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Abstract. First-Order Linear Temporal Logic (FOLTL) is particularly
convenient to specify distributed systems, in particular because of the
unbounded aspect of their state space. We have recently exhibited novel
decidable fragments of FOLTL which pave the way for tractable verifi-
cation. However, these fragments are not expressive enough for realistic
specifications. In this paper, we propose three transformations to trans-
late a typical FOLTL specification into two of its decidable fragments.
All three transformations are proved sound (the associated propositions
are proved in Coq) and have a high degree of automation. To put these
techniques into practice, we propose a specification language relying on
FOLTL, as well as a prototype which performs the verification, relying
on existing model checkers. This approach allows us to successfully ver-
ify safety and liveness properties for various specifications of distributed
systems from the literature.

1 Introduction

Verifying properties of distributed protocols is a demanding endeavor. Several
approaches have been proposed, ranging from verification frameworks, like Iron-
Fleet [12] or Verdi [27] to tool-supported languages like TLA` [17], Event-B [1]
or Ivy [20,21]. However, when systems of arbitrary size are considered, verifying
properties usually requires some remarkable effort: inductive invariants must be
sought and exhibited (possibly with tool support), and some manual proof effort
may still be necessary. Worse, when liveness properties are checked, this effort
becomes very substantial and tool support is still quite limited.

A natural setting for specification, in particular for safety and liveness prop-
erties of infinite-state systems, is (mono- and many-sorted) first-order linear
temporal logic (FOLTL). However, it is highly undecidable [13,14]. In recent
work [23,24], some of the present authors devised the “Geneva” fragments of
FOLTL, which were shown to be decidable. More precisely, these fragments
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 337–360, 2021.
https://doi.org/10.1007/978-3-030-81688-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_16&domain=pdf
http://orcid.org/0000-0003-4136-783X
https://doi.org/10.1007/978-3-030-81688-9_16


338 Q. Peyras et al.

enjoy a “bounded domain property” (BDP), a form of computable finite model
property over the first-order domains. Decidability is obtained by expanding
first-order quantifiers over the domains (using the computed bounds) and then
relying on (decidable) propositional-LTL satisfiability checking.

The Geneva fragments are rather expressive but still have limitations that
thwart their use for the specification of systems. In particular, most forms of
fairness assumptions, as well as frame conditions (which specify what does not
change when a transition happens in a system), do not fit in the fragments.
Furthermore, topological properties of systems (such as ring topologies) are hard
or even impossible to specify.

In this article, we mitigate this deficiency by exhibiting three transformations
that allow to map an undecidable, expressive fragment of FOLTL∗“ (FOLTL with
equality and reflexive-transitive closure, to characterize topological properties)
into decidable fragments (akin to the Geneva ones), thus allowing the automatic
verification of safety and liveness properties of infinite-state systems. Then we
apply these techniques to the verification of properties of various protocols.

Notice that none of the proposed transformations is complete. It is actually
impossible to devise complete transformations, even assuming a procedure that
would be fed additional user input. This is because FOLTL is not even semi-
decidable.1

In more detail, we make the following contributions (cf. Fig. 1):

– we define an undecidable, expressive specification language, called Cervino,
the semantics of which is expressed in terms of FOLTL∗“;

– we exhibit two fragments of many-sorted FOLTL that enjoy the BDP;
– we devise three abstraction transformations that map (the semantics of)

Cervino into one of the said two fragments:
• the first of these transformations (called TEA) is fully automatic while

the other two (TTC and TFC) must be passed additional data (in the
shape of peculiar formulas);

• these three transformations, as well as other minor ones, are implemented
as tactics in a prototype tool [22];

• the associated theorems and lemmas are also formalized and proved cor-
rect, using Coq [22];

– we demonstrate our approach on several case studies that are often used as
benchmarks in the literature.

This article is organized as follows: in Sect. 2, we illustrate our approach using
an example (a leader election protocol). Section 3 introduces definitions as well
as the two fragments used in the rest of the paper. In Sect. 4, we present basic
techniques, which are used in some of our transformations. Then, in Sect. 5, we
formalize the automatic TEA transformation. Section 6 and 7 present, respec-
tively, the TFC and TTC transformations. In Sect. 8, we evaluate our approach
on various protocols. Finally, we compare our results with related work in Sect. 9.

1 Indeed, having such a transformation would give a procedure for semi-decidability
by testing all possible inputs on this transformation.
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Fig. 1. Summary of the contributions of this article

2 The Cervino Language

In this section, we present the Cervino modeling language informally. Its seman-
tics, given in terms of many-sorted FOLTL∗

“ (FOLTL with equality and reflexive-
transitive closure), is formally introduced in Sect. 3.3. This language is suitable
for specifying infinite-state systems. It is undecidable but we enforce some syntac-
tic constraints anyway, in order to ease the further application of transformations
mapping into decidable fragments of logic.

Cervino is illustrated in Fig. 2 using the example of a leader election proto-
col [6] in a ring of unbounded size. Nodes sit in a directed ring and each node
has a unique ID. There is a total order on IDs. The goal of the protocol is to
elect a leader (in practice, the one with the greatest ID). A node can send to its
successor in the ring the IDs it knows about, the receiver keeping those that are
greater than its own ID. A node is elected if it receives its own ID.

2.1 Sorts, Relations and Axioms

A Cervino specification may define sorts, (first-order) sorted relations and sorted
constants. An interpretation structure for such a specification is a set of infinite
traces of states. Classically, a state maps a sort to a non-empty set, a constant
to an element of such a set and a relation to a set of tuples, all respecting the
obvious sorting and arity constraints. The interpretation of sets and constants
is rigid while that of relations is flexible.

In the example, nodes and their IDs are conflated into a single sort Node; and:
an elected relation represents the set of elected nodes; a succ relation represents
if two nodes are successive in the ring topology; a toSend relation represents the
mailbox for each node; an lte relation defines a total ordering on nodes; an lmax
constant represents the highest maximal identifier among nodes.

States can be constrained by axioms, i.e. sets of formulas. The latter belong to
FOLTL∗

“, that is they can mix first-order logic (with equality) with the “always”
(G), “eventually” (F) and “next” (written as a prime symbol and only applied to
atoms), as well as a reflexive-transitive closure connective (written ∗). However,
we enforce a syntactic constraint on axioms: after converting them to negation
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Fig. 2. Specification of the leader election protocol (prettified syntax)

normal form (NNF), an existential quantifier cannot appear in the scope of a
universal quantifier or of a G connective (no @ . . . D . . ., no G . . . D . . .).

