
Formally Validating a Practical
Verification Condition Generator

Gaurav Parthasarathy1(B), Peter Müller1, and Alexander J. Summers2

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{gaurav.parthasarathy,

peter.mueller}@inf.ethz.ch
2 University of British Columbia, Vancouver, Canada

alex.summers@ubc.ca

Abstract. A program verifier produces reliable results only if both the
logic used to justify the program’s correctness is sound, and the imple-
mentation of the program verifier is itself correct. Whereas it is common
to formally prove soundness of the logic, the implementation of a veri-
fier typically remains unverified. Bugs in verifier implementations may
compromise the trustworthiness of successful verification results. Since
program verifiers used in practice are complex, evolving software systems,
it is generally not feasible to formally verify their implementation.

In this paper, we present an alternative approach: we validate suc-
cessful runs of the widely-used Boogie verifier by producing a certificate
which proves correctness of the obtained verification result. Boogie per-
forms a complex series of program translations before ultimately generat-
ing a verification condition whose validity should imply the correctness
of the input program. We show how to certify three of Boogie’s core
transformation phases: the elimination of cyclic control flow paths, the
(SSA-like) replacement of assignments by assumptions using fresh vari-
ables (passification), and the final generation of verification conditions.
Similar translations are employed by other verifiers. Our implementa-
tion produces certificates in Isabelle, based on a novel formalisation of
the Boogie language.

1 Introduction

Program verifiers are tools which attempt to prove the correctness of an imple-
mentation with respect to its specification. A successful verification attempt is,
however, only meaningful if both the logic used to justify the program’s correct-
ness is sound, and the implementation of the program verifier is itself correct. It
is common to formally prove soundness of the logic, but the implementations of
program verifiers typically remain unverified. As is standard for complex software
systems, bugs in verifier implementations can and do arise, potentially raising
doubts as to the trustworthiness of successful verification results.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 704–727, 2021.
https://doi.org/10.1007/978-3-030-81688-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_33&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_33


Formally Validating a Practical Verification Condition Generator 705

One way to close this gap is to prove a verifier’s implementation correct.
However, such a once-and-for-all approach faces serious challenges. Verifying
an existing implementation bottom-up is not practically feasible because such
implementations tend to be large and complex (for instance, the Boogie ver-
ifier [29] consists of over 30K lines of imperative C# code), use a variety of
libraries, and are typically written in efficient mainstream programming lan-
guages which themselves lack a formalisation. Alternatively, one could develop
a verifier that is correct by construction. However, this approach requires the
verifier to be (re-)implemented in an interactive theorem prover (ITP) such as
Coq [14] or Isabelle [24]. This precludes the free choice of implementation lan-
guage and paradigm, exploitation of concurrency, and possibility of tight inte-
gration with standard compilers and IDEs, which is often desirable for program
verifiers [4,5,13,26]. Both verification approaches substantially impede software
maintenance, which is problematic since verifiers are often rapidly-evolving soft-
ware projects (for instance, the Boogie repository [1] contains more than 5000
commits).

To address these challenges, in this work we employ a different approach.
Instead of verifying the implementation once and for all, we validate specific
runs of the verifier by automatically producing a certificate which proves the
correctness of the obtained verification result. Our certificate generation formally
relates the input and output of the verifier, but does so largely independently of
its implementation, which can freely employ complex languages, algorithms, or
optimisations. Our certificates are formal proofs in Isabelle, and so checkable by
an independent trusted tool; their guarantees for a certified run of the verifier
are as strong as those provided by a (hypothetical) verified verifier.

We apply our novel verifier validation approach to the widely-used Boogie
verifier, which verifies programs written in the intermediate verification language
Boogie. The Boogie verifier is a verification condition generator : it verifies pro-
grams by generating a verification condition (VC), whose validity is then dis-
charged by an SMT solver. Certifying a verifier run requires proving that valid-
ity of the VC implies the correctness of the input program. Certification of the
validity-checking of the VC is an orthogonal concern; our results can be combined
with work in that area [11,15,19] to obtain end-to-end guarantees.

Like many automatic verifiers, Boogie is a translational verifier : it performs
a sequence of substantial Boogie-to-Boogie translations (phases), simplifying the
task and output of the final efficient VC computation [6,18]. The key challenges
in certifying runs of the Boogie tool are to certify each of these phases, includ-
ing final VC generation. In particular, we present novel techniques for making
the following three key phases (and many smaller ones) of Boogie’s tool chain
certifying:

1. The elimination of loops (more precisely, cycles in the CFG) by reducing the
correctness of loops to checking loop invariants (CFG-to-DAG phase)

2. The replacement of assignments by (SSA-style) introduction of fresh variables
and suitable assume statements (passification phase)



706 G. Parthasarathy et al.

3. The final generation of the VC, which includes the erasure and logical encod-
ing of Boogie’s polymorphic type system [33] (VC phase).

The certification of such verifier phases is related to existing work on com-
piler verification [34] and validation [8,41,42]. However, the translations and the
certified property we tackle here are fundamentally different from those in com-
pilers. Compilers typically require that each execution of the target program
corresponds to an execution of the source program. In contrast, the encoding of
a program in a translational verifier typically has intentionally more executions
(for instance, allows more non-determinism). Moreover, translational verifiers
need to handle features not present in standard programming languages such as
assume statements and background theories. Prior work on validating such veri-
fier phases has been limited in the supported language and extent of the formal
guarantee; we discuss comparisons in detail in Sect. 8.

Contributions. Our paper makes the following technical contributions.

1. The first formal semantics for a significant subset of Boogie (including axioms,
polymorphism, type constructors), mechanised in Isabelle.

2. A validation technique for two core program-to-program translations occur-
ring in verifiers (CFG-to-DAG and passification).

3. A validation technique for the VC phase, handling polymorphism erasure and
Boogie’s type system encoding [31], for which no prior formal proof exists.

4. A version of the Boogie implementation that produces certificates for a sig-
nificant subset of Boogie.

Making the Boogie verifier certifying is an important result, reducing the
trusted code base for a wide variety of verification tools implemented via encod-
ings into Boogie, e.g. Dafny [31], VCC [13], Corral [28], and Viper [35]. Moreover,
the technical approach we present here can in future be applied to the certifica-
tion of the translations performed by these tools, and those based on comparable
intermediate verification languages such as Frama-C [26] and Krakatoa [17] based
on Why3 [16] and Prusti [4] and VerCors [10] based on Viper [35].

Outline. Section 2 explains at a high-level, how our validation approach is struc-
tured for the different phases. Section 3 introduces a formal semantics for Boogie.
Sections 4, 5 and 6 present our validation of the CFG-to-DAG, passification, and
VC phases, respectively. Section 7 evaluates our certificate-producing version of
Boogie. Section 8 discusses related work. Section 9 concludes. Further details are
available in our accompanying technical report (hereafter, TR) [37].

