(1):2309499017692712.

    Google Scholar 

  13. Young S, Lie SA, Hallan G, Zirkle LG, Engesæter LB, Havelin LI. Risk factors for infection after 46,113 intramedullary nail operations in low-and middle-income countries. World J Surg. 2013;37(2):349–55.

    Article  PubMed  Google Scholar 

  14. Bhattacharyya T, Mehta P, Smith M, Pomahac B. Routine use of wound vacuum-assisted closure does not allow coverage delay for open tibia fractures. Plast Reconstr Surg. 2008;121(4):1263–6.

    Article  CAS  PubMed  Google Scholar 

  15. Sendi P, McNally MA. Wound irrigation in initial management of open fractures. N Engl J Med. 2016;374(18):1788.

    Article  PubMed  Google Scholar 

  16. Metsemakers W-J, Handojo K, Reynders P, Sermon A, Vanderschot P, Nijs S. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients. Injury. 2015;46(4):740–5.

    Article  PubMed  Google Scholar 

  17. Metsemakers WJ, Kuehl R, Moriarty TF, Richards RG, Verhofstad MHJ, Borens O, et al. Infection after fracture fixation: current surgical and microbiological concepts. Injury. 2018;49(3):511–22.

    Article  CAS  PubMed  Google Scholar 

  18. Bowen TR, Widmaier JC. Host classification predicts infection after open fracture. Clin Orthop Relat Res. 2005;433:205–11.

    Article  Google Scholar 

  19. Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM, LEAP Study Group. Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma. 2005;19(3):151–7.

    Article  PubMed  Google Scholar 

  20. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.

    Article  PubMed  Google Scholar 

  21. Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012;65(2):158–68.

    Article  CAS  PubMed  Google Scholar 

  22. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.

    Article  CAS  PubMed  Google Scholar 

  23. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wright JA, Nair SP. Interaction of staphylococci with bone. Int J Med Microbiol. 2010;300(2):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elek SD, Conen PE. The virulence of staphylococcus pyogenes for man. A study of the problems of wound infection. Br J Exp Pathol. 1957;38(6):573.

    Google Scholar 

  26. Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis. 1982;146(4):487–97.

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt AH, Swiontkowski MF. Pathophysiology of infections after internal fixation of fractures. J Am Acad Orthop Surg. 2000;8(5):285–91.

    Article  CAS  PubMed  Google Scholar 

  28. Willenegger H, Roth B. Treatment tactics and late results in early infection following osteosynthesis. Unfallchirurgie. 1986;12(5):241–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ochsner PE, Sirkin MS, Trampuz A. Acute infection. In: Rüedi T, Buckley RE, Moran CG, editors. AO principles of fracture management. Stuttgart: Thieme; 2007. p. 520–40.

    Google Scholar 

  30. McNally M, Sendi P. Implant-associated osteomyelitis of long bones. In: Zimmerli W, editor. Bone and joint infections: from microbiology to diagnostics and treatment. Oxford: Wiley; 2015. p. 303–23.

    Google Scholar 

  31. Kohan AA, Rubbert C, Vercher-Conejero JL, Partovi S, Sher A, Kolthammer JA, et al. The impact of orthopedic metal artifact reduction software on interreader variability when delineating areas of interest in the head and neck. Pract Radiat Oncol. 2015;5(4):e309–15.

    Article  PubMed  Google Scholar 

  32. Radionuclide imaging after skeletal interventional procedures; Semin Nucl Med. 1995;25(1):3–14.

    Google Scholar 

  33. Govaert GA, IJpma FF, McNally M, McNally E, Reininga IH, Glaudemans AW. Accuracy of diagnostic imaging modalities for peripheral post-traumatic osteomyelitis—a systematic review of the recent literature. Eur J Nucl Med Mol Imaging. 2017;1–15.

    Google Scholar 

  34. Dudareva M, Hotchen AJ, Ferguson J, Hodgson S, Scarborough M, Atkins BL, McNally MA. The microbiology of osteomyelitis: changes over ten years. J Infection. 2019;79:189–198.