A binary relation r can by “tagged” (written using btw) to force r to be a
function2 and enable a special ternary relation btw[r]. Then, btw[r](x,y,z) means
that there is an acyclic path between x and z passing through y. The semantics
of btw[r] is given through axioms (see Definition 14) and is related to r∗ through
the following equivalence: r∗(x, y) ⇔ btw[r](x,y,y).

2.2 Events

Events specify how the system may evolve from one state to another. Events
(more precisely: event schemas) are declared with a name and a list of argu-
ments that are the only variables that can appear free in the body of the event.
2 @ x,y,z : s · r(x,y) ∧ r(x,z) ⇒ y “ z.
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The declaration of an event also features a modifies section describing which
tuples of which relations may be modified by the event. Other relations or parts
of relations are necessarily left unchanged. The body of an event is specified
in primed FO (FO augmented with primed relation symbols representing the
value of these relations in the next state) with the additional constraint that no
existential quantifier may appear positively in the body.

The semantics for events is standard and comparable to the one used in
TLA` or Electrum: in every state, at least one event is fired. In other words,
there is a valuation for arguments of at least one event such that the body of the
said event evaluates to true. More formally (and ignoring sorting constraints for
the sake of readability), given event bodies φ1, . . . , φn and arguments y1, . . . , ymi

appearing as free variables in φi, the semantics of event is given by the formula:

G(
n∨

i“1

Dy1, . . . ymi
· φi). We insist that this formula is only implicit: it cannot

be input by the specifier as it is the purpose of transformations to massage it.
Finally, if needed, fairness constraints must be added by the specifier .

In the example, the send event represents the fact that a node updates
its successor’s mailbox by adding all IDs that are larger than the successor’s
ID. This way, the largest ID is passed along the ring. Notice we use univer-
sal quantification: we could have defined dst and id as parameters of send, but
the implicit existential quantification, although theoretically acceptable, can be
costly performance-wise (as succ is a function, this is significant for the id argu-
ment only). We also specify that the event modifies the toSend relation for
specific pairs of a node and an identifier, only if these satisfy a condition saying
that the ID is in the sender’s mailbox (or corresponds to the sender’s ID) and if
the node is the sender’s successor (the body of the event says what happens in
that case).

2.3 Commands

A check declares a command to verify whether a property holds. To do so, a
command uses a certain tactic (TEA, TFC, TTC), as well as additional parameters
in the case of TFC and TTC (these are presented in Sect. 5 and 6, respectively).
The purpose of this article is precisely to present these transformations. We
notice that a command may also be associated with additional, specific axioms
in an assuming section (in the example, this section contains a fairness property,
necessary to prove the liveness property).

3 Background on FOLTL

3.1 Syntax and Semantics of FOLTL

The basic vocabulary of MSFOLTL (that we simply call FOLTL in the following)
is defined out of a signature Σ “ (S,Const ,R) where S is a set of sorts, Const
is the set of (sorted) constant symbols and R “ (R�s)�sPS‹) is a family of sets of
relation symbols, with R�s the set of relation symbols over tuples of sort �s.
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Definition 1 (Formulas). Given a signature Σ “ (S,Const ,R) and a set of
variables V, FOLTL“ formulas over Σ and V are defined inductively by the
following grammar:

ψ:: “ r(t1, . . . , tn) | t1 “ t2 | �ψ | ψ _ ψ | Xψ | Fψ | @x : s · ψ | Dx : s · ψ

where x P Vs, r P Rs1,...sn
and ti P Vsi

Y Constsi
for each i, with Vs (resp.

Consts) the set of variables (resp. constants) of sort s.

X and F stand for the “next” and “eventually” connectives. Usually FOLTL
includes the U connectives, however it is not required in this paper. We also
define “always” as Gψ “ �F(�ψ). Similarly, classical propositional connectives
∧, ⇒ and ⇔ are defined in the natural way. Additionally:

– We write ψ[x] for a formula ψ having x as a free variable.
– We write FV(φ) for the set of free variables of a formula, defined in the

obvious way. A formula φ is said to be closed if FV(φ) “ ∅.
– Classically, a formula is in negation normal form (NNF) if negations only

appear in front of relation symbols.
– If C is a subset of {X,F,G} then we denote by FOLTL“(C) (resp.
FOLTL(C)) the set of FOLTL“ formulas (resp. FOLTL formulas without
equality) in NNF containing only temporal operators from C.

– A formula l is called literal if l “ r(t1, . . . , tn) or l “ �r(t1, . . . , tn) where
x P V, r P Rn and ti P Const Y V for each i.

We now introduce the semantics of FOLTL“. In the interpretation struc-
tures defined below, the interpretation of relations varies over time while that
of function symbols does not.

Definition 2 (Interpretation Structure). Given a signature Σ “
(S,Const ,R), an (interpretation) structure M (over Σ) is a triple
((Ds)sPS , σ, ρ) where:

– D “ (Ds)sPS is a family of pairwise-disjoint nonempty sets and each Ds is
the domain of the sort s.

– σ maps each constant c P Consts to an domain element σ(c) P Ds.
– ρ maps any pair (i, r) P NˆRs1...sn

of instant and relation to the set ρ(i, r) ⊆
Ds1 ˆ . . . ˆ Dsn

of tuples satisfying r at instant i.

Definition 3 (Assignment). An assignment C in domains (Ds)sPS for vari-
ables in V is a map V → D. We write C[x �→ d] the assignment defined as
C[x �→ d](x) “ d and C[x �→ d](y) “ C(y) if y �“ x. The extension of C to terms,
also written C, is defined in the obvious way.

Definition 4 (Satisfaction). Given a structure M “ (D,σ, ρ) and an assign-
ment C, the satisfaction relation � is defined by induction on formulas, for
any i P N, as follows:

– M, i, C � t1 “ t2 iff C(t1) “ C(t2);
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– M, i, C � r(t1, . . . , tn) iff (C(t1), . . . , C(tn)) P ρi(r);
– M, i, C � �φ iff M, i, C � φ;
– M, i, C � φ1 _ φ2 iff M, i, C � φ1 or M, i, C � φ2;
– M, i, C � Xφ iff M, i ` 1, C � φ;
– M, i, C � Fφ iff there exists k P N s.t. M, i ` k, C � φ;
– M, i, C � Dy : s · φ iff there exists d P Ds s.t. M, i, C[y �→ d] � φ;
– M, i, C � @x : s · φ iff for every d P Ds, we have M, i, C[x �→ d] � φ.