2 Approach

A Boogie program consists of a set of procedures, each with a specification and
a procedure body in the form of a (reducible) control-flow-graph (CFG), whose
blocks contain basic commands; we present the formal details in the next section.
Boogie verifies each procedure modularly, desugaring procedure calls according



Formally Validating a Practical Verification Condition Generator 707

Fig. 1. Key phases of verification in Boogie and their certification. The solid edges show
Boogie’s transformations on a procedure body; each node Gi represents a control-flow-
graph. Our final certificate (dashed edge) is constructed by formally linking the three
phase certificates represented by the dotted edges. Each of the three phase certificates
also incorporate extra smaller transformations that we do not show here.

to their specifications. Verification is implemented via a series of phases: program-
to-program translations and a final computation of a VC to be checked by an
SMT solver. Our goal is to formally certify (per run of Boogie) that validity of
this VC implies the correctness of the original procedure.

To keep the complexity of certificates manageable, our technical approach is
modular in three dimensions: decomposing our formal goal per procedure in the
Boogie program, per phase of the Boogie verification, and per block in the CFG
of each procedure. This modularity makes the full automation of our certification
proofs in Isabelle practical. In the following, we give a high-level overview of this
modular structure; the details are presented in subsequent sections.

Procedure Decomposition. Boogie has no notion of a main program or an overall
program execution. A Boogie program is correct if each of its procedures is
individually correct (that is, the procedure body has no failing traces, as we
make precise in the next section). Boogie computes a separate VC for each
procedure, and we correspondingly validate the verification of each procedure
separately.

Phase Decomposition. We break our overall validation efforts down into per-
phase sub-problems. In this paper, we focus on the following three most substan-
tial and technically-challenging of these sequential phases, illustrated in Fig. 1.
(1) The CFG-to-DAG phase translates a (possibly-cyclic) CFG to an acyclic CFG
(cf. Sect. 4). This phase substantially alters the CFG structure, cutting loops
using annotated loop invariants to over-approximate their executions. (2) The
passification phase eliminates imperative updates by transforming the code into
static single assignment (SSA) form and then replacing assignments with con-
straints on variable versions (cf. Sect. 5). Both of these phases introduce extra
non-determinism and assume statements (which, if implemented incorrectly could
make verification unsound by masking errors in the program). (3) The final VC
phase translates the acyclic, passified CFG to a verification condition that, in
addition to capturing the weakest precondition, encodes away Boogie’s polymor-
phic type system [33].

We construct certificates for each of these key phases separately (depicted
by the blue dotted lines in Fig. 1). For each phase, we certify that if the target



708 G. Parthasarathy et al.

of the translation phase is correct (a correct Boogie program for the first two
phases; a valid VC for the VC phase) then the source (program) of the phase is
correct. This modular approach lets us focus the proof strategy for each phase
on its conceptually-relevant concerns, and provides robustness against changes
to the verifier since at most the certification of the changed phases may need
adjustment. Logically, our per-phase certificates are finally glued together to
guarantee the analogous end-to-end property for the entire pipeline, depicted by
the green dashed edge in Fig. 1. For our certificates, we import the input and
output programs (and VC) of each key phase from Boogie into Isabelle; we do
not reimplement any of Boogie’s phases inside Isabelle.

The certificates of the key phases also incorporate various smaller transfor-
mations between the key phases, such as peephole optimisation. Our work also
validates these smaller transformations, but we focus the presentation on the key
phases in this paper. Boogie also performs several smaller translation steps prior
to the CFG-to-DAG phase. These include transforming ASTs to corresponding
CFGs, optimisations such as dead variable elimination, and desugaring proce-
dure calls using their specifications (via explicit assert, assume, and havoc state-
ments). Our approach applies analogously to these initial smaller phases, but our
current implementation certifies only the pipeline of all phases from the (input
to the) CFG-to-DAG phase onwards. Thus, our certificate relates Boogie’s VC
to the original source AST program so long as these prior translation steps are
correct.

CFG Decomposition. When tackling the certification of each phase, we further
break down validation of a procedure’s CFG in the source program of the phase
into sub-problems for each block in the CFG. We prove two results for each block
in the source CFG:

1. Local block lemmas: We prove an independent lemma for each source CFG
block in isolation, relating the executions through the block with the corre-
sponding block in the target program (or the VC generated for that block, in
the case of the VC phase). In particular, this lemma implies that if the target
block has no failing executions (or the VC generated for that block holds, for
the VC phase), neither does the source block for corresponding input states.

2. Global block theorems: We show analogous per-block results concerning all
executions from this block onwards extending to the end of the procedure in
question; we build these compositionally by reverse-topological traversal of
either the source or target CFGs, as appropriate. The global block theorem
for the entry block establishes correctness of the phase.

This decomposition separates command-level reasoning (local block lemmas)
from CFG-level reasoning (global block theorems). It enables concise lemmas
and proofs in Isabelle and makes each comprehensible to a human.



Formally Validating a Practical Verification Condition Generator 709

3 A Formal Semantics for Boogie

Our certificates prove that the validity of a VC generated by Boogie formally
implies correctness of the Boogie CFG-to-DAG source program. This proof relies
crucially on a formal semantics for Boogie itself. Our first contribution is the first
such formal semantics for a significant subset of Boogie, mechanised in Isabelle.
Our semantics uses the Boogie reference manual [29], the presentation of its type
system [33], and the Boogie implementation for reference; none of those provide
a formal account of the language. For space reasons, we explain only the key
concepts of our detailed formalisation here; more details are provided in App.
A of the TR [37] and the full Isabelle mechanisation is available as part of our
accompanying artifact [36].

3.1 The Boogie Language

Boogie programs consist of a set of top-level declarations of global variables
and constants (the global data), axioms, uninterpreted (polymorphic) functions,
type constructors, and procedures. A procedure declaration includes parameter,
local-variable, and result-variable declarations (the local data), a pre- and post-
condition, and a procedure body given as a CFG.1 CFGs are formalised as usual
in terms of basic blocks (containing a possibly-empty list of basic commands),
and edges; semantically, execution after a basic block continues via any of its
successors non-deterministically.

Fig. 2. The syntax of our formalised Boogie subset, where τ , e, and c, denote the types,
expressions, and basic commands respectively; control-flow is handled via CFGs over
the basic commands. bop and uop denote binary and unary operations, respectively.

The types, expressions, and basic commands in our Boogie subset are shown
in Fig. 2. We support the primitive types Int and Bool ; types obtained via
declared type constructors are uninterpreted types; the sets of values such types
denote are constrained only via Boogie axioms and assume commands. Moreover,
types can contain type variables (for instance, to specify polymorphic functions).

Boogie expression syntax is largely standard (e.g. including typical arithmetic
and boolean operations). Old-expressions old(e) evaluate the expression e w.r.t.
the current local data and the global data as it was in the pre-state of the
1 Source-level procedure specifications also include modifies clauses, declaring a set of

global variables the procedure may modify. As we tackle Boogie programs after pro-
cedure calls have been desugared, there are no modifies clauses in our formalisation.



710 G. Parthasarathy et al.

procedure execution. Boogie expressions also include universal and existential
value quantification (written ∀x : τ. e and ∃x : τ. e), as well as universal and
existential type quantification (written ∀ty t. e and ∃ty t. e). In the latter, t is
bound in e and quantifies over closed Boogie types (i.e. types that do not contain
any type variables).