    Google Scholar 

  35. Weber BG, Čech O. Pseudarthrosis: pathophysiology, biomechanics, therapy, results. Grune & Stratton; 1976.

    Google Scholar 

  36. Bose D, Kugan R, Stubbs D, McNally M. Management of infected nonunion of the long bones by a multidisciplinary team. Bone Joint J. 2015;97-B(6):814–7.

    Article  CAS  PubMed  Google Scholar 

  37. McNally M. Infection after fracture. In: Kates SL, Borens O, editors. Principles of orthopedic infection management. New York: AO Foundation, Thieme; 2017. p. 139–66.

    Google Scholar 

  38. McNally M, Nagarajah K. Osteomyelitis. Orthop Trauma. 2010;24(6):416–29.

    Article  Google Scholar 

  39. Patzakis MJ, Zalavras CG. Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. J Am Acad Orthop Surg. 2005;13(6):417–27.

    Article  PubMed  Google Scholar 

  40. Bjarnsholt T, Alhede M, Jensen P, Nielsen AK, Johansen HK, Homøe P, et al. Antibiofilm properties of acetic acid. Adv Wound Care. 2015;4(7):363–72.

    Article  Google Scholar 

  41. Ferguson J, Diefenbeck M, McNally M. Ceramic biocomposites as biodegradable antibiotic carriers in the treatment of bone infections. J Bone Joint Infect. 2017;2(1):38–51.

    Article  Google Scholar 

  42. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37(2):S105–12.

    Article  PubMed  Google Scholar 

  43. Metsemakers WJ, Moriarty TF, Nijs S, Pape HC, Richards RG. Influence of implant properties and local delivery systems on the outcome in operative fracture care. Injury. 2016;47(3):595–604.

    Article  PubMed  Google Scholar 

  44. Tøttrup M, Bue M, Koch J, Jensen LK, Hanberg P, Aalbæk B, et al. Effects of implant-associated osteomyelitis on cefuroxime bone pharmacokinetics: assessment in a porcine model. JBJS. 2016;98(5):363–9.

    Article  Google Scholar 

  45. Mayberry-Carson KJ, Tober-Meyer B, Smith JK, Lambe DW, Costerton JW. Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with staphylococcus aureus. Infect Immun. 1984;43(3):825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walenkamp GH, Vree TOMB, Van Rens TJ. Gentamicin-PMMA beads: pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res. 1986;205:171–83.

    Article  Google Scholar 

  47. Buchholz HW, Elson RA, Heinert K. Antibiotic-loaded acrylic cement: current concepts. Clin Orthop Relat Res. 1984;190:96–108.

    Article  Google Scholar 

  48. Cho S-H, Song H-R, Koo K-H, Jeong S-T, Park Y-J. Antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis. Bull (Hosp Joint Dis (New York, NY)) 1997;56(3):140.

    Google Scholar 

  49. Evans RP, Nelson CL. Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1993;295:37–42.

    Article  Google Scholar 

  50. Walenkamp GHIM, Kleijn LLA, de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1-12 years. Acta Orthopaedica. 1998;69(5):518–22.

    Article  CAS  Google Scholar 

  51. Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials. 2003;24(10):1829–31.

    Article  CAS  PubMed  Google Scholar 

  52. Kendall RW, Duncan CP, Smith JA, Ngui-Yen JH. Persistence of bacteria on antibiotic loaded acrylic depots: a reason for caution. Clin Orthop Relat Res. 1996;329:273–80.

    Article  Google Scholar 

  53. Von Eiff C, Lindner N, Proctor RA, Winkelmann W, Peters G. Development of gentamicin-resistant small colony variants of S. Aureus after implantation of gentamicin chains in osteomyelitis as a possible cause of recurrence. Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete. 1997;136(3):268–71.

    Article  Google Scholar 

  54. Turner TM, Urban RM, Hall DJ, Chye PC, Segreti J, Gitelis S. Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res. 2005;437:97–104.