Given a closed formula φ, we write M, k � φ if M, k, [] � φ, where [] is the empty
assignment. Then Mod(φ) denotes the set of structures M such that M, 0 � φ.

Definition 5 (Reflexive-Transitive Closure3). We write FOLTL∗
“ for the

enrichment of FOLTL“ with a reflexive-transitive closure connective. Then for
any sort s P S and any binary relation symbol r P Rs,s, the language of FOLTL∗

“
is augmented with a fresh binary relation symbol : r∗ P Rs,s, and we have:

M, i, C � r∗(t1, t2) iff M, i, C � t1 “ t2 or there exists n P N s.t. M, i, C �
Dx0, . . . , xn · t1 “ x0 ^ t2 “ xn ^ (

∧

0�i�n´1

r(xi, xi`1)).

Let φ, φ′ be two FOLTL∗
“ formulas. If for any structure M and any assign-

ment C, we have M, 0, C � φ iff M, 0, C � φ′ then we say that φ and φ′ are
logically equivalent, written φ ” φ′.

3.2 Bounded Domain Property

In this section we introduce the Bounded Domain Property (BDP) and present
two fragments of FOLTL that enjoy the BDP. These fragments play an important
role in the verification procedures presented in this article.

Definition 6 (Bounded Domain Property). A fragment Frag of FOLTL
enjoys the bounded domain property (BDP) if given φ P Frag, φ is not satis-
fiable, or there is a domain-finite structure M s.t. M, 0 � φ whose the domain
size is computable from φ. Additionally, BDP implies decidability.

We now present the two fragments that are used in this paper. Both fragments
are included in a larger fragment for which the BDP is established in [24].

Definition 7 (LTR fragment). A formula φ of FOLTL“ is said to belong to
the (multisorted) Linear-Temporal Reasoning (LTR) fragment if φ is in NNF and
existential quantifiers only appear in the head of φ.

Theorem 1 ([16,24]). Any formula φ P LTR (even with equality) enjoys the
BDP. The bound of verification for each sort is the sum of the numbers of exis-
tential quantifiers and constant symbols over this sort.

3 It is possible to fully axiomatize the transitive closure in pure FOLTL, however since
it does not fit into the scope of this paper such an axiomatization is not presented
here and we simply extends FOLTL with the classical definition of transitive closure.
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Definition 8. An FOLTL formula ψ is in FOLTL(D↑, @↓) if ψ “ Dy1 : s1 . . . yn :
sn ·θ[y1, . . . , yn], where θ has the following syntax: θ:: “ 	 | α | θ _θ | θ ^θ | Xθ |
Gθ | Fθ, where α is an FO formula in NNF without any existential quantifier
and 	 is a literal.

Definition 9. FOLTL(X,F, @↓) is defined by the following grammar: φ:: “ 	 |
α | φ _ φ | φ ^ φ | Xφ | Fφ | Dy : s · φ, with α an FO formula in NNF without
any existential quantifier, 	 a literal and y P V.

Definition 10 (Geneva fragment). The Geneva fragment of FOLTL consists
of formulas ψ ^ G(φ) s.t. φ is a closed formula of FOLTL(X,F, @↓) and ψ is a
closed formula of FOLTL(D↑, @↓).
Definition 11. Given a formula φ P FOLTL(X,F) in NNF, we define its stride
Kφ as the maximal number of nested X connectives. Formally :

K� “ KFφ “ 0 (if 	 is a literal) KXφ “ Kφ ` 1
K@x·φ “ KDx·φ “ Kφ Kφ1^φ2 “ Kφ1_φ2 “ max(Kφ1 ,Kφ2)

Theorem 2 ([24]). The Geneva fragment enjoys the FDP. If ψ ^ G(φ) is a
satisfiable formula in this fragment, for each sort s the (exact) bound on the
domain size is: |Consts| ` (Kφ ` 1) ˆ |Vs|.

3.3 Semantics of Cervino

In this section, we define the semantics of a Cervino machine as an FOLTL∗
“

formula. Notice first that, in Cervino, the next instant is referred using the prime
symbol, applied to relations only: this translates to an FOLTL sub-formula using
the X connective, after application of the semantics.

Now, a frame condition is defined as a formula that specifies that a certain
relation will not change (between the instant before and after the event occuring)
for tuples satisfying some constraints.

Definition 12 (Frame condition). We define a frame condition as a formula
expressing that, under some hypotheses, a certain relation does not change along
a transition. Given the the tuple (r, �x, ψ) where r P R�s , �x P V |�s| , ψ is a Boolean
formula, where variables in �x may appear free, we define the frame condition
unchanged[r, �x, ψ] as the formula @�x : �s · ψ ⇒ (r(�x) ⇔ Xr(�x)).

Definition 13 (Semantics of an event). Let ev be an event of a Cervino
machine declared as follows: event ev[�y : �s] modif {τ}, with modif = modifies
q1 at {(�x1) · ψ1}, . . . , qj at {(�xj) · ψj}, where the free variables in each ψk are
included in �xk, �y. Its semantics is defined as [[ev]] “ D�y : �s · (τ ^ [[modif]]), where

[[modif]] “ (
∧

rPR\{q1,...,qj}
unchanged[r, �x, J]) ^ (

∧

1≤k≤j

unchanged[qk, �xk,¬ψk])

where each list �x of variables have sorts corresponding to the profile of r.
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For any binary relation r that enables btw [r], the ternary relation btw [r]
stating that there exists an acyclic path between two elements passing through
a third element is axiomatized in FO following [18].

Definition 14 (Semantics of between). Given a binary relation symbol r,
the semantics of btw[r] is given by adding axioms of transitivity, antisymmetry,
partial totality, partial reflexivity, cycle maximality, transitivity of reachability,
path consistency, taken from [18] in addition to the following axiom:

@x, y : s ·
[
r(x, y) ⇔

(
btw[r](x, y, y) ^ (@z : s · btw[r](x, z, z) ⇒ btw[r](x, y, z))

)]
(S)

The property (TC) relating btw[r] and r∗ can be deduced from the axioms pro-
vided that the domain of s is finite.

@x, y : s · [
btw[r](x, y, y) ⇔ r∗(x, y)

]
(TC)

Then, calling btw the conjunction of all between axioms, [[btw[r]]] “ Gbtw.

Definition 15 (Semantics of Cervino). Let Mch be a Cervino machine with
axioms ψ1, . . . , ψn, events ev1, . . . , evm and such that the relations enabling btw
are r1, . . . , rl. Then its semantics is given by the following FOLTL∗ formula:

[[Mch]] “ φ0 ^ (Gφtr) ^ φbtw

where φ0 “
n∧

i“1

ψi, φtr “
m∨

i“1

[[evi]] and φbtw “ ∧

1�i�l

[[btw[ri]]]

The semantics of a Cervino machine is then an FOLTL∗
“ formula describing

the set of its traces. But, since we aim at verifying systems, we are not only
interested in the set of traces but also in the set of counterexamples of a property.
This set is also described by an FOLTL∗

“ formula which is the conjunction of
the semantics of the machine and the negation of the property we aim to check.

Definition 16 (Counterexamples). If Mch is a Cervino machine and φ is
an FOLTL∗

“ formula. Then we define [[Mch]]φ “ [[Mch]] ^ [[�φ]]

4 Basic Transformations

In this section, we present basic transformations used to build the more complex
TFC and TTC tactics (respectively presented in Sect. 6 and 7). These transfor-
mations are used to map (the semantics of) a system specification into a more
general Geneva formula.

4.1 Transforming Equality

Equality is replaced4 by a dynamic congruence relation ”s, for every sort s. The
signature is therefore extended with these fresh ”s relations.
4 In practice, we ensure that the semantics of the modifies section, which uses equality,

is also affected by this transformation.
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Definition 17 (Equality transformation). Given a fresh binary relation ”s

for every sort s of a formula, the transformation of equality is defined recursively:

– Abs“(t1 “ t2) “ t1 ”s t2 if the sort of t1 (and necessarily of t2) is s
– Abs“(	) “ 	
– (the rest is just a recursive walk on formulas)

Furthermore, the following set Eq” of axioms is added to the whole specification:

– for any sort s: G@x : s · x ”s x
– for any sort s: G@x : s, y : s · x ”s y ⇒ y ”s x
– for any sort s: G@x : s, y : s, z : s · x ”s y ^ y ”s z ⇒ x ”s z
– for any relation r and adequate sorts �s conforming to the profile of r:

G@�x : �s, �y : �s · (x1 ”s1 y1 ^ . . . ^ xn ”sn
yn) ⇒ (r(�x) ⇔ r(�y))

Lemma 1. Given an FOLTL“ formula φ, if φ is satisfiable then Abs“(φ) is
satisfiable (and does contain “ anymore).

Proof. Proof validated in Coq. It is easy to see that equality is a particular case
of the equivalence relation introduced by this transformation. ��

4.2 Restricted Skolemization

The following transformation corresponds to a form of Skolemization meant to
create only new constants symbols. Its main purpose is to introduce constants
that can then be used by instantiation (Sect. 4.3). Existentially-quantified vari-
ables can be substituted by fresh constants, except when under a G connective.

Definition 18 (Skolemization). Skolemization is defined by the following
operation (all fresh constant symbols are added to the signature):

– AbsD(t1 “ t2) “ t1 “ t2 and AbsD(	) “ 	
– AbsD(Gφ) “ Gφ
– AbsD(@x : s · φ) “ @x : s · φ
– AbsD(Dy : s · φ) “ AbsD(φ[y �→ c]) where c is a fresh constant symbol
– (the rest is just a recursive walk on formulas)

Lemma 2. Given an FOLTL“ formula φ, then AbsD(φ) and φ are equisatisfi-
able.

Proof. Proof validated in Coq. Corresponds to a usual Skolemization
procedure. ��

4.3 Instantiation

One of the main limitations of the Geneva fragment is the prohibition of temporal
operators under universal quantifiers. The solution we propose to this problem
is to finitely instantiate such universal quantifiers. The following transformation
formalizes this idea: all universal quantifiers over temporal formulas are replaced
by a conjunction over the set of constants and existentially-bound variables.
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Definition 19 (Forall instantiation). Given a set I of constant and variable
symbols, we define the transformation of universal quantifiers as follows:

– Abs@,I(t1 “ t2) “ t1 “ t2 and Abs@,I(	) “ 	
– Abs@,I(Dy : s · φ) “ Dy : s · Abs@,IY{y}(φ)
– if φ P FO (φ does not contain temporal connectives) then Abs@,I(@x : s · φ) “

@x : s · φ, otherwise Abs@,I(@x : s · φ) “ ∧

cPIs

Abs@,I(φ[x �→ c]) (where Is is the

set of terms in I of sort s)
– (the rest is just a recursive walk on formulas)

Remark 1. There is no need to transform a universal quantifier if all temporal
operators in its scope permute with it, for instance: @x · GP is equivalent to
G(@x · P ) and @x · (XP ) ⇒ (XQ) is equivalent to X(@x · P ⇒ Q).

Lemma 3. Given an FOLTL“ formula φ, if φ is satisfiable and I ⊆ Const then
Abs@,I(φ) is satisfiable.

Proof. Proof validated in Coq. This operation consists in instantiating universal
operators, thus preserving satisfiability. ��

4.4 Addressing Transitive Closure and the Between Relation

Since we target fragments of FOLTL (without transitive closure), we define the
transformation Abs∗(), which leaves a formula unchanged except it uninterprets
the operator ∗, i.e., Abs∗(φ) returns φ where every occurrence of r∗ is considered
as a new relation symbol, unrelated with r.

Besides, the between relation axioms does not fit into Geneva or LTR, so we
define their abstract semantics as follows.

Definition 20 (Transformation of between axioms). Given a binary rela-
tion symbol r, we define �btw[r]� “ Gbtw where btw is the conjunction of the
axioms from Definition 14, except that

– the axiom S is replaced by the axiom (AS) (in order to prevent existential
quantifier in the scope of a universal one)

– and the property (TC) relating r∗ and btw[r] is now considered as an axiom
(since r∗ has no semantics in the targeted FOLTL fragments)

@x, y : s ·
[
r(x, y) ⇒

(
btw[r](x, y, y) ^ (@z : s · btw[r](x, z, z) ⇒ btw[r](x, y, z))

)]
(AS)

@x, y : s · [
btw[r](x, y, y) ⇔ r∗(x, y)

]
(TC)

4.5 Geneva Transformation

The basic transformations introduced above are mainly used together, in a spe-
cific order.
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Definition 21 (Geneva Transformation). We define:

AbsGen(φ) “ Abs∗(Abs@,Const(AbsD(Eq” ^ Abs“(φ))))

Theorem 3. Given ψ P FOLTL�y1(@) and φ P FOLTL�y1Y�y2(X,F, @) then
AbsGen(D�y1 : �s1 · (ψ ^ G(D�y2 : �s2 · φ))) belongs to the Geneva fragment.

Proof. Recall the conditions to belong to Geneva: (1) no G operator in the
scope of an existential quantifier that is itself under an G connective; (2) no
existential quantifier in the scope of a universal quantifier; (3) no equality;
(4) no temporal quantifier in the scope of universal quantifiers; and (5) no
transitive closure. Given ψ, φ satisfying the given hypotheses, let us write
α “ D�y1 : �s1 · (ψ ^ G(D�y2 : �s2 · φ)). Then, in α, existential quantifiers appear
either at the head of the formula or under an G operator over the φ formula.
Since φ contains no other temporal connectives than X and F, condition (1) is
met. Condition (2) is met as all existential quantifiers appear before universal
quantifiers. Abs“(.) ensures that equality is not used in the final formula, thus
ensuring condition (3). Abs@,Const(.) instantiates all universal quantifiers that
contain temporal connectives in their scope (we assume that if such operator
could have been swapped with an universal quantifier, it has been done before-
hand), which ensures condition (4). Finally Abs∗(.) erases the reflexive transitive
closure, ensuring condition (5). Since it is obvious that none of the transforma-
tions can introduce formulas breaking any of the conditions, we conclude that
AbsGen(α) belongs to Geneva. ��

5 TEA: Transforming Existential Quantifiers

We now present the fully-automatic TEA transformation. It starts with the
observation that the formula specifying events (see Definition 13) is of the shape
GD�x · ∨i evi(�x), that is, in every state, at least an event is fired. The gist of the
TEA transformation is then twofold: (1) we replace these existential quantifiers
by universal ones; (2) for every such existential quantifier, we add a fresh relation
E, which holds only for the constant semantically associated to this quantifier.

The whole resulting abstract specification lies in the LTR fragment, which
enjoys the BDP (Theorem 1). The formula specifying events is however more
general than the original one, because it allows more transitions to happen. The
abstract system may thus violate a property holding on the original specification.
But it is now decidable to check whether the property holds in the abstract
system and, if so, this entails that it also holds in the original system.

Before presenting the transformation, notice that, in the following, we con-
sider event formulas, that is primed FO“ formulas of the shape φ “ Dy1 :
sy1 , . . . , yn : syn

· @x1 : sx1 , . . . , xm : sxm
· ψ, where ψ is in NNF and does not

contain any first-order quantifiers. These formulas naturally arise when putting
the semantics of events in prenex normal form. We also suppose we have a supply
of fresh relation symbols, written Ei (one for every yi, 1 � i � n).
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To devise the transformation and prove its soundness, we first introduce a
formula specifying that the E relations are functional. This schema appears in
the final abstract specification.

Definition 22 (Functional E relations). Given an event formula φ “ Dy1 :
sy1 , . . . , yn : syn

· @x1 : sx1 , . . . , xm : sxm
· ψ, we define the functional formula

based on φ as: AxE(φ) “ G
( n∧

i“1

@z1, z2 : syi
· (Ei(z1) ^ Ei(z2)) ⇒ z1 “ z2

)

where E1, . . . , En are fresh unary relation symbols.

As we introduce these E relations, we also define an enrichment of the event
formula accounting for the extended signature. This new formula appears as a
link between the two lemmas entailing soundness.

Definition 23 (Enriched event formula). Given an event formula φ “ Dy1 :
sy1 , . . . , yn : syn

·@x1 : sx1 , . . . , xm : sxm
·ψ, we define the enriched event formula

based on φ as:

φ “ AxE(φ) ^
[
Dy1 : sy1 , . . . , yn : syn

·
( n∧

i“1

Ei(yi) ^ @x1 : sx1 , . . . , xm : sxm
· ψ

)]

where E1, . . . , En are fresh unary relation symbols.

We now present the essential part of the transformation, transforming an
event formula φ into a purely universal one U�φ�, more general than φ. In other
words, U�φ� allows more transitions than φ if we ignore the specification of
E1, . . . En. To do that, for any variable y whose corresponding fresh relation is
E, we proceed with the following steps. First: equality between y and another
variable is replaced with the relation E applied to the latter; and any other literal
	 containing y is replaced by E(y) ⇒ 	. Once these transformation are done, it is
possible to replace existential quantification over y by a universal quantification.

Definition 24 (Transformation). Given an event formula φ of shape Dy1 :
sy1 , . . . , yn : syn

·@x1 : sx1 , . . . , xm : sxm
·ψ, we define the (TEA) transformation

function on φ as:

U�φ� “ @y1 : sy1 , . . . , yn : syn
· U�y�@x1 : sx1 , . . . , xm : sxm

· ψ�

where �y “ {y1, . . . , yn} and where E1, . . . , En are fresh relation symbols (one for
every y P �y); with U�y�ψ� defined recursively as follows:

– U�y�yi “ yj� “ (Ei(yi) ⇒ Ej(yi)) ^ (Ej(yj) ⇒ Ei(yj)) “ (�Ei(yi) _ Ej(yi)) ^
(�Ej(yj) _ Ei(yj))

– U�y�yi �“ yj� “ (Ei(yi) ⇒ �Ej(yi)) ^ (Ej(yj) ⇒ �Ei(yj)) “ (�Ei(yi) _
�Ej(yi)) ^ (�Ej(yj) _ �Ei(yj))

– U�y�yi “ d� “ U�y�d “ yi� “ Ei(d) where d �P �y (d is either a constant or a
variable in �x)

– U�y�yi �“ d� “ U�y�d �“ yi� “ �Ei(d) where d �P �y (d is either a constant or a
variable in �x)
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– U�y�	� “ (
i∧

k“1

Eak
(yak

)) ⇒ 	 “ (
i∨

k“1

�Eak
(yak

)) _ 	 where 	 is a (possibly

primed) literal and {ya1 , . . . yai
} “ FV(	) X �y

– (the rest is just a recursive walk on formulas)

Example 1. Consider the following event formula, stating that there is an event
making R true in the next state for a variable y (other variables remain
unchanged w.r.t. R): φ “ Dy : A · R′(y) ^ (@x : A · x �“ y ⇒ (R(x) ⇔ R′(x)))
that is, in prenex form: Dy : A · @x : A · R′(y) ^ (x “ y _ (�R(x) ∧ �R′(x)) _
(R(x) ∧ R′(x))). Then there is only one fresh E relation, and U�φ� is:

@y, x : A · (�E(y) ∨ R′(y)) ∧ (
E(x) ∨ (�R(x) ∧ �R′(x)) _ (R(x) ∧ R′(x))

)

Now, the following lemma states that every model of the enriched event
formula is also a model for the transformed event formula.

Lemma 4. Given an event formula φ “ Dy1 : sy1 , . . . , yn : syn
· @x1 :

sx1 , . . . , xm : sxm
· ψ, we have φ � U�y�φ�.

Proof. Proof validated in Coq.

Lemma 5 applies to a formula representing a whole specification: if such a
specification is satisfiable, then a certain transformed version of it is satisfiable
too.

Lemma 5. Let θ be an FOLTL“ formula, and φ be an event formula on the
same signature. Then if θ ^ Gφ is satisfiable, θ ^ G(U�y�φ�) ^ AxE(φ) is also
satisfiable.

Proof. Proof validated in Coq.

Definition 25 (Abstract semantics). Given a Cervino machine Mch such
that the relations enabling btw are r1, . . . , rl, we define U�Mch� “ φ0 ^
GU�φtr� ^ φbtw, where φ0 and φtr are defined as in Definition 15 and
φbtw “ ∧

1�i�l

�btw[rl]�. Also, given an FOLTL“ formula φ, we define Uφ�Mch� “
Abs∗(U�Mch� ∧ �φ).

Theorem 4 (Soundness). If [[Mch]]φ is satisfiable, then Uφ�Mch� is also sat-
isfiable.

Proof. This is a direct application of Lemma 5.

Theorem 5. Given a Cervino machine Mch such that φ0 and φtr are defined
as in Definition 15, if φ0, φ P LTR then Uφ�Mch� P LTR.

Proof. Directly follows from the definition of U�.�.
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6 TFC: Transforming Frame Conditions

The TEA transformation has the advantage of being fully automatic but it
can be inconclusive in a number of cases. For instance, the verification of a
distributed system involving strong interactions between its components, which
induces events with two or more parameters, is likely to be inconclusive using
TEA. This is because the universal quantifiers that are introduced by TEA are
abstracting these interactions (which are naturally expressed with existential
quantifiers) in a too drastic way.

In this section, we present another transformation, called TFC, which over-
comes these limitations but requires some intervention from the specifier.

Instead of targeting the LTR fragment, we now target the Geneva one, which
allows for existential quantifiers in the scope of G, but forbids temporal formulas
in the scope of a universal quantifier. As a consequence, frame conditions, which
are typically of shape @x : s · ϕcond ⇒ (r(x) ⇔ Xr(x)), are not expressible in
Geneva. In order to fit into it, such universal quantifiers are instantiated over
constants (see Abs@,Const(·) defined in Sect. 4.3). But then a large part of the
information included in the frame conditions is lost. Therefore, we associate
some particular kind of invariant properties, called stability axioms, with each
event, as a finer transformation of frame conditions. Intuitively, a stability axiom
is a pure FO formula that is preserved by an event. Since it is expressed in pure
FO, the preservation of a stability axiom is then expressible in Geneva.

Definition 26 (Stability Axiom). Given a set of frame conditions C, an FO
formula φ is a stability axiom for C if C � φ ⇒ Xφ.

StC denotes the set of stability axioms for C.

The specification of stability axioms is a creative step, but it can be eased with
the help of a syntactic condition, which is sufficient to be a stability axiom. The
idea is that a formula of the following shape is necessarily a stability axiom:
ϕhyp ⇒ ϕ, were ϕhyp corresponds to the guard of a frame condition that leaves
a relation r unchanged, and ϕ only refers to the relation r.

Example 2. In order to illustrate the use of stability axioms, let us consider the
leader election distributed system, introduced in Sect. 2. Since TEA does not
succeed in proving the safety property, we can try TFC with the following sta-
bility axiom for event send:

@ x,y : Node · !succ(src,x) ⇒ (!toSend(x, y) ∨ (x �“ lmax ∧ btw[succ](x, lmax, y)))

This axiom expresses that if a node x different from the successor of src has
an ID y in its mailbox, then the node with the greatest ID is located between x
and y (recall that a node and its ID are conflated). This means that outside the
scope of the event, an ID cannot jump over the node with the greatest identifier.

Exhibiting this stability axiom requires some work. It would also be possible
to proceed using an inductive invariant but, since the property to check is not
inductive, doing so would also require some effort.
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Example 3. In order to illustrate the difference between stability axioms and
inductive invariants, we take a toy token protocol as an example. For the sake
of simplicity, we consider a property to check that is already inductive. The
protocol features one token passing from nodes to nodes with only one send event
send(x,y), with body: token(x) ∧ !token’(x) ∧ token’(y) ∧ frame, where frame :=
@ z · (z �“ x ∧ z �“ y) ⇒ (token(z) ⇔ token’(z)).

The (inductive) property to check is that there is always at most one node
holding the token. To prove this property without relying on its inductiveness, we
can use the following stability axiom: stab := @ z · (z �“ x ∧ z �“ y) ⇒ !token(z).
Contrary to the inductive invariant, the stability axiom has free variables match-
ing the parameters of the event (which are implicitly quantified existentially).
Also the preservation of the stability axiom follows from the frame condition as
frame � stab ⇒ Xstab, while the preservation of the inductive invariant follows
from the whole transition.

Remark 2. Notice that this property is also true for the nodes that are in the
scope of the event, i.e., src and its successor. So in this case, the stability axiom
is very close to an invariant property. But this is not the case in general. A
distinguishing aspect is that TFC with this stability axiom succeeds in proving
the safety property, whereas it would not be possible to deduce it from the
“invariant” version of this stability axiom.

The TFC transformation is performed in two phases:

1. Stability axioms, which are provided by the specifier, are added to the body
of each event. At this step, the semantics of Cervino is strengthened by the
transformation. The obtained formula is not in the Geneva fragment, in par-
ticular because of the frame conditions.

2. The Geneva transformation, which is presented in Sect. 4, is applied. In par-
ticular, the frame conditions are abstracted by equality transformation and
instantiation, but the stability axioms are left unchanged.

Definition 27 (Event enrichment with a stability axiom). Let ev be an
event of a Cervino machine declared as: event ev[�y : �s] modif{τ} and C be the
frame condition of ev, C “ [[modif]]. Given a stability axiom I for C, we define
the enrichment ρ�ev, I� of ev with I as: ρ�ev, I� “ D�y : �s · τ ^ C ^ (I ⇒ XI).
Definition 28 (Cervino machine enrichment with stability axioms).
Let Mch be a Cervino machine with axioms ψ1, . . . , ψn, events ev1, . . . , evm

declared as event evi [�y1 : �s1 ] modif {τi} for each i P 1..m and such that the
relations enabling btw are r1, . . . , rl. Let sta be a function mapping each event
to a stability axiom for the according frame condition. Using the same notation
as Definition 27, we define the stability axiom enrichment ρ�Mch, sta� of Mch as
ρ�Mch, sta� “ φ0 ^ Gφtr ^ φbtw

where φ0 “
n∧

i“1

ψi, φtr “
m∨

i“1

ρ�evi, sta(evi)� and φbtw “ ∧

1�i�l

�btw[rl]�.
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Definition 29 (Abstract semantics). Given a Cervino machine Mch and a
function sta, mapping each event to a stability axiom, we define the stability
axiom semantics as F�Mch�φ “ AbsGen(ρ�Mch, sta� ^ �φ)

Theorem 6 (Soundness). If [[Mch]]φ is satisfiable then F�Mch�φ is satisfiable.

Proof. Follows from Lemmas 1, 2 and 3.

Theorem 7. If �φ P LTR then F�Mch�φ P Geneva.

Proof. Follows from Theorem 3.

7 TTC: Transforming Reflexive-Transitive Closure

We now present a simple, effective transformation technique to approximate
reflexive-transitive closure (which is present in Cervino and its FOLTL∗

“ seman-
tics). This technique has shown to be useful to prove some liveness properties.

As is well known, transitive closure cannot be fully specified in pure FO. On
the other hand, it can be specified in pure FOLTL, but the axiomatization we
are aware of does not fit in the fragments considered here. However, it is possible
to define an interesting approximation that does fit in the Geneva fragment.

Informally, the crux of our technique relies on the following observation:
any property propagating along a binary relation will eventually propagate to
the reflexive-transitive closure thereof. This is proved (see Theorem 8 below) by
following the definitions of the transitive closure and of the eventually connective.

Definition 30 (Propagation schema). Given binary relations r and t on a
sort s, given a formula P with k ` 1 free variables (k � 0), the first of which
(of sort s) is distinguished in the following. Given k variables �x of appropriate
typing, we define the propagation and closure schemas as follows:

Propagates[r, P, �x] “ @u, v : s · r(u, v) ⇒ G (P [u, �x] ⇒ FP [v, �x])
Closure[r, t, P, �x] “ Propagates[r, P, �x] ⇒ Propagates[t, P, �x] .

Theorem 8 (Propagation). Given a binary relations r on a sort s, the follow-
ing property over its reflexive-transitive r‹ closure is valid: Closure[r, r‹, P, �x].

Proof. Proof validated in Coq.
The proof sketch is the following : we consider the set of element to which the

property eventually propagates. Then we use the hypothesis that the property
propagates along a binary relation r to show that this set is closed under the
relation r. Then as the transitive closure from some element is the smallest set
closed under the relation r, we know that the property propagates to any element
in the transitive closure.

We prove that under the Propagates[r, P, �x] hypothesis, for any u, the set
of v’s satisfying G (P [u, �x] ⇒ FP [v, �x]) is included in the set of v’s that are
reachable from u along r. Let M be a structure and C an assignment s.t. M, C �
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Propagates[r, P, �x]. We assume that there is an instant i such that P [u, �x] holds
(otherwise the satisfaction of the axiom is trivial). Then M, i, C � FP [u, �x]. Also,
given v s.t. M, i, C � FP [v, �x], there exists k � i s.t. M, k, C � P [v, �x]. For any
v′ s.t. M, 0, C � r(v, v′) Propagates[r, P, �x] implies M, k, C � FP [v′, �x]. Thus
M, i, C � P [v′, �x]. Then M, 0, C � r‹(u, v) implies M, i, C � FP [v, �x]. Hence
Closure[r, r‹, P, �x] is valid. ��

Given this theorem, the technique we propose consists in replacing the reflexi-
ve-transitive closure of a relation (which fits in Cervino and FOLTL∗

“) by an unin-
terpreted relation satisfying the closure schema shown above, for some property
P that depends on the sort of the considered binary relation as well as, possibly,
other arguments. Remark that finding such a property P requires creativity: the
specifier must come up with a relevant propagating property.

Example 4. In the case of the leader election example, we use TTC to check that
a leader will be elected at some point. The property we use is propagation along
succ of having a given ID in one’s mailbox (Propagates[succ, toSend , id ]).

Definition 31 (Abstract semantics). Let Mch be a Cervino machine, such
that rj1 , . . . , rjl are binary relations enabling btw, and rk1 , . . . , rkm

are binary
relations whose reflexive-transitive closure is used in Mch. Now, given formulas
P1, . . . , P�, where for every 1 � i � m, FV(Pi) “ {x, x1, . . . , xni

} (with x the
distinguished free variable), we define the transitive closure transformation as:

T�Mch� “ φ0^Gφtr ^ φbtw

∧ (
∧

1�i�m

∧

(c1,...cni
)PConstni

Closure[rki
, r∗

ki
, Pi, (c1, . . . cni

)])

where φ0 and φtr are defined as in Definition 15 and φbtw “ ∧

1�i�l

�btw[rji ]�.

We also define T�Mch�φ “ AbsGen(T�Mch� ^ �φ) (notice that, due to the
application of the Geneva transformation, the r∗

i relations become uninterpreted).

Theorem 9 (Soundness). If [[Mch]]φ is satisfiable then T�Mch�φ is satisfiable.

Proof. Follows directly from Theorem 8 and Lemmas 1, 2 and 3.

Theorem 10. If �φ P LTR then T�Mch�φ P Geneva.

Proof. Follows from Theorem 3.

8 Evaluation

To evaluate the relevance of our three tactics, we applied them to several mod-
els of distributed protocols. Our research questions were (1) to check that our
methods were applicable to real models; (2) to check whether our approach was
efficient enough; and (3) to assess the effort for the specifier to come up with
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Fig. 3. All verifications take less than 20 s (“effort”: estimation of user effort with the
number of atoms (literals and equality tests) used in the TTC or TFC parameters).

parameters for TFC and TTC. Our strategy was always first to apply the TEA
tactic. If TEA failed, then in the case of safety properties, we devised stability
axioms in order to apply TFC. Otherwise, for liveness properties and for systems
relying on transitive closure, we relied on TTC.

The Cervino prototype takes a Cervino specification as input and gener-
ates Electrum models which are then fed to the Electrum Analyzer [4], which
itself calls a complete procedure in nuXmv [5]. On a general note, efficiency
can be compromised in the case of the TTC and TFC tactics due to larger
inferred bounds than for TEA. Furthermore, the size of LTL formulas generated
by Electrum for nuXmv grows quickly as the tool merely unfolds quantifiers
into conjunction and disjunctions, depending on the bounds. For this reason,
we leveraged some properties of the Geneva fragment to end up with smaller
models: (1) the size of each domain is an exact bound rather than just an upper
one; (2) all constants are distinct; (3) existential quantifiers can be unfolded on
a limited part of the domain. This is the case because the proof of the BDP for
the Geneva fragment [24] shows that, if there is a model of a Geneva formula,
there is a model satisfying these properties. The specifications we evaluated are
of moderate complexity but are not just toy models:

TLB shootdown The TLB Shootdown algorithm [3] is part of the Mach operat-
ing system. Processors keep a cache of page tables in a Translation Look-aside
Buffer (TLB). The safety property we prove is that whenever the protocol
ensures that the page table is updated, the corresponding update will be
flushed by either the initiator or the responder.

Dining philosophers This classic protocol features an unbounded number of
philosophers sharing forks. We prove a mutual exclusion property, that is that
a fork cannot be simultaneously held by two different philosophers.
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Lock server We present a simple lock server protocol studied in Verdi [27] and
Ivy [21]. The protocol features a single server and an unbounded number
of clients willing to hold a lock. The safety property we verify is that two
different clients cannot simultaneously hold the lock.

Gset and 2Pset Conflict-free Replicated Data Types (CRDTs) are a family
of concurrent protocols where a data structure is replicated in a network
and where the replicas can be independently and concurrently updated. We
model the Grow-only Set (G-Set) [26] and the 2-Phase Set [26] CRDTs. In
both cases, we prove that any update is eventually delivered to all replicas.

Leader election The leader election protocol, presented in Sect. 2, is inspired
by [6]. We notice however that a node sends all the contents of its mailbox at
once, which is a strong simplification.

Token ring Token Ring is a classic protocol where a token is passed through
nodes with mailboxes in a ring. We prove a safety and a liveness property.
In the first case, we use the TFC tactic with 2 stability axioms, one for
each event, which basically state that if there is no token apart from the one
transferred, then no token can appear on unmodified nodes during the event.
The TTC parameter says that the property of holding the token is the one
that should propagate, under strong fairness.

FIFO This protocol is a simple mutual exclusion protocol based on a FIFO
strategy. We prove a liveness property using TTC, stating that for any integer
i, being in the i-th position of the list is a propagating property.

Our conclusion to these case studies is the following (Fig. 3). First the
TEA tactic is only efficient for models involving few interactions, which can be
attributed to the loss of precision when using universal quantifiers. Regarding
TFC, the effort required to find stability axioms seems to be similar to finding
an inductive invariant. For TTC, all propagating properties were very simple.
Finally, we noticed that, for more complex systems, TTC and TFC can lead to
problems that are too large for the model-checker to answer in time (e.g. 1 h.)

9 Related Work

The usual way to check a safety property is to exhibit an inductive invariant for
the system. The TEA tactic is completely automatic and can handle safety prop-
erties but remains quite limited. In our experiments, the TFC tactic showed to be
as flexible as an invariant to prove safety properties. Finding stability axioms or
an inductive invariant appear similar in difficulty. However, once found, checking
an inductive invariant is quicker in computation time than checking the abstract
system obtained with stability axioms. On the other hand, stability axioms allow
to check complex temporal properties.

Regarding liveness properties, important approaches are based on exhibiting
a variant or using the Liveness-to-Safety reduction method proposed in [19]. For
the simple examples done with TEA, such methods would allow to prove the
properties with little efforts, if done right, but are not fully automatic contrary
to the TEA tactic. In both case the computation time is really low.
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With the TTC approach, we do not need to exhibit any sort of invariant
and the propagating property to exhibit has always been straightforward. To
our knowledge there is no easiest method to prove some of the examples we
presented. For example, the liveness property of the leader election protocol
requires to exhibit a variant and an invariant and both are harder to exhibit
than the propagating property. The Liveness-to-Safety reduction method also
applies here, but it requires to find an invariant on the system obtained by
reduction, as well as finding an axiomatization of the reflexive-transitive closure
preserving the Liveness property (while this axiomatization is embedded in TTC
tactic). However, despite being more immediate in our examples, the TTC tactic
is less flexible than these two alternatives since it applies for liveness properties
based on the reflexive-transitive closure.

Our approach can also be compared with the specification of parameterized
systems. Cubicle [7–10] is an SMT-based model-checker for the verification of
safety properties on parameterized systems. Cubicle is efficient for challenging
systems but, contrary to our techniques, it enforces strict syntactic constraints on
guards and on the checked property. Others techniques based on labelled proof
systems have also been proposed [2]. In [15], the safety of the TLB Shootdown
algorithm is proved using such a technique. The user must exhibit the correct
invariant for the proof system to conclude; while the TEA tactic is automatic.
Also, some methods, such as invisible invariants [25], rely on finding automat-
ically a candidate for being an inductive invariant and then checking if this is
the case without needing any input from the user. Such an approach is auto-
matic and efficient but only applies to Bounded-Data Parameterized Systems
while our methods applies to a wider context. While most work on parameter-
ized systems focuses on safety properties, [11] addresses liveness properties, but
remains essentially theoretical. We remark that the techniques mainly used for
parameterized systems are mostly orthogonal to those presented in this paper,
and a combination of both could be fruitful.

10 Conclusion

We devised three original, sound (but incomplete) transformations, that allow to
check that a state machine specification, expressed in a rather expressive frag-
ment of FOLTL∗

“, enjoys a temporal property, expressed in the same setting,
whatever the bounds on domains (associated with sorts) are. The transforma-
tions were proved correct in Coq. We evaluated our approach on several case
studies and found that the transformations were effective and, for the semi-
automatic ones, demanded an effort comparable to other approaches. A draw-
back is that the computed bounds can sometimes grow too much for model-
checking to be feasible with the back-end tools we used. Notice that our approach
is orthogonal to the main other approaches (for instance, inference of invariants)
and could certainly be combined with some of them. Once a universally quan-
tified inductive invariant Inv is found, such a combination would be possible by
adding an axiom of the form G Inv to our abtract specification. This refines the
abstraction while fitting in both LTR and Geneva. This is left for future work.
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