Basic commands form the single-steps of traces through a Boogie CFG;
sequential composition is implicit in the list of basic commands in a CFG basic
block and further control flow (including loops) is prescribed by CFG edges.
Boogie’s basic commands are assumes, asserts, assignments, and havocs; havoc x
non-deterministically assigns a value matching the type of variable x to x.

The main Boogie features not supported by our subset are maps and other
primitive types such as bitvectors. Boogie maps are polymorphic and impredica-
tive, i.e. one can define maps that contain themselves in their domain. Giving
a semantic model for such maps in a proof assistant such as Isabelle or Coq is
non-trivial; we aim to tackle this issue in the future. Modelling bitvectors will
be simpler, although maintaining full automation may require some additional
work.

3.2 Operational Semantics

Values and State Model. Our formalisation embeds integer and boolean values
shallowly as their Isabelle counterparts; an Isabelle carrier type for all abstract
values (those of uninterpreted types) is a parameter of our formalisation. Each
uninterpreted type is (indirectly) associated with a non-empty subset of abstract
values via a type interpretation map T from abstract values to (single) types;
particular interpretations of uninterpreted types can be obtained via different
choices of type interpretation T .

One can understand Boogie programs in terms of the sets of possible traces
through each procedure body. Traces are (as usual) composed of sequences of
steps according to the semantics of basic commands and paths through the CFG;
these can be finite or infinite (representing a non-terminating execution). A trace
may halt in three cases: (1) an exit block of the procedure is reached in a state
satisfying the procedure’s postcondition (a complete trace),2 (2) an assert A
command is reached in a state not satisfying assertion A (a failing trace), or
(3) an assume A command is reached in a state not satisfying A (a trace which
goes to magic and stops). Our formalisation correspondingly includes three kinds
of Boogie program states: a distinguished failure state F, a distinguished magic
state M, and normal states N((os, gs, ls)). A normal state is a triple of partial
mappings from variables to values for the old global state (for the evaluation of
old-expressions), the (current) global state, and the local state, respectively.

Expression Evaluation. An expression e evaluates to value v if the (big-step)
judgement T , Λ, Γ,Ω � 〈e,N(ns)〉 ⇓ v holds in the context (T , Λ, Γ,Ω). Here, T

2 The case of the postcondition not holding is subsumed under point (2), since Boogie
checks postconditions by generating extra assert statements.



Formally Validating a Practical Verification Condition Generator 711

Fig. 3. Running example in source code and CFG representation, respectively.

is a type interpretation (as above), Λ is a variable context : a pair (G,L) of type
declarations for the global (G) and local (L) data. Γ is a function interpretation,
which maps each function name to a semantic function mapping a list of types
and a list of values to a return value. The type substitution Ω maps type variables
to types.

The rules defining this judgement can be found in App. A.2 of the TR [37].
For example, the following rule expresses when a universal type quantification
evaluates to true (t is bound to the quantified type and may occur in e):

∀τ. closed(τ) =⇒ T , Λ, Γ,Ω(t 	→ τ) � 〈e,ns〉 ⇓ true

T , Λ, Γ,Ω � 〈∀ty t. e,ns〉 ⇓ true

The premise requires one to show that the expression e reduces to true for every
possible type τ that is closed. In general, expression evaluation is possible only
for well-typed expressions; we also formalise Boogie’s type system and (for the
first time) prove its type safety for expressions in Isabelle.

Command and CFG Reduction. The (big-step) judgement T , Λ, Γ,Ω � 〈c, s〉 →
s′ defines when a command c reduces in state s to state s′; the rules are in
App. A.3 of the TR [37]. This reduction is lifted to lists of commands cs to
model the semantics of a single trace through a CFG block (the judgement
T , Λ, Γ,Ω � 〈cs, s〉 [→] s′). The operational semantics of CFGs is modelled by
the (small-step) judgement T , Λ, Γ,Ω,G � δ →CFG δ′, expressing that the CFG
configuration δ reduces to configuration δ′ in the CFG G. A CFG configuration
is either active or final. An active configuration is given by a tuple (inl(bn), s),
where bn is the block identifier indicating the current position of the execution
and s is the current state. A final configuration consists of a tuple (inr(()), s) for
state s (and unit value ()) and is reached at the end of a block that has either
no successors, or is in a magic or failure state.



712 G. Parthasarathy et al.

Fig. 4. The CFG-to-DAG phase applied to the running example (source is left, target
is right). The back-edge (the red edge from B5 to B1 in the left CFG) is eliminated.
The blue commands are new. A is given by j >= 0 ∧ (i = 0 ⇒ j > 0).

3.3 Correctness

A procedure is correct if it has no failing traces. This is a partial correctness
semantics; a procedure body whose traces never leave a loop is trivially cor-
rect provided that no intermediate assert commands fail. Procedure correctness
relies on CFG correctness. A CFG G is correct w.r.t. a postcondition Q and a
context (T , Λ, Γ,Ω) in an initial normal state N(ns) if the following holds for all
configurations (r, s′):

T , Λ, Γ,Ω,G � (inl(entry(G)),N(ns)) →∗
CFG (r, s′) =⇒ [s′ �= F ∧

(r = inr(()) =⇒ (∀ns ′. s′ = N(ns ′) =⇒ T , Λ, Γ,Ω � 〈Q,N(ns ′)〉 ⇓ true))]

where entry(G) is the entry block of G and →∗
CFG is the reflexive-transitive closure

of the CFG reduction. The postcondition is needed only if a final configuration
is reached in a normal state, while failing states must be unreachable. Whenever
we omit Q, we implicitly mean the postcondition to be simply true. In our tool,
we consider only empty initial mappings Ω, since we do not support procedure
type parameters (lifting our work to this feature will be straightforward).

For a procedure p to be correct w.r.t. a context, its body CFG must be correct
w.r.t. the same context and p’s postcondition, for all initial normal states N(ns)
that satisfy p’s precondition and which respect the context. For ns to respect a
context, it must be well-typed and must satisfy the axioms when restricted to its
constants. We say that p is correct, if it is correct w.r.t. all well-formed contexts,
which must have a well-typed function interpretation and a type interpretation
that inhabits every uninterpreted closed type (and only those).

Running Example. We will use the simple CFG of Fig. 3 as a running example,
intended as body of a procedure with trivial (true) pre- and post-conditions.



Formally Validating a Practical Verification Condition Generator 713

The code includes a simple loop with a declared loop invariant, which functions
as a classical Floyd/Hoare-style inductive invariant, and for the moment can
be considered as an implicit assert statement at the loop head. The CFG has
infinite traces: those which start from any state in which i is negative. Traces
starting from a state in which i is zero go to magic; they do not reach the loop.
The program is correct (has no failing traces): all other initial states will result
in traces that satisfy the loop invariant and the final assert statement. If we
removed the initial assume statement, however, there would be failing traces: the
loop invariant check would fail if i were initially zero.

4 The CFG-to-DAG Phase

In this section, we present the validation for the CFG-to-DAG phase in the
Boogie verifier. This phase is challenging as it changes the CFG structure, inserts
additional non-deterministic assignments and assume statements, and must do
so correctly for arbitrary (reducible) nested loop structures, which can include
unstructured control flow (e.g. jumps out of loops).