    Article  Google Scholar 

  55. Cornell CN, Tyndall D, Waller S, Lane JM, Brause BD. Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft substitute. J Orthop Res. 1993;11(5):619–26.

    Article  CAS  PubMed  Google Scholar 

  56. Korkusuz F, Uchida A, Shinto Y, Araki N, Inoue K, Ono K. Experimental implant-related osteomyelitis treated by antibiotic-calcium hydroxyapatite ceramic composites. Bone Joint J. 1993;75(1):111–4.

    CAS  Google Scholar 

  57. Shirtliff ME, Calhoun JH, Mader JT. Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Relat Res. 2002;401:239–47.

    Article  Google Scholar 

  58. Thomas DB, Brooks DE, Bice TG, DeJong ES, Lonergan KT, Wenke JC. Tobramycin-impregnated calcium sulfate prevents infection in contaminated wounds. Clin Orthop Relat Res. 2005;441:366–271.

    Article  PubMed  Google Scholar 

  59. Wenke JC, Owens BD, Svoboda SJ, Brooks DE. Effectiveness of commercially-available antibiotic-impregnated implants. J Bone Joint Surg Br. 2006;88(8):1102–4.

    Article  CAS  PubMed  Google Scholar 

  60. Yarboro SR, Baum EJ, Dahners LE. Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg (Am). 2007;89(5):929–33.

    Article  Google Scholar 

  61. Rand BCC, Penn-Barwell JG, Wenke JC. Combined local and systemic antibiotic delivery improves eradication of wound contamination. Bone Joint J. 2015;97(10):1423–7.

    Article  PubMed  Google Scholar 

  62. Fleiter N, Walter G, Bösebeck H, Vogt S, Büchner H, Hirschberger W, Hoffmann R. Clinical use and safety of a novel gentamicin-releasing resorbable bone graft substitute in the treatment of osteomyelitis/osteitis. Bone Joint Res. 2014;3(7):223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McKee MD, Wild LM, Schemitsch EH, Waddell JP. The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J Orthop Trauma. 2002;16(9):622–7.

    Article  PubMed  Google Scholar 

  64. Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg Hong Kong. 2002;10(1):53–60.

    Article  PubMed  Google Scholar 

  65. Chang W, Colangeli M, Colangeli S, Di Bella C, Gozzi E, Donati D. Adult osteomyelitis: debridement versus debridement plus osteoset T® pellets. Acta Orthopaedica Belgica. 2007;73(2):238–44.

    PubMed  Google Scholar 

  66. McKee MD, Li-Bland EA, Wild LM, Schemitsch EH. A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma. 2010;24(8):483–90.

    Article  PubMed  Google Scholar 

  67. Humm G, Noor S, Bridgeman P, David M, Bose D. Adjuvant treatment of chronic osteomyelitis of the tibia following exogenous trauma using OSTEOSET®-T: a review of 21 patients in a regional trauma centre. Strat Trauma Limb Reconstr. 2014;9(3):157–61.

    Article  Google Scholar 

  68. Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, McNally MA. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis a series of 195 cases. Bone Joint J. 2014;96(6):829–36.

    Article  PubMed  Google Scholar 

  69. Romanò CL, Logoluso N, Meani E, Romanò D, De Vecchi E, Vassena C, Drago L. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis. Bone Joint J. 2014;96(6):845–50.

    Article  PubMed  Google Scholar 

  70. McNally MA, Ferguson JY, Lau ACK, Diefenbeck M, Scarborough M, Ramsden AJ, Atkins BL. Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite. Bone Joint J. 2016;98(9):1289–96.

    Article  PubMed  Google Scholar 

  71. Logoluso N, Drago L, Gallazzi E, George DA, Morelli I, Romanò CL. Calcium-Based, antibiotic-loaded bone substitute as an implant coating: a pilot clinical study. J Bone Joint Infect. 2016;1:59–64.