4.1 CFG-to-DAG Phase Overview

The CFG-to-DAG phase applies to every loop head block identified by Boo-
gie’s implementation and any back-edges from a block reachable from the loop
head block back to the loop head (following standard definitions for reducible
CFGs [21]). Figure 4 illustrates the phase’s effect on our running example. Block
B1 is the (only) loop head here, and the edge from B5 to it the only back-edge
(completing looping paths via B2 and B3 or B2 and B4). An assert A state-
ment starting a loop head (like B1) is interpreted as declaring A to be the loop
invariant.3 The CFG-to-DAG phase performs the following steps:

1. Accumulate a set XH of all (local and global) variables assigned-to on any
looping path from the loop head back to itself. In our example, XH is {i, j}.

2. Move the assert A statement declaring a loop invariant (if any) from the
loop head to the end of each preceding block (in our example: B0 and B5).

3. Insert havoc statements at the start of the loop head block per variable in XH ,
followed by a single assume A statement (preceding any further statements).

4. For each block with a back-edge to the loop head, delete the back-edge; if this
leaves the block with no successors, append assume false to its commands.4

The havoc-then-assume sequence introduced in step 3 can be understood as
generating traces for arbitrary values of XH satisfying the loop invariant A,
3 In general, multiple asserts at the beginning of a loop head may form the invariant.
4 Omitting assume false if there are no successors would be incomplete, since otherwise

the postcondition would have to be satisfied.



714 G. Parthasarathy et al.

effectively over-approximating the set of states reachable at the loop head in the
original program. In particular, the remnants of any originally looping path (e.g.
B′

1, B′
2, B′

3, B′
5) enforce that any non-failing trace starting from any such state

must (due to the assert added to block B′
5 in step 2) result in a state which

re-establishes the loop invariant. Such paths exist only to enforce this inductive
step (analogously to the premise of a Hoare logic while rule); so long as the
assert succeeds, we can discard these traces via step 4.

While we illustrate this step on a simple CFG, in general a loop head may
have multiple back-edges, looping structures may nest, and edges may exit multi-
ple loops. For the above translation to be correct, the CFG must be reducible and
loop heads and corresponding back-edges identified accurately, which is complex
in general. Importantly (but perhaps surprisingly), our work makes this phase
of Boogie certifying without explicitly verifying (or even defining) these notions.

4.2 CFG-to-DAG Certification: Local Block Lemmas

We define first our local block lemmas for this phase. Recall that these prove
that if executing the statements of a target block yields no failing executions,
the same holds for the corresponding source block; this result is trivial for source
blocks other than loop heads and their immediate predecessors, since these are
unchanged in this phase. To enable eventual composition of our block lemmas,
we need to also reflect the role of the assume and assert statements employed
in this phase. The formal statement of our local block lemmas is as follows5:

Theorem 1 (CFG-to-DAG Local Block Lemma). Let B be a source block
with commands csS, whose corresponding target block has commands csT . If B is
a loop head, let XH be as defined in CFG-to-DAG step 1 (and empty otherwise)
and let Apre be its loop invariant (or true otherwise). If B is a predecessor of a
loop head, let Apost be the loop invariant of its successor (and true otherwise).
Then, if:

1. T , Λ, Γ,Ω � 〈csS ,N(ns1)〉 [→] s′
1

2. ∀s′
2. T , Λ, Γ,Ω � 〈csT ,N(ns2)〉 [→] s′

2 =⇒ s′
2 �= F

3. Apre is satisfied in ns1, and ns2 differs from ns1 only on variables in XH and
variables not defined in Λ

then: s′
1 �= F and if s′

1 is a normal state, then (1) Apost is satisfied in s′
1, and (2)

if no assume false was added at the end of csT , then there is a target execution
in csT from N(ns2) that reaches a normal state that differs from s′

1 only on
variables not defined in Λ.

The gist of this lemma is to capture locally the ideas behind the four steps of
the phase. For example, consequence (1) reflects that after the transformation,
any blocks that were previously predecessors of a loop head (B′

0 and B′
5 in our

running example) will have an assert statement checking for the corresponding
invariant (and so if the target program has no failing traces, in each trace this
invariant will be true at that point).
5 We omit some details regarding well-typedness, handled fully in our formalisation.



Formally Validating a Practical Verification Condition Generator 715

Fig. 5. The passification phase applied to the branch in the running example with the
result on the right. The final (green) commands in B′′

3 and B′′
4 are the synchronisation

commands. At the uppermost blocks shown here, the current versions of i and j are
i1 and j2, respectively. The full CFGs are shown in App. B of the TR [37].

4.3 CFG-to-DAG Certification: Global Block Theorems

We lift our certification to all traces through the source and target CFGs; the
statement of the corresponding global block theorems is similar to that of local
block theorems lifted to CFG executions, and for space reasons we do not present
it here, but it is included in our Isabelle formalisation. In particular, we prove
for each block (working in reverse topological order through the target CFG
blocks) that if executions starting in the target CFG block never fail, neither do
any executions starting from the corresponding source CFG block, and looping
paths modify at most the variables havoced according to step 3 of the phase.

The major challenge in these proofs is reasoning about looping paths in
the source CFG, since these revisit blocks. To solve this challenge, we perform
inductive arguments per loop head in terms of the number of steps remaining in
the trace in question.6 Our global block theorem for a block B then carries as
an assumption an induction hypothesis for each loop that contains B. Proving
a global block theorem for the origin of a back-edge is taken care of by applying
the corresponding induction hypothesis.

This proof strategy works only if we have obtained the induction hypothesis
for the loop head before we use the global block theorem of the origin of a
back-edge (otherwise we cannot discharge the block theorem’s hypothesis). In
other words, our proof implicitly shows the necessary requirement that loop
heads (as identified by Boogie) dominate all back-edges reaching them without us
formalising any notion of domination, CFG reducibility, or any other advanced
graph-theoretic concept. This shows a major benefit of our validation approach
over a once-and-for-all verification of Boogie itself: our proofs indirectly check
that the identification of loop heads and back-edges guarantees the necessary
semantic properties without being concerned with how Boogie’s implementation
computes this information.

6 This may seem insufficient since traces can be infinite, but importantly a failing
trace is always finite, and our theorems need only eliminate the chance of failing
traces.



716 G. Parthasarathy et al.

Our approach applies equally to nested loops and more-generally to reducible
CFG structures; all corresponding induction hypotheses are carried through
from the visited loop heads. The requirement that no more than the havoced
variables XH are modified in the source program is easily handled by showing
that variables modified in an inner loop are a subset of those in outer loops.
As for all of our results, our global block lemmas are proven automatically in
Isabelle per Boogie procedure, providing per-run certificates for this phase.

5 The Passification Phase

In this section, we describe the validation of the passification phase in the Boo-
gie verifier. Unlike the previous phase, passification makes no changes to the
CFG structure, but makes substantial changes to the program states (via SSA-
like renamings), substantially increases non-determinism, and employs assume

statements to re-tame the sets of possible traces.

5.1 Passification Phase Overview

The main goal of passification is to eliminate assignments such that a more effi-
cient VC can be ultimately generated [6,18,30]. In the Boogie verifier, this is
implemented as a single transformation phase that can be thought of as two
independent steps. Firstly, the source CFG is transformed into static single
assignment (SSA) form, introducing versions (fresh variables) for each origi-
nal program variable such that each version is assigned at most once in any
program trace. In a second step, variable assignments are completely eliminated :
each assignment command x := e is replaced by assume x = e. Havoc statements
are simply removed; their effect is implicit in the fact that a new variable version
is used (via the SSA step) after such a statement.

Figure 5 shows the effect of this phase on four blocks of our running example
(the full figure of the target CFG is shown in App. B of the TR [37]). The
commands inserted just before the join block (here, B′′

5 ) introduce a consistent
variable version (here, j4) for use in the join block. It is convenient to speak of
target variables in terms of their source program counterparts: we say e.g. that
j has version 4 on entry to block B′

5.
Compared to traces through the source program, the space of variable values

in a trace through the target program is initially much larger; each version may,
on entry to the CFG, have an arbitrary value. For example, j4 may have any
value on entry to B′′

2 ; traces in which its value does not correspond to the con-
straint of the assume statements in B′′

3 or B′′
4 will go to magic and not reach B′′

5 .
Importantly, however, not all traces go to magic; enough are preserved to simu-
late the executions of the original program: each assume statement constrains the
value of exactly one variable version, and the same version is never constrained
more than once. Capturing this delicate argument formally is the main challenge
in certifying this step.



Formally Validating a Practical Verification Condition Generator 717

As extra parts of the passification phase, the Boogie verifier performs constant
propagation and desugars old-expressions (using variable versions appropriate to
the entry point of the CFG). We omit their descriptions here for brevity, but our
implementation certifies them.

5.2 Passification Certification: Local Block Lemmas

To validate the passification phase, it is sufficient to show that each source execu-
tion is simulated by a corresponding target execution, made precise by construct-
ing a relation between the states in these executions. Such forward simulation
arguments are standard for proving correctness of compilers for deterministic
languages. However, the situation here is more complex due to the fact that
the target CFG has a much wider space of traces: the values of each versioned
variable in the target program are initially unconstrained, meaning traces exist
for all of their combinations. On the other hand, many of these traces do not
survive the assume statements encountered in the target program. Picking the
correct single trace or state to simulate a particular source execution would
require knowledge of all variable assignments that are going to happen, which
is not possible due to non-determinism and would preclude the block-modular
proof strategies that our validation approach employs.

Instead, we generalise this idea to relating each single source state s with a
set T of corresponding target program states. We define variable relations VR at
each point in a trace, making explicit the mappings used in the SSA step between
source program variables and their corresponding versions. For example, on entry
to block B′

2 in the source version of our running example (correspondingly B′′
2

in the target), the VR relation relates i to i1 and j to j2. All states t ∈ T must
precisely agree with s w.r.t. VR (e.g., s(i) = t(i1), s(j) = t(j2)). On the other
hand, our sets of states T are defined to be completely unconstrained (besides
typing) for future variable versions. For example, for every t ∈ T at the same
point in our example, there will be states in T assigning each possible value (of
the same type) to i2 (and otherwise agreeing with t).

More precisely, for a set of variables X, we say that a set of states T constrains
at most X w.r.t. variable context Λ if, for every t ∈ T , z /∈ X, z is in Λ, and value
v of z’s type, we have t[z 	→ v] ∈ T . In other words, the set T is closed under
arbitrary changes to values of all variables in Λ but not in X. We construct our
sets T such that they constrain at most current and past versions of program
variables. It is this fact that enables us to handle subsequent assume statements
in the target program and, in particular, to show that the set of possible traces
in the target program never becomes empty while there are possible traces in
the source program. For example, when relating the source command j := j+1

in B′
3 with the target command assume j3 = j2 + 1 in block B′′

3 , we use the fact
that our set of states does not constrain j3 to prove that, although many traces
go to magic at this point, for a non-empty set of states T ′ ⊆ T (those in which
j3 has the “right” value equal to j2 + 1), execution continues in the target.



718 G. Parthasarathy et al.

We now make these notions more precise by showing the definition of our
local block lemmas for the passification phase (See footnote 5).

Theorem 2 (Passification Local Block Lemma). Let B be a source block
with commands cs, whose corresponding target block has commands cs ′; let VR

and V ′
R be the variable relations at the beginning and end of B, respectively. Let

X be a set of variable versions, and N(ns) be a normal state. Let T be a non-
empty set of normal states such that N(ns) agrees with T according to VR, and
T constrains at most X w.r.t. Λ2. Furthermore, let Y be the variable versions
corresponding to the targets of assignment and havoc statements in cs. If both

1. A,Λ1, Γ,Ω � 〈cs,N(ns)〉 [→] s′ ∧ s′ �= M
2. X ∩ Y = ∅

then there exists a non-empty set of normal states T ′ ⊆ T s.t. T ′ constrains at
most X � Y w.r.t. Λ2 and for each t′ ∈ T ′, there exists a state t′∗ s.t.

1. A,Λ2, Γ,Ω � 〈cs2, t′〉 [→] t′∗ ∧ (s′ = F =⇒ t′∗ = F)
2. If s′ is a normal state, then s′ and t′ are related w.r.t. V ′

R (and t′∗ = t′).

This lemma captures our generalised notion of forward simulation appropriately.
The first conclusion expresses that the target does not get stuck and that failures
are preserved, while the second shows that if the source execution neither fails nor
stops then the resulting states are related. Note that premise 2 is essential in the
proof to guarantee that the assume statements introduced by passification do not
eliminate the chance to simulate source executions; the condition expresses that
the variable versions newly constrained do not intersect with those previously
constrained. To prove these lemmas over the commands in a single block, we are
forced to check that the same version is not constrained twice.

5.3 Passification Certification: Global Block Theorems

As for all phases, we lift our local block lemmas to theorems certifying all exe-
cutions starting from a particular block, and thus, ultimately, to entire CFGs.
For the passification phase, most of the conceptual challenges are analogous
to those of the local block lemmas; we similarly employ VR relations between
source variables and their corresponding target versions. To connect with our
local block lemmas (and build up our global block theorems, which we do back-
wards through the CFG structure), we repeatedly require the key property that
the set of variable versions constrained in our executions so far is disjoint from
those which may be constrained by a subsequent assume statement (cf. premise 2
of our local block lemma above). Concretely tracking and checking disjointness
of these concrete sets of variables is simple, but turns out to get expensive in
Isabelle when the sets are large.

We circumvent this issue with our own global versioning scheme (as opposed
to the versions used by Boogie, which are independent for different source vari-
ables): according to the CFG structure, we assign a global version number verG(x)



Formally Validating a Practical Verification Condition Generator 719

to each variable x in the target program such that, if x is constrained in a target
block B′ and y is constrained in another target block B′′ reachable from B′,
then verG(x) < verG(y). Such a consistent global versioning always exists in the
target programs generated by Boogie because the only variables not constrained
exactly once in the program are those used to synchronise executions (i.e. j4

in Fig. 5), which always appear right before branches are merged. We can now
encode our disjointness properties much more cheaply: we simply compare the
maximal global version of all already-constrained variables with the minimal
global version of those (potentially) to be constrained. Since we represent vari-
ables as integers in the mechanisation, we directly use our global version as the
variable name for the target program; there is no need for an extra lookup table.
Note that (readability aside) it makes no difference which variables names are
used in intermediate CFGs; we ultimately care only about validating the original
CFG.

6 The VC Phase

In this section, we present the validation of the VC phase in the Boogie verifier.
This phase has two main aspects: (1) it encodes and desugars all aspects of the
Boogie type system, employing additional uninterpreted functions and axioms to
express its properties [33]; program expression elements such as Boogie functions
are analogously desugared in terms of these additional uninterpreted functions,
creating a non-trivial logical gap between expressions as represented in the VC
and those from the input program. (2) It performs an efficient (block-by-block)
calculation of a weakest precondition for the (acyclic, passified) CFG, resulting
in a formula characterising its verification requirements, subject to background
axioms and other hypotheses.

6.1 VC Structure

The generated VC has the following overall structure (represented as a shallow
embedding in our certificates)7:

∀ VC quantifiers
︸ ︷︷ ︸

type encoding parameters,
functions, variable values

. ( VC assumptions
︸ ︷︷ ︸

type encoding,
func./var./prog. axioms

=⇒ CFG WP)

The VC quantifies over parameters required for the type encoding, as well as
VC counterparts representing the variable values and functions in the Boogie
program. The VC body is an implication, whose premise contains: (1) assump-
tions that axiomatise the type encoding parameters, (2) axioms expressing the
typing of Boogie variables and functions, and (3) assumptions directly relating

7 Note that top-level quantification over functions is implicit in the (first-order) SMT
problem generated by Boogie; we quantify explicitly in our Isabelle representation.



720 G. Parthasarathy et al.

to axioms explicitly declared in the Boogie program. The conclusion of the impli-
cation is an optimised version of the weakest (liberal) precondition (WP) of the
CFG.8

6.2 Boogie’s Logical Encoding of the Boogie Type System

We first briefly explain Boogie’s logical encoding of its own type system. Values
and types are represented at the VC level by two uninterpreted carrier sorts
V and T . An uninterpreted function typ from V to T maps each value to the
representation of its type. Boogie type constructors are each modelled with an
(injective) uninterpreted function C with return sort T and taking arguments
(per constructor parameter) of sort T . For example, a type constructor List(t)
is represented by a VC function from T to T . Projection functions are also
generated for each type constructor (Cπ

i for each type argument at position i),
e.g. mapping the representation of a type List(t) to the representation of type t.

This encoding is then used in the VC to recover Boogie typing constraints for
the untyped VC terms. Recovering the constraints is not always straightforward
due to optimisations performed by Boogie. For example, the VC translation
of the Boogie expression ∀ty t. ∀x : List(t). e no longer quantifies over types;
all original occurrences of t in e having been translated to Listπ1 (typ(x)). This
optimisation reflects that this particular type quantification is redundant, since
t can be recovered from the type of x.9

6.3 Working from VC Validity

Our certificates assume that the generated VC is valid (certifying the validity-
checking of the VC by an SMT solver is an orthogonal concern). However, con-
necting VC validity back to block-level properties about the specific program
requires a number of technical steps. We need to construct Isabelle-level seman-
tic values to instantiate the top-level quantifiers in the VC such that the corre-
sponding VC assumptions (left-hand side of the VC) can be proved and, thus,
validity of the corresponding WP can be deduced. Moreover, we must ensure
that our instantiation yields a WP whose validity implies correctness of the Boo-
gie program. For example, a top-level VC quantifier modelling a Boogie function
f must be instantiated with a mathematical function that behaves in the same
way as f for arguments of the correct type.

We instantiate the carrier sort V for values in the VC with the corresponding
type denoting Boogie values in our formalisation; the carrier sort T for types
is instantiated to be all Boogie types that do not contain free variables (i.e.
closed types). Constructing explicit models for the quantified functions used to

8 One difference in our version of the Boogie verifier is that we switched off the gen-
eration of extra variables introduced to report error traces [32]; these are redundant
for programs that do not fail and further complicate the VC structure.

9 Note that in the VC the quantification over x ranges over all values of sort V . An
implication is used to consider only those x for which typ(x) = List(Listπ1 (typ(x))).



Formally Validating a Practical Verification Condition Generator 721

model Boogie’s type system (satisfying, e.g., suitable inverse properties for the
projection functions) is straightforward. For the VC-level variable values, we can
directly instantiate the corresponding values in the initial Boogie program state.

VC-level functions representing those declared in the Boogie program are
instantiated as (total) functions which, for input values of appropriate type (the
arguments and output are untyped values of sort V ), are defined simply to return
the same values as the corresponding function in our model. However, perhaps
surprisingly, Boogie’s VC embedding of functions logically requires functions to
return values of the specified return type even if the input values do not have the
types specified by the function. In such cases, we define the instantiated function
to return some value of the specified type, which is possible since in well-formed
contexts every closed type has at least one value in our model.

After our instantiation, we need to prove the hypotheses of the VC’s impli-
cation; in particular that all axioms (both those generated by the type system
encoding and those coming from the program itself) are satisfied. The former
are standard and simple to prove (given the work above), while the latter largely
follow from the assumption that each declared axiom must be satisfied in the
initial state restricted to the constants. The only remaining challenge is to relate
VC expressions with the evaluation of corresponding Boogie expressions; an issue
which also arises (and is explained) below, where we show how to connect validity
of the instantiated WP to the program.

6.4 Certifying the VC Phase

Boogie’s weakest precondition calculation is made size-efficient by the usage
of explicit named constants for the weakest preconditions wp(B, true) for each
block B, which is defined in terms of the named constants for its successor blocks.
For example, in Fig. 5, wp(B′′

2 , true) is given by ivc
1 �= 0 =⇒ wp(B′′

3 , true) ∧
wp(B′′

4 , true). Here ivc
1 is the value that we instantiated for the variable i1.

We exploit this modular construction of the generated weakest precondition
for the local and global block theorems. We prove for each block B with com-
mands cs the following local block lemma:

Theorem 3 (VC Phase Local Block Lemma).
If A,Λ, Γ,Ω � 〈cs,N(ns)〉 [→] s′ and wp(B, true) holds, then s′ �= F and if s′ is
a normal state, then ∀Bsuc ∈ successors(B). wp(Bsuc , true).

Once one has proved this lemma for all blocks in the CFG, combining them
to obtain the corresponding global block theorems (via our usual reverse walk
of the CFG) is straightforward. The main challenge is in decomposing the proof
for the local block lemma itself for a block B, for which we outline our approach
next.

By this phase, the first command in B must be either an assume e or an
assert e command. In the former case, we rewrite wp(B, true) into the form
evc =⇒ H, where evc is the VC counterpart of e and where H corresponds



722 G. Parthasarathy et al.

to the weakest precondition of the remaining commands. This rewriting may
involve undoing certain optimisations Boogie’s implementation performed on the
formula structure. Next, we need to prove that e evaluates to evc (see below).
Hence, if e evaluates to true (the execution does not go to magic) then H must
be true, and we can continue inductively. The argument for assert e is similar
but where we rewrite the VC to evc ∧ H (i.e. evc and H must both hold); if e
evaluates to evc, we know that the execution does not fail.

Proving that e evaluates to evc arises in both cases and also in our previous
discharging of VC hypotheses. Note that, in contrast to e, evc is not a Boogie
expression, but a shallowly embedded formula that includes the instantiations of
quantified variables we constructed above. Showing this property works largely
on syntax-driven rules that relate a Boogie expression with its VC counterpart,
except for extra work due to mismatching function signatures and optimisations
that Boogie made either to the formula structure or via the type system encoding
(cf. Sect. 6.2). We handle some of these cases by showing that we can rewrite
the formula back into the unoptimised standard form we require for our syntax-
driven rules and in other cases we directly work with the optimised form. Both
cases are automated using Isabelle tactics.

This concludes our discussion of the certification of Boogie’s three key phases.
Combining the three certificates yields an end-to-end proof that the validity of
the generated verification conditions implies the correctness of the input program,
that is, that the given verification run is sound.

7 Implementation and Evaluation

In this section, we evaluate our certifying version of the Boogie verifier [36],
which produces Isabelle certificates proving the correctness of Boogie’s pipeline
for programs it verifies.

We have implemented our validation tool as a new C# module compiled with
Boogie. We instrumented Boogie’s codebase to call out to our module, which
allows us to obtain information that we can use to validate the key phases, and
extended parts of the codebase to extract information more easily. Moreover, we
disabled counter-example related VC features and the generation of VC axioms
for any built-in types and operators that we do not support. We added or changed
fewer than 250 non-empty, uncommented lines of code across 11 files in the
existing Boogie implementation.

Given an input file verified by Boogie, our work produces an Isabelle certifi-
cate per procedure p that certifies the correctness of the corresponding CFG-to-
DAG source CFG as represented internally in Boogie. The generation and check-
ing of the certificate is fully automatic, without any user input. We use a combi-
nation of custom and built-in Isabelle tactics. In addition to the three key phases
we describe in detail, our implementation also handles several smaller transforma-
tions made by Boogie, such as constant propagation. Our tool currently supports
the default options of Boogie (only) and does not support advanced source-level
attributes (for instance, to selectively force procedures to be inlined).



Formally Validating a Practical Verification Condition Generator 723

Table 1. Selection of algorithmic examples with the lines of code (LOC), the number
of procedures (#P), the time it takes for Isabelle to check the certficate in seconds (the
average of 5 runs on a Lenovo T480 with 32 GB, i7-8550U 1.8 GhZ, Ubuntu 18.04 on
the Windows Subsystem for Linux), and the certificate size expressed as the number
of non-empty lines of Isabelle.

Name LOC #P Time [s] Size

TuringFactorial 29 1 19.4 1986
Find 27 2 27.3 2100
DivMod 69 2 28.4 4753
Summax [27] 23 1 19.1 1953
MaxOfArray [12] 22 1 19.9 1944
SumOfArray [12] 22 1 18.7 1534
Plateau [12] 50 1 22.9 2019
WelfareCrook [12] 52 1 39.4 2528
ArrayPartitioning [12] 57 2 27.6 3514
DutchFlag [12] 76 2 52.8 3994

We evaluated our work in two ways. Firstly, to evaluate the applicability
of our certificate generation, we automatically collected all input files with at
least one procedure from Boogie’s test suite [1] which verify successfully and
which either use no unsupported features or are easily desugared (by hand) into
versions without them. This includes programs with procedure calls since Boogie
simply desugars these in an early stage. For programs employing attributes, we
checked whether the program still verifies without attributes, and if so we also
kept these. In total, this yields 100 programs from Boogie’s test suite. Secondly,
we collected a corpus of ten Boogie programs which verify interesting algorithms
with non-trivial specifications: three from Boogie’s test suite and seven from the
literature [12,27]. Where needed we manually desugared usages of Boogie maps
(which we do not yet support) using type declarations, functions, and axioms.

Of the 100 programs from Boogie’s test suite, we successfully generate cer-
tificates in 96 cases. The remaining 4 cases involve special cases that we do not
handle yet. For 2 of them, extending our work is straightforward: one special
case includes a naming clash and the other case can be amended by using a more
specific version of a helper lemma. The remaining two fail because of our incom-
plete handling of function calls in the VC phase when combined with coercions
between VC integers or booleans and their Boogie counterparts. Handling this
is more challenging but is not a fundamental issue.

For the corpus of 10 examples, Table 1 shows the generated certificate size
and the time for Isabelle to check their validity.10 The ratio of certificate size to
code size ranges from 41 to 89; this rather large ratio emphasises the substantial
work in formally validating the substantial work which Boogie’s implementation

10 The time to generate the certificate is not included, but is negligible here.



724 G. Parthasarathy et al.

performs. Optimisations to further reduce the ratio are possible. The validation
of certificates takes usually under one second per line of code. While these times
are not short, they are acceptable since certificate generation needs to run only
for (verified) release versions of the program in question.

8 Related Work

Several works explore the validation of program verifiers. Garchery et al. [20]
validate VC rewritings in the Why3 VC generator [16]. Unlike our work, they do
not connect VCs with programs and do not handle the erasure of polymorphic
types. Strub et al. [39] validate part of a previous version of the F* verifier [40]
by generating a certificate for the F* type checker itself, which type checks
programs by generating VCs. Like us, they assume the validity of the generated
VC itself, but they do not consider program-to-program transformations such
as ours. Another approach is taken by Aguirre [2] who shows how one can map
proofs of the VC back to correctness of an F* program. They prove a once-and-
for-all result, but the approach could be lifted to a validation approach using
the proof-producing capability of SMT solvers [7]. Lifting the approach would
require extending the work to handle classical instead of constructive VC proofs.

There is some work on proving VC generator implementations correct once
and for all, although none of the proven tools are used in practice. Homeier and
Martin [23] prove a VC generator correct in HOL for an executable language
and a simpler VC phase than Boogie’s. Herms et al. [22] prove a VC genera-
tor inspired by Why3 correct in Coq. However, some more-challenging aspects
of Why3’s VC transformation and polymorphic type system are not handled.
Vogels et al. [44] prove a toolchain for a Boogie-like language correct in Coq,
including passification and VC phases. However, the language is quite limited:
without unstructured control flow, loops (i.e. no need for a CFG-to-DAG phase),
functions, or polymorphism (i.e. no type encoding). Verifiers other than VC
generators, include the verified Verasco static analyzer [25], which supports a
realistic subset of C, but whose performance is not yet on par with unverified,
industrial analyzers.

Validation has also been explored in other settings. Alkassar et al. [3] adjust
graph algorithms to produce witnesses that can be then used by verified valida-
tors to check whether the result is correct. In the context of compiler correctness,
many validation techniques express a per-run validator in Coq, prove it correct
once-and-for-all [8,41,43], and then extract executable code (the extraction must
be trusted). In the verified CompCert compiler [34], such validators have been
used in combination with the once-and-for-all approach. Validators are used for
phases that can be more easily validated than proved correct once and for all.
One such example related to our certification of the passification phase is the
validation of the SSA phase [8], dealing also with versioned variables in the tar-
get (but not with assume statements that prune executions). In contrast to our
work, they require an explicit notion of CFG domination and they do not use a
global versioning scheme to efficiently check that two parts of the CFG constrain



Formally Validating a Practical Verification Condition Generator 725

disjoint versions. Our versioning idea is similar to a technique used for the valida-
tion of a dominator relation in a CFG [9], which assigns intervals to basic blocks
(as opposed to assigning versions to variables) to efficiently determine whether a
block dominates another one. The validation of the Cogent compiler [38] follows
a similar approach to ours in that it generates proofs in Isabelle.

9 Conclusion

We have presented a novel verifier validation approach, and applied it successfully
to three key phases of the Boogie verifier, providing formal underpinnings for
both the language and its verifier for the first time. Our work demonstrates that
it is feasible to provide strong formal guarantees regarding the verification results
of practical VC generators written in modern mainstream languages.

In the future, we plan to extend our supported subset of Boogie, e.g.
to include procedure calls and bitvectors. Supporting Boogie’s potentially-
impredicative maps is the main open challenge: maps can take other maps as
input, potentially including themselves. The challenge with this feature is to
still be able to express a type in Isabelle capturing all Boogie values despite the
potentially-cyclic nature of map types. In practice, however, this may not be
required in full generality: we have observed that Boogie front-ends rarely use
maps that contain maps of the same type as input. Therefore, we plan to extend
our technique to support a suitably-expressive restricted form of Boogie maps.

Acknowledgements. We thank Alain Delaët–Tixeuil for his earlier work on this topic,
Thibault Dardinier for improving our artifact, Martin Clochard for helpful discussions
and the anonymous reviewers for their valuable comments. This work was partially
funded by the Swiss National Science Foundation (SNSF) under Grant No. 197065.

References

1. Boogie verifier repository. https://github.com/boogie-org/boogie
2. Aguirre, A.: Towards a provably correct encoding from F* to SMT. Technical

report, INRIA (2016)
3. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: A framework for the verifi-

cation of certifying computations. JAR 52(3), 241–273 (2014)
4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for

modular specification and verification. In: OOPSLA (2019)
5. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:

Specification and verification: the Spec# experience. CACM 54(6), 81–91 (2011)
6. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:

PASTE (2005)
7. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories. In:

All about Proofs, Proofs for All, Mathematical Logic and Foundations, vol. 55, pp.
23–44. College Publications (2015)

8. Barthe, G., Demange, D., Pichardie, D.: Formal verification of an SSA-based
middle-end for compcert. TOPLAS 36(1), 1–35 (2014)

https://github.com/boogie-org/boogie


726 G. Parthasarathy et al.

9. Blazy, S., Demange, D., Pichardie, D.: Validating dominator trees for a fast, verified
dominance test. In: ITP (2015)

10. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: iFM (2007)

11. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: ITP (2010)
12. Chen, Y., Furia, C.A.: Triggerless happy - intermediate verification with a first-

order prover. In: iFM (2017)
13. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: TPHOLs

(2009)
14. Coq Development Team, T.: The Coq Reference Manual, version 8.10, available

electronically at (2019). http://coq.inria.fr/documentation
15. Ekici, B., et al.: SMTCoq: a plug-in for integrating SMT solvers into Coq. In: CAV

(2017)
16. Filliâtre, J.C., Paskevich, A.: Why3 – where programs meet provers. In: ESOP

(2013)
17. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive

program verification. In: CAV (2007)
18. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-

ification conditions. In: POPL (2001)
19. Fleury, M., Schurr, H.: Reconstructing veriT proofs in Isabelle/HOL. In: PxTP

(2019)
20. Garchery, Q., Keller, C., Marché, C., Paskevich, A.: Des transformations logiques

passent leur certificat. In: JFLA (2020)
21. Hecht, M.S., Ullman, J.D.: Flow graph reducibility. SIAM J. Comput. 1(2), 188–

202 (1972)
22. Herms, P., Marché, C., Monate, B.: A certified multi-prover verification condition

generator. In: VSTTE (2012)
23. Homeier, P.V., Martin, D.F.: A mechanically verified verification condition gener-

ator. Comput. J. 38(2), 131–141 (1995)
24. Isabelle Development Team, T.: The Isabelle Documentation, version June 2019,

available electronically at (2019). https://isabelle.in.tum.de/documentation.html
25. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified

C static analyzer. In: POPL (2015)
26. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:

a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)
27. Klebanov, V., et al.: The 1st verified software competition: Experience report. In:

FM (2011)
28. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: CAV

(2012)
29. Leino, K.R.M.: This is Boogie 2 (June 2008). https://www.microsoft.com/en-us/

research/publication/this-is-boogie-2-2/
30. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288

(2005)
31. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:

LPAR (2010)
32. Leino, K.R.M., Millstein, T.D., Saxe, J.B.: Generating error traces from

verification-condition counterexamples. Sci. Comput. Program. 55(1–3), 209–226
(2005)

33. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
design and logical encoding. In: TACAS (2010)

http://coq.inria.fr/documentation
https://isabelle.in.tum.de/documentation.html
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/


Formally Validating a Practical Verification Condition Generator 727

34. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL (2006)

35. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: VMCAI (2016)

36. Parthasarathy, G., Müller, P., Summers, A.J.: Formally validating a practical
verification condition generator - artifact (2021). https://doi.org/10.5281/zenodo.
4726554

37. Parthasarathy, G., Müller, P., Summers, A.J.: Formally validating a practical ver-
ification condition generator (extended version) (2021). arXiv:2105.14381

38. Rizkallah, C., et al.: A framework for the automatic formal verification of refine-
ment from Cogent to C. In: ITP (2016)

39. Strub, P.Y., Swamy, N., Fournet, C., Chen, J.: Self-certification: Bootstrapping
certified typecheckers in F* with Coq. In: POPL (2012)

40. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: POPL
(2016)

41. Tristan, J.B., Leroy, X.: Formal verification of translation validators: a case study
on instruction scheduling optimizations. In: POPL (2008)

42. Tristan, J.B., Leroy, X.: Verified validation of lazy code motion. In: PLDI (2009)
43. Tristan, J.B., Leroy, X.: A simple, verified validator for software pipelining. In:

POPL (2010)
44. Vogels, F., Jacobs, B., Piessens, F.: A machine-checked soundness proof for an

efficient verification condition generator. In: SAC (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.4726554
https://doi.org/10.5281/zenodo.4726554
http://arxiv.org/abs/2105.14381
http://creativecommons.org/licenses/by/4.0/

	Formally Validating a Practical Verification Condition Generator
	1 Introduction
	2 Approach
	3 A Formal Semantics for Boogie
	3.1 The Boogie Language
	3.2 Operational Semantics
	3.3 Correctness

	4 The CFG-to-DAG Phase
	4.1 CFG-to-DAG Phase Overview
	4.2 CFG-to-DAG Certification: Local Block Lemmas
	4.3 CFG-to-DAG Certification: Global Block Theorems

	5 The Passification Phase
	5.1 Passification Phase Overview
	5.2 Passification Certification: Local Block Lemmas
	5.3 Passification Certification: Global Block Theorems

	6 The VC Phase
	6.1 VC Structure
	6.2 Boogie's Logical Encoding of the Boogie Type System
	6.3 Working from VC Validity
	6.4 Certifying the VC Phase

	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion
	References