    Article  CAS  Google Scholar 

  72. Malizos K, Blauth M, Danita A, Capuano N, Mezzoprete R, Logoluso N, et al. Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial. J Orthop Traumatol. 2017;1

    Google Scholar 

  73. Worlock P, Slack R, Harvey L, Mawhinney R. The prevention of infection in open fractures: an experimental study of the effect of fracture stability. Injury. 1994;25(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  74. Hofmann GO, Bär T, Bühren V. The osteosynthesis implant and early postoperative infection: healing with or without removal of the material? Der Chirurg; Zeitschrift Fur Alle Gebiete Der Operativen Medizen. 1997;68(11):1175–80.

    Article  CAS  PubMed  Google Scholar 

  75. Anthony JP, Mathes SJ, Alpert BS. The muscle flap in the treatment of chronic lower extremity osteomyelitis: results in patients over 5 years after treatment. Plast Reconstr Surg. 1991;88(2):311–8.

    Article  CAS  PubMed  Google Scholar 

  76. May Jr JW, Jupiter JB, Gallico 3rd GG, Rothkopf DM, Zingarelli P. Treatment of chronic traumatic bone wounds. Microvascular free tissue transfer: a 13-year experience in 96 patients. Ann Surg. 1991;214(3):241.

    Google Scholar 

  77. McNally M, Ferguson J, Kugan R, Stubbs D. Ilizarov treatment protocols in the management of infected nonunion of the tibia. J Orthop Trauma. 2017;31(10):S47–54.

    Article  PubMed  Google Scholar 

  78. Klemm KW. Treatment of infected pseudarthrosis of the femur and tibia with an interlocking nail. Clin Orthop Relat Res. 1986;212:174–81.

    Article  Google Scholar 

  79. Tsang STJ, Mills LA, Frantzias J, Baren JP, Keating JF, Simpson A. Exchange nailing for nonunion of diaphyseal fractures of the tibia. Bone Joint J. 2016;98(4):534–41.

    Article  PubMed  Google Scholar 

  80. Conway J, Mansour J, Kotze K, Specht S, Shabtai L. Antibiotic cement-coated rods. Bone Joint J. 2014;96(10):1349–54.

    Article  PubMed  Google Scholar 

  81. Li HK, Rombach I, Zambellas R, Walker AS, McNally MA, Atkins BL, Lipsky BA, Hughes HC, Bose D, Kümin M, Scarborough C. Oral versus intravenous antibiotics for bone and joint infection. New England Journal of Medicine. 2019;380(5):425–36.

    Google Scholar 

  82. Paley D, Catagni MA, Argnani F, Villa A, Bijnedetti GB, Cattaneo R. Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop Relat Res. 1989;241:146–65.

    Article  Google Scholar 

  83. Pearson RL, Perry CR. The Ilizarov technique in the treatment of infected tibial nonunions. Orthop Rev. 1989;18(5):609–13.

    CAS  PubMed  Google Scholar 

  84. Green SA, Jackson JM, Wall DM, Marinow H, Ishkanian J. Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop Relat Res. 1992;280:136–42.

    Article  Google Scholar 

  85. Cattaneo R, Catagni M, Johnson EE. The treatment of infected nonunions and segmental defects of the tibia by the methods of Ilizarov. Clin Orthop Relat Res. 1992;280:143–52.

    Article  Google Scholar 

  86. Saleh M, Royston S. Management of nonunion of fractures by distraction with correction of angulation and shortening. Bone Joint J. 1996;78(1):105–9.

    CAS  Google Scholar 

  87. Maini L, Chadha M, Vishwanath J, Kapoor S, Mehtani A, Dhaon BK. The Ilizarov method in infected nonunion of fractures. Injury. 2000;31(7):509–17.

    Article  CAS  PubMed  Google Scholar 

  88. Kocaoglu M, Eralp L, Sen C, Cakmak M, Dincyürek H, Göksan SB. Management of stiff hypertrophic nonunions by distraction osteogenesis: a report of 16 cases. J Orthop Trauma. 2003;17(8):543–8.

    Article  PubMed  Google Scholar 

  89. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res. 1990;250:8–26.

    Article  Google Scholar 

  90. Shevtsov VI, Makushin VD, Kuftyrev LM. Defects of the lower limb bones. Treatment based on Ilizarov techniques. New Delhi: Churchill Livingstone; 2000. p. 227–438.

    Google Scholar 

  91. Yin P, Ji Q, Li T, Li J, Li Z, Liu J, et al. A systematic review and meta-analysis of Ilizarov methods in the treatment of infected nonunion of tibia and femur. PLoS One. 2015;10(11):e0141973.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–53.

    CAS  PubMed  Google Scholar 

  93. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet A-C. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012;98(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  94. Morelli I, Drago L, George DA, Gallazzi E, Scarponi S, Romanò CL. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury. 2016;47:S68–76.

    Article  PubMed  Google Scholar 

  95. Papineau LJ. Lexcision-greffe avec fermeture retardée délibérée dans lostéomyélite chronique. Nouv Presse Med. 1973;2(41):2753–5.

    CAS  PubMed  Google Scholar 

  96. Green SA, Dlabal TA. The open bone graft for septic nonunion. Clin Orthop Relat Res. 1983;180:117–24.

    Google Scholar 

  97. Sierra RJ, Trousdale RT, Pagnano MW. Above-the-knee amputation after a total knee replacement: prevalence, etiology, and functional outcome. JBJS. 2003;85(6):1000–4.

    Article  Google Scholar 

  98. Fedorka CJ, Chen AF, McGarry WM, Parvizi J, Klatt BA. Functional ability after above-the-knee amputation for infected total knee arthroplasty. Clin Orthop Relat Res. 2011;469(4):1024–32.

    Google Scholar 

  99. Chen AF, Kinback NC, Heyl AE, McClain EJ, Klatt BA. Better function for fusions versus above-the-knee amputations for recurrent periprosthetic knee infection. Clin Orthop Relat Res. 2012;470(10):2737–45.

    Google Scholar 

  100. Wu CH, Gray CF, Lee G-C. Arthrodesis should be strongly considered after failed two-stage reimplantation TKA. Clin Orthop Relat Res. 2014;472(11):3295–304.

    Google Scholar 

  101. Röhner E, Windisch C, Nuetzmann K, Rau M, Arnhold M, Matziolis G. Unsatisfactory outcome of arthrodesis performed after septic failure of revision total knee arthroplasty. J Bone Joint Surg Am. 2015;97(4):298.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Angelini A, Henderson E, Trovarelli G, Ruggieri P. Is there a role for knee arthrodesis with modular endoprostheses for tumor and revision of failed endoprostheses? Clin Orthop Relat Res. 2013;471(10):3326–35.

    Google Scholar 

  103. Mabry TM, Jacofsky DJ, Haidukewych GJ, Hanssen AD. The Chitranjan Ranawat Award: comparison of intramedullary nailing and external fixation knee arthrodesis for the infected knee replacement. Clin Orthop Relat Res. 2007;464:11–5.

    Article  PubMed  Google Scholar 

  104. Rozbruch SR, Ilizarov S, Blyakher A. Knee arthrodesis with simultaneous lengthening using the Ilizarov method. J Orthop Trauma. 2005;19(3):171–9.

    Article  PubMed  Google Scholar 

  105. Conway JD, Mont MA, Bezwada HP. Arthrodesis of the knee. JBJS. 2004;86(4):835–48.

    Article  Google Scholar 

  106. Pring DJ, Marks L, Angel JC. Mobility after amputation for failed knee replacement. Bone Joint J. 1988;70(5):770–1.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin McNally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferguson, J., Morgenstern, M., Stubbs, D., McNally, M. (2021). Infected Nonunions Around the Knee. In: Hanschen, M., Biberthaler, P., Waddell, J.P. (eds) Knee Fractures . Strategies in Fracture Treatments. Springer, Cham. https://doi.org/10.1007/978-3-030-81776-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81776-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81775-6

  • Online ISBN: 978-3-030-81776-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics