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Abstract. We study the problem of learning a finite union of inte-
ger (axis-aligned) hypercubes over the d-dimensional integer lattice, i.e.,
whose edges are parallel to the coordinate axes. This is a natural gen-
eralization of the classic problem in the computational learning theory
of learning rectangles. We provide a learning algorithm with access to
a minimally adequate teacher (i.e. membership and equivalence oracles)
that solves this problem in polynomial-time, for any fixed dimension d.
Over a non-fixed dimension, the problem subsumes the problem of learn-
ing DNF boolean formulas, a central open problem in the field. We have
also provided extensions to handle infinite hypercubes in the union, as
well as showing how subset queries could improve the performance of
the learning algorithm in practice. Our problem has a natural applica-
tion to the problem of monadic decomposition of quantifier-free integer
linear arithmetic formulas, which has been actively studied in recent
years. In particular, a finite union of integer hypercubes correspond to
a finite disjunction of monadic predicates over integer linear arithmetic
(without modulo constraints). Our experiments suggest that our learning
algorithms substantially outperform the existing algorithms.

1 Introduction

Suppose that we are interested in finding a formula ϕ(x̄) over some theory T
(e.g. integer linear arithmetic) to “capture” a certain phenomenon, which in
verification could be, for instance, an invariant that a program satisfies some
safety property. The process of discovering ϕ can be captured by the notion
of a learning algorithm by allowing certain types of queries as an interface to
some teacher [3]. Most standard learning frameworks can be captured in this
way. Here are some examples. Valiant’s well-known notion of PAC-learning can
be captured by an oracle that returns a new random sample from an unknown
distribution. Angluin’s well-known notion of exact learning [2,3] can be cap-
tured by an interaction with the so-called minimally adequate teachers, which
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can answer membership and equivalence queries. This has many applications in
verification, e.g., verification of parameterized systems [10,20,23] and composi-
tional verification [9]. Another learning framework that has become very popular
in verification is CEGIS (Counterexample Guided Inductive Synthesis) [21,27],
wherein a learning algorithm can ask equivalence queries, but expect various
types of “constraint-like” counterexamples (e.g. implication counterexamples)
to be returned by the teacher. This is of course in contrast to Angluin’s exact
learning setting, wherein the teacher may return only a positive/negative coun-
terexample (a point in the symmetric difference of the target concept and the
hypothesis).

In this paper, we study the problem of learning sets of points over the d-
dimensional integer lattice that can be expressed as a finite union of integer
(axis-aligned, a.k.a. rectilinear) hypercubes, i.e., whose edges are parallel to the
coordinate axes. Such a concept class of course forms a strict subclass of sets
of points that are definable by a formula ϕ(x1, . . . , xd) in the integer linear
arithmetic (a.k.a. semilinear sets), which have been addressed in several papers
including [1,17,28], whose PAC-learnability is as hard as PAC-learning boolean
formulas in DNF [16]—a long-standing open problem in learning theory—when
binary representations are permitted (even over dimension one [1]). That said,
finite unions of integer hypercubes are a concept class that naturally arises in
computer science. Below we mention a few examples.

The problem of learning rectangles (2-cube) and generalization to d-dimension
are a classic example in computational learning theory, e.g., see [16,22]. Maass
and Turán [22] showed for example that the d-dimensional rectilinear cubes can be
learned in polynomial-time with O(log n) queries, where the corners of the cubes
are represented in binary. The authors posed as an open problem if one can learn
a union of two (possibly overlapping) rectangles with only O(log n) equivalence
queries. Chen [11] showed that this can be learned with 2 equivalence queries and
O(d. log n) membership queries. Later Chen and Ameur [12] showed that there is
a polynomial-time algorithm using at most O(log2 n) queries. The same paper left
as an open problem if there is a polynomial-time exact learning algorithm that
learns finite unions of rectilinear cubes over a fixed dimension d. In this paper, we
answer this in the positive, and further show that this can be extended to allow infi-
nite rectilinear hypercubes, which in turn allow interesting applications in formal
verification, as we discuss below.

Finite unions of rectilinear cubes arise naturally in program analysis and ver-
ification. Here we mention two examples. First, solving games over a large game
graph has benefited from constraint-based approaches, where winning regions
can be succinctly represented and checked efficiently [6]. For example, the dis-
cretization of the Cinderella-Stepmother problem [6] admits winning regions
that may be represented by a union of a small number of cubes. Secondly, ver-
ification algorithms benefit from optimization techniques like monadic decom-
position [29], where the aim is the rewriting of a given quantifier-free SMT
formula ϕ(x1, . . . , xn) into an equivalent boolean combination of monadic pred-
icates ψ(xi) in some special form, i.e., typically in DNF [5,7,15,19], or by an
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if-then-else formula [29], which could sometimes be exponentially smaller than
the DNF equivalent representation. Veanes et al. [29] provided a generic semi-
decision procedure for performing this monadic decomposition as an if-then-else
formula, which works regardless of the base theory. The restriction of the prob-
lem to the quantifier-free theory of integer linear arithmetic (with and without
extra modulo constraints) was studied in [15], wherein the problem was shown to
be coNP-complete and a monadic decomposition could be exponentially large in
general. For the subcase without modulo constraints, a monadic decomposition
in DNF corresponds precisely to a finite union of (possibly infinite) rectilinear
hypercubes, which is the subject of this paper. We describe below how oracles
for memberships and equivalence (as well as more powerful queries like sub-
sets) admit a fast implementation via an SMT-solver, which enable our learning
algorithms to be applied to compute such a monadic decomposition.

Contributions. We study the problem of learning finite unions of rectilinear
hypercubes (over Z

d) in Angluin’s exact learning framework with membership
and equivalence queries [2,3]. Our result is a polynomial-time exact learning
algorithm for learning finite unions of rectilinear hypercubes over Z

d for fixed
d. This answers an open problem of [12]. As observed in [12], over non-fixed d,
this problem generalizes DNF since each term can be seen as a hypercube over
{0, 1}d. That is, without fixing d, the problem is as hard as learning unrestricted
DNF, which is well-known to be a major open problem in computational learning
theory [4].

In view of applying our learning algorithm to the monadic decomposition
problem [15,29] for quantifier-free integer linear arithmetic formulas, we con-
sider two extensions. Firstly, we allow infinite hypercubes. For example, over
1-dimension, these would include infinite intervals like [7,∞), which would cor-
respond to the formula x ≥ 7. Secondly, we observe that the subset query (i.e.
checking if the target concept includes a given finite union H of hypercubes)
is not an expensive query for performing monadic decomposition, i.e., it would
correspond to a single satisfiability check of a quantifier-free integer linear arith-
metic formula, which can be handled easily by an SMT-solver. Subset queries
belong to one of the standard types of queries in Angluin’s active learning frame-
work, e.g., see [3]. For this reason, we provide an optimization of our learning
algorithm by means of subset queries.

We implemented these learning algorithms (vanilla and various optimization
including subset queries and “unary/binary acceleration”), using Z3 [26] as the
backend for answering equivalence and subset queries (each a satisfiability check
of a quantifier-free formula). We have performed a micro-benchmarking to stress-
test our algorithms against the generic monadic decomposition procedure of
[29], which also use Z3 as the backend, using various geometric objects over
Z
d as benchmarks. Our experiments suggest that our algorithms substantially

outperform the generic procedure.

Organization. Preliminaries are in Sect. 2. We present the overshooting algorithm
that witnesses polynomial learnability of finite unions of rectilinear cubes over
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a fixed dimension d with membership and equivalence in Sect. 3. In Sect. 4, we
provide two extensions: (1) how subset queries could help speed up the over-
shooting algorithm, (2) how the algorithm could be extended to handle infinite
cubes. Applications to monadic decomposition and experiments are presented in
Sect. 5. We conclude in Sect. 6.

We refer the reader to the technical report [25] when proofs are omitted and
to the artifact [24] for implementation and benchmark details.

2 Preliminaries

We introduce below some common mathematical notations: N and Z are the
sets of natural numbers and integers, respectively. For a, b ∈ Z, we write [a, b] =
{i | a ≤ i ≤ b}; For any set X, we denote its power-set P(X) and its cardinal
|X| ∈ N�{∞}; Given two sets A,B, the symmetric difference is written AΔB =
A\B ∪ B\A;

When analyzing complexity of the presented algorithms, we assume binary
encoding for any number n ∈ Z, which is part of the input of the considered
algorithms, namely, size(n) = 1+�log(|n|+1)	, where log is the base 2 logarithm.

Hypercubes. For a fixed dimension d ∈ N, we consider the discrete lattice Z
d. A

point v ∈ Z
d can be described by its coordinates v[k] for k ∈ [1, d]. Let v[k/α]

denote the vector v where the i-th coordinate has been replaced by α ∈ Z. The
notation 0d = (0, . . . , 0) ∈ Z

d denotes the origin, or simply 0 when the dimension
is clear from context. We use standard notation for component-wise additions
and scalar multiplication. In particular, for α ∈ Z, v + α · v′ denotes the vector
v′′ ∈ Z

d such that for all i, v′′[i] = v[i] + α · v′[i]. For 1 ≤ i ≤ d, we write ei for
the i-th elementary vector, ei = 0[i/1]. We shall be mostly using the standard
component-wise order ≤ over vectors in Z

d: v ≤ v′ iff for all i, v[i] ≤ v′[i].
We finally denote the size of a vector as the sum of the sizes of its components:
size(v) =

∑d
i=1 size(v[i]), for any v ∈ Z

d.
Our main study focuses on rectilinear hypercubes (cubes for short), i.e., any

set of points of the form C = {v | v ≤ v ≤ v} for some v ≤ v ∈ Z
d. The

size of C is uniquely defined as size(C) = size(v) + size(v). On the contrary, an
arbitrary finite set X has no unique representation as a finite union of cubes,
therefore we define its size as the size of its best representation:

size(X) = min

{
n∑

i=1

size(vi) + size(vi)

∣
∣
∣
∣
∣

∃n,v1 . . .vn : X =
n⋃

i=1

Cube(vi,vi)

}

We adopt here a worst-case analysis approach, where our later reasoning and
complexity analysis are valid for any representation, they are in particular valid
for its best representation.
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Learning Model. We first recall some standard definition from computational
learning theory; for more, see [16]. Fix a countable base set D =

⋃n
i=1 Di, where

the sets Di’s are pairwise disjoint. The problem of learning boolean formulas in
DNF uses Di = {0, 1}i, i.e., the set of all binary sequences of length i, which can
be thought of as a set of all assignments to a boolean function over x1, . . . , xi.
The learning problem in this paper uses Di = Z

i. A concept X is simply a
subset of Di, for some i ∈ Z>0. For example, when Di = {0, 1}i, a concept is
simply a boolean function over x1, . . . , xi. When we speak of a learning problem,
we always have a fixed set of representations in mind. For example, when we
speak of learning boolean formulas in DNF (Disjunctive Normal Form), the
representation ϕX of a boolean function X has to be a formula over x1, . . . , xi in
DNF. For example, X could be a boolean function, whereas ϕX a DNF formula
representing X. Note that a concept could admit many possible representations.
A concept class C =

⋃∞
i=1 Ci is a set of concepts, where Ci ⊆ P(Di). For example,

Ci could be the set of boolean functions over variables x1, . . . , xi. When the set of
representations for C is fixed (e.g. DNF for representing boolean functions), we
could define size(X) of the concept X to be the size of the smallest representation
of X. In this paper, we are dealing with the concept class Cd ⊆ P(Zd) of sets of
integer points that can be represented as a finite union of rectilinear hypercubes
over Zd. Earlier in this section we have defined this concept, as well as the size of
the representation. To avoid notational clutter, we will often denote the concept
class Cd by C because our algorithm typically assumes that d is fixed.

In Angluin’s active learning framework [2,3], the learner has access to oracles
(a.k.a. teachers) that could provide hints about the target concept X to the
learner. A minimally adequate teacher must be able to answer membership and
equivalence queries.

Definition 1 (M+EQ Oracles). Consider some target concept X ∈ Cd for
some concept class C =

⋃∞
d=1 Cd and let ⊥, /∈ D be two fresh symbols.

– A membership oracle (M) for X is a function ΦX : Dd → {,⊥}, which
outputs  iff v ∈ X.

– An equivalence oracle (EQ) for X is a function ΨX : Cd → Dd � {} such
that for all hypothesis H ∈ C, ΨX(H) ∈ (HΔX) � {} and ΨX(H) = 
implies H = X.

Intuitively, an equivalence oracle tells, for any hypothesis H ∈ C, whether H =
X. If yes,  is returned; if not, it provides a counterexample, namely a point in
the symmetric difference. Angluin has considered other types of queries as well
in her framework including subset/superset queries and difference queries (e.g.
see her excellent survey [3]). We will use the subset queries in Sect. 4.

A learning algorithm A is said to learn the concept class C =
⋃∞

d=1 Cd if, given
d as input and any unknown target concept X, it terminates and outputs a rep-
resentation of X after a finite amount of interaction with the oracles. Assuming
that the oracle always returns the shortest counterexamples, its running time
is defined to be number of steps (measured in d and size(X)) that A takes to
output a representation of X. The complexity comp(d, size(X)) of A measures
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the number of steps taken in the worst case for all d and size(X). It runs in poly-
nomial time if comp is a polynomial function. It remains a long-standing open
problem in computational learning theory if there is a learning algorithm for
boolean formulas represented in DNF, which is true for almost all major models
including exact learning and PAC (see [4]). Over geometric concepts including
hypercubes and semilinear sets, the dimension d is sometimes considered a fixed
parameter, e.g., see [1,12,17,22].

3 Minimally Adequate Teacher

We restrict first our attention to the minimally adequate teacher setting where
only a membership and equivalence oracle are provided, and provide construc-
tions for intermediate procedures that can be interpreted as oracles.

3.1 Corner Oracle

At the heart of our learning algorithm is the concept of corners:

Definition 2. Given a set of points X ⊆ Z
d, a maximal corner (resp min-

imal corner) of X is a point v ∈ X maximal (resp minimal) with respect
to component-wise ordering ≤. We write Corners(X) and Corners(X) for the
sets of maximal and minimal corners, respectively, and write Corners(X) =
Corners(X) ∪ Corners(X).

Given a membership oracle for some X ∈ C containing 0, Algorithm 1 returns
some maximal corner of a given finite subset. Intuitively, for each coordinate i,
a binary search is made until a border of X is eventually found. More precisely,
we provide the following complexity analysis.

Algorithm 1. Binary search for a maximal corner, assuming 0 ∈ X

Ensure: Returned value is a maximal corner of X
Require: 0 ∈ X; ΦX a membership oracle for X

function findMaxCorner(ΦX)
i ← 0; v = 0
while i < d do

i ← i + 1; k ← 1; l ← 1;
if ΦX(v + ei) then

while ΦX(v + k · ei) do
l ← k; k ← 2k

while k − l > 1 do
if ΦX(v + �(k + l)/2� · ei) then

l ← �(k + l)/2�
else

k ← �(k + l)/2�
v ← v + l · ei; i ← 0

return v
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Proposition 1. Let ΦX be a membership oracle for X = ∪n
i=1Cube(vi,vi)

and assume 0 ∈ X. Then findMaxCorner(ΦX) terminates after
O

(∑n
j=1 size(vj)

)
queries and returns some v ∈ Corners(X).

This algorithm provides a partial implementation of the following oracle:

Definition 3. Given X ∈ C, a corner oracle for X is any function ΘX : X →
Corners(X) × Corners(X).

A complete implementation of this oracle is provided by noticing that mem-
bership oracles can easily be composed:

Remark 1. Assume ΦA and ΦB are two given membership oracles, respectively
for two arbitrary sets A and B, and f : Zd → Z

d. One can build membership
oracles for A ∪ B, A ∩ B, AΔB, A\B and f(A). In particular:

– By instantiating f : v �→ −v, the previous procedure applied on Φf(A) returns
some v ∈ Corners(−A), so −v ∈ Corners(A).

– For any v0 ∈ A and f : v �→ v − v0, Φf(A) is a membership oracle for
A−v0 = {v | v+v0 ∈ A} containing 0, so findMaxCorner(Φf(A)) returns
some v ∈ Corners(A − v0) so v + v0 ∈ Corners(A).

In both cases, notice that size(f(A)) ≤ size(A) + size(v0) ≤ 2size(A).

In the sequel we write ΦC for the membership oracle of any set C obtained by
composing sets whose oracles are provided. We also assume having constructed
the two procedures findMaxCorner(v, ΦX) and findMinCorner(v, ΦX).

3.2 Overshooting Algorithm

Algorithm 2 Overshooting algorithms
Require: ΦX membership oracle for X, ΨX equivalence oracle for X

function LearnCubes(ΦX ,ΨX)
H ← ∅
repeat

v ← ΨX(H)
H ← Refine(H,v, ΦX)

until v = �
function RefineSym(H,v, ΦX)

v ← findMinCorner(v, ΦXΔH)
v ← findMaxCorner(v, ΦXΔH)
return HΔCube(v,v)

function RefineAddRemove(H,v, ΦX)
if ΦX(v) then

v ← findMinCorner(v, ΦX\H)
v ← findMaxCorner(v, ΦX\H)
return H ∪ Cube(v,v)

else
v ← findMinCorner(v, ΦH\X)
v ← findMaxCorner(v, ΦH\X)
return H\Cube(v,v)

The core loop of the learning algorithm is presented in the LearnCubes func-
tion of Algorithm 2. The hypothesis is initially empty, and is later refined, as
long as a counterexample is returned. How to refine the hypothesis given a coun-
terexample? Two implementations of Refine are provided namely RefineSym
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and RefineAddRemove, giving rise to two variants of the algorithm. In both
cases, the refinement takes a counterexample as an input and uses the corner
oracle to build a cube C. In the former variant, a symmetric difference between
the current hypothesis and C is made, while in the latter, C is either added or
removed from the hypothesis.

(a) Step 1: add (b) Step 2: remove (c) Step 3: remove
counterexample v minimal corner v maximal corner v

search space hypothesis learned cube to add learned cube to remove

Fig. 1. Possible run of the overshooting algorithm on two cubes in 2 dimensions

An example run of the RefineAddRemove variant is depicted in Fig. 1.
While the above diagrams represent the search space used by the corner oracles,
the below diagrams depict the resulting hypothesis after refinement. Initially,
the hypothesis is empty (not represented) so the search space coincides with the
target set X, which can be represented as a union of two overlapping cubes.
A counterexample v ∈ X\H is therefore returned by the equivalence oracle.
As v ∈ X, the refinement procedure adds some cube by searching the state
space X\H = X around v. A too large cube is then added to the hypothesis,
and a negative counterexample v ∈ H\X is then returned. The search space
is now H\X and the algorithm aims at removing some smaller cube from the
hypothesis. After two removals, the final hypothesis coincides with the target.

Hypothesis Representation. Both variants are operating on the hypothesis by
applying boolean operations. One can naturally wonder if hypothesis represented
by union, symmetric differences and differences of cubes can be handled by
oracles operating on the concept class of finite cubes. As a matter of fact, we
will observe that HΔX, H\X and X\H can all be represented in C:

Lemma 1 (Cube intersection and subtraction). Let C1 = Cube(v1,v1)
and C2 = Cube(v2,v2) two cubes.

Then C1 ∩C2 is a cube and C2\C1 can be written as the disjoint union of 2d
cubes. Moreover, these computations are effective in 2d operations.

Intuitively, one can think of a cube subtracted by a smaller cube results in a
family of cubes, one for each face of the larger cube. There are 2d faces for a
cube in dimension d.
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3.3 Repetition-Free Complexity

In order to analyze the complexity of both variants of the algorithm, we fix a
finite target set X ∈ Cd and one of its representation as a union of cubes:

X =
n⋃

i=1

Cube(vi,vi)

We prove by induction on the iteration step that H can be expressed as a
union of cubes, whose corners are aligned on a particular set of points:

Definition 4 (Abstract grid). For 1 ≤ k ≤ d, we define the sets:

Bk = {vi[k] + 1 | 1 ≤ i ≤ C} ∪ {vi[k] | 1 ≤ i ≤ C}
Bk = {vi[k] | 1 ≤ i ≤ C} ∪ {vi[k] − 1 | 1 ≤ i ≤ C}

For any A ⊆ Z
d, we write A ∈ B whenever is a finite union of cubes of the form

Cube(v,v′) such that for all k, v[k] ∈ Bk and v′[k] ∈ Bk.

Intuitively, Bk (resp Bk) describes all the possible k-coordinate for minimal
corners (resp maximal). A coordinate for a max corner, i.e. a constraint of the
form xk ≤ α, can become a coordinate for a minimal corner, i.e. a constraint of
the form xk ≥ α+1, when taking the complement during a difference operation,
and vice versa.

We observe that B is stable by union, intersection and difference. In particu-
lar, the overshooting algorithms maintain H ∈ B, namely the hypothesis always
has minimal (resp maximal) corners that align with Bk (resp Bk) on the k-th
coordinate. Figure 2 provides an example of such points for a target made of the
union of two cubes.

Fig. 2. Possible minimal and maximal corners for cubes appearing in the hypothesis,
for a given target space

Since the sets Bk and Bk are of size at most 2n for every k, there are at
most (2n)2d possible cubes, polynomial for a fixed d. Assuming H ∈ B, we can
ensure that Lemma 1 maintains a polynomial representation of the hypothesis
throughout the algorithm until termination.

Although B is of polynomial size, proving H ∈ B is not sufficient to prove
termination of the algorithm in polynomial time, especially if some cubes in B
are added and removed several times. Consider for example Fig. 3 which depicts a
possible run of the algorithm on three aligned cubes by its successive hypotheses:
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A

B

C

∅

Fig. 3. Possible run on three cubes where cube B is added twice to the hypothesis.

cube B is added during the first step, but is later covered when the algorithm tries
to learn A but overshoots. Another overshooting happens when trying to remove
the space between A and B, which ends up removing all space between A and
C. The cube C has then to be learned a second time, terminating the algorithm.

To circumvent this issue, we propose an optimization that prevents visit-
ing twice the same minimal corner v. We base our reasoning on the following
observations:

– If v ∈ X, then v ∈ X, so v should not be later removed.
– If v /∈ X, then v /∈ X, so v should not be later added back to H.

Algorithm 3 introduces an optimized refinement procedure to keep track of
the already added maximal corners. Although an analogous optimization can
be done on the symmetric difference variant, we only discuss here RefineAd-
dRemove2.

Once a minimal corner v for a candidate cube has been found, we continue
the search of a maximal corner v by avoiding points that will result in the
removal (resp addition) of already added (resp removed) minimal corners.

Algorithm 3. Optimized refinement avoiding visited minimal corners
Let V ← ∅
function RefineAddRemove2(H,ve, ΦX)

if ΦX(ve) then
Let v = findMinCorner(ve, ΦX\H)
Let v = findMaxCorner(v, ΦX\H\{v | ∃v′∈V :v≤v′≤v})
V ← V 	 {v}
return H ∪ Cube(v,v)

else
Let v = findMinCorner(ve, ΦH\X)
Let v = findMaxCorner(v, ΦH\X\{v | ∃v′∈V :v≤v′≤v})
V ← V 	 {v}
return H\Cube(v,v)

Notice how only the maximal corner search benefits from the optimization,
by tracking down minimal corners only. As a matter of fact, one could store
the whole visited cubes in set V . However, when a search for maximal corner is
carried, the resulting cube will intersect a previously visited cube as soon as the
max corner crosses the minimal corner of the visited cube.
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We exploit again Remark 1 to build an oracle for every mentioned member-
ship oracle. Since V is a finite set, one can indeed build a membership oracle
for the set {v | ∃v′ ∈ V \X : v ≤ v′ ≤ v}. Due to this exclusion region, a finer
analysis has to be conducted to prove H ∈ B.

Lemma 2. The two optimized variants maintain the following invariants:

1. V ∩ X ⊆ H;
2. (V \X) ∩ H = ∅;
3. for all v ∈ V , and any k, v[k] ∈ Bk;
4. H ∈ B.

Properties 1 and 2 ensure that every v added to V is never added twice.
These also ensures correctness of the algorithm: remark that the search for a
maximal corner is not started from the initial counterexample ve but from v,
which is indeed is in the search space since v /∈ {v | ∃v′ ∈ V : v ≤ v′ ≤ v} (no
point added twice to V ). Finally, property 3 ensures that only elements of (Bk)k
are added to V , hence a maximal number of (2n)d additions.

Proof. At the beginning of the algorithm, V = H = ∅, satisfying all given
properties. We prove the result by induction on the iteration step:

1. By definition of corner oracles, namely FindMaxCorner, if v ∈ X has been
added to V during some previous iteration, it was added in the first branch
(the oracle returns some point in the search region, which excludes X in
the second branch). Therefore, it was also added to H during this iteration.
Consider some later iteration removing elements from H, namely an iteration
executing the second branch. Some cube C = Cube(v′,v′) has been computed
by the corner oracles in this branch such that v′ ∈ H\X\{v | ∃v′ ∈ V : v′ ≤
v′ ≤ v} In particular, since v ∈ V , we do not have v′ ≤ v ≤ v′ hence v /∈ C
and v is not removed.

2. Similar to (1) (symmetric case).
3. For every v added to V , it was produced by a (max) corner query made

on X\H or H\X. Both of these sets are in B since H ∈ B by induction
hypothesis.

4. Let us prove that the cube C = Cube(v,v) currently added or removed
satisfies C ∈ B (hence H ∪ C,H\C ∈ B which will conclude the induction).
We already have proven that v ∈ (Bk)k. We prove now that v ∈ (Bk)k which
is searched over the restricted state space B = A\{v | ∃v′ ∈ V : v ≤ v′ ≤ v}
for A = X\H ∈ B or A = H\XB.
For any k ∈ [1, d], v + ek /∈ B so either:

– v + ek /∈ A ∈ B so v[k] ∈ Bk;
– or v + ek ∈ {v | ∃v′ ∈ V : v ≤ v′ ≤ v} but since v is not in the set,

there exists v′ ∈ V such that v[k] + 1 = v′[k]. Since v′[k] ∈ Bk, we have
v[k] ∈ Bk.

This concludes the proof.

By combining Proposition 1 and Lemma 2, we summarize the complexity of
our overshooting algorithms for a particular target X = ∪n

i=1Cube(vi,vi) ∈ Cd.
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Theorem 1 (M+EQ). Both variants of LearnCubes terminates in at most
(2n)d iterations, where an iteration requires:

1. One equivalence query;
2. One corner query, or equivalently, a linear number O(size(X)) of membership

queries.

This algorithm terminates in polynomial time, for fixed d, in any represen-
tation of target X. In particular, the result holds in the worst-case where the
representation of X as a finite union of cubes is minimal. As a matter of fact
the presented exponential bound in d is tight: there exists a target X ∈ C and
a pair of corner and equivalence oracles such that both algorithms terminate in
exponential time.

(a) Overshooting (b) Remove plane x1 = 2 (c) remove plane x2 = 2

(d) Remove cube (e) Remove cube

Fig. 4. exponential blow-up, case d = 2

Example 1. Consider X = {0,
∑d

i=1 2ei} composed of two cubes, then by learn-
ing Cube(0,

∑d
i=1 2ei), then removing every middle plane of equation xk = 1 for

every k ∈ [1, d], the resulting hypothesis is composed of 2d − 2 cubes to remove.
An example with d = 2 is depicted in Fig. 4.

Whether finite unions of cubes can be learned in polynomial time in the dimen-
sion is left as an open problem, that we relate to DNF formula learning over
d variables where each term can be interpreted as a cube over {0, 1}d.

4 Extensions

In this section we introduce extensions to the overshooting algorithm from
Sect. 3.2. While membership and equivalence queries are sufficient for learning
finite sets, one natural extension of the minimal learner setting is to introduce
a subset oracle [3]:

Definition 5 (Subset Oracle). Consider some target concept X ∈ Cd for some
concept class C =

⋃∞
d=1 Cd and let ⊥, /∈ D be two fresh symbols.

A subset oracle (SUB) for X is a function ρX : Cd → {,⊥}, which outputs
 iff H ⊆ X.
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The definition is similar to the membership oracle from Definition 1 except the
oracle takes a set instead of a single point as input.

4.1 Maximal Cube Oracle

As opposed to the overshooting algorithm, using a subset oracle avoids the over-
shooting issue, that is to say, we can now search for cubes included in the tar-
get X. In order to increase the convergence speed, we nonetheless introduce a
maximality criterion on the suitable cubes:

Definition 6 (Maximal Cubes). A cube Cube(v,v) is maximal w.r.t. X if

1. Cube(v,v) ⊆ X
2. For all i, Cube(v,v + ei) �⊆ X
3. For all i, Cube(v − ei,v) �⊆ X

Figure 5 provides examples of possible maximal cubes in dimension d = 2.

(a) 4 maximal cubes when n = 2

. . .

(b) n(n+ 1)/2 maximal cubes

Fig. 5. Example of maximal cubes w.r.t. to a union of n cubes

Next, we modify the corner oracle from Sect. 3.1 to use subset queries. Again,
we only define the algorithm to find a max corner, the min corner algorithm can
be implemented analogously. The algorithm first computes a lower and upper
bound for the subsequent binary search. The computation is shown in the func-
tion computeMaxBounds. Given a cube defined by its minimal and a maximal
corner, the value of coordinate i is increased as long as the resulting cube is still
a subset of the target set X. The upper bound v is the first negative reply by
the oracle and the lower bound v the last positive response. A binary search is
made on v and v in the findMaxIncCorner function.

4.2 Maximal Cube Algorithm

Algorithm 5 presents a procedure that iteratively refines the hypothesis: for any
point, the algorithm searches for a maximal cube contained by this point w.r.t.
the target and adds it to the hypothesis. One can check that both procedure
calls are valid, as H ⊆ X is an invariant. At every iteration the counterexample
v satisfies v ∈ X \ H. The use of the subset oracle ensures that the function
FindMaxIncCorner always returns a point v such that Cube(v,v) ⊆ X.
Similarly, the function FindMinIncCorner always returns a corner v such that
Cube(v,v) ⊆ X. The resulting cube is then added to the hypothesis, ensuring
point v is never visited again as a counterexample. This entails the termination
of the algorithm, in at most |X| iteration of the main loop. A better bound will
be explored in Sect. 4.4.
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Algorithm 4. Maximal corner of a maximal cube, in O(size(X)) subset queries
Ensure: Returned value is a maximal corner of X

function findMaxIncCorner(v,v, ρX)
for i ∈ [1, d] do

(b, b) = computeMaxBounds(v,v, i, ρX)
while b 
= b do

m ← (b + b) ÷ 2
if ρX(Cube(v,v[i/m])) then

b ← m
else

b ← m
v[i] ← b

return v
function computeMaxBounds(v,v, i, ρX)

δ ← 1
while ρX(Cube(v,v + δ · ei)) do

δ ← 2 · δ
return (v[i] + δ/2,v[i] + δ)

Algorithm 5. The maximal cube algorithm
function LearnMaxCube(ρX , ΨX)

Let H ← ∅
while (v ← ΨX(H)) 
= � do

Let v ← findMaxIncCorner(v,v, ρX)
Let v ← findMinIncCorner(v,v, ρX)
H ← H ∪ Cube(v,v)

4.3 Extension to the Infinite Case

We discuss now one possible extension to the infinite case, namely when cubes
are possibly unbounded and may contain infinitely many points.

We adapt our learning formalism to deal with infinite bounds: for the remain-
der of the section we extend the discrete lattice Z

d to (Z � {+∞,−∞})d

and extend trivially ≤ over the newly introduced points. For v,v ∈ (Z �
{+∞,−∞})d, the definition of C = Cube(v,v) remains unchanged, in particu-
lar C ⊆ Z

d but may be infinite. The concept class C, hence the domain of oracle
functions, is augmented with all finite unions of cubes with (possibly) infinite
bounds.

A possible approach to tackle this problem in the minimally adequate teacher
(M+EQ) formalism consists in running the overshooting algorithm of Sect. 3 on
the state space restricted to some cube of width 2k centered in 0 and gradually
increase k if counterexamples outside this restriction are found. This method is
discussed in the extended version of the present article [25] but we focus here on
a LearnMaxCube adaptation exploiting subset queries (SUB+EQ).

While Algorithm 5 remains unchanged, we need however to adjust the func-
tions FindMaxIncCorner and FindMinIncCorner as those are not able
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to accelerate the search to infinity. Algorithm 6 achieves this goal by simply
overriding the ComputeMaxBounds and ComputeMinBounds subroutines
in order to check for possible +∞ and −∞ bounds. Whenever such bound is
returned, no further binary search occurs for this coordinate (constant time).

Algorithm 6. Maximal bound overriding, checking for +∞.
function computeMaxBounds(v,v, i, ρX)

if ρX(Cube(v,v[i/ + ∞])) then
return (+∞, +∞)

else � We refer to original ComputeMaxBounds of Algorithm 4
return Super.ComputeMaxBounds(v,v, i, ρX)

4.4 Complexity

Termination of LearnMaxCube was proved using cardinality arguments
in Sect. 4.1. These arguments obviously don’t apply in the case where the target
set is infinite. Moreover, we are interested in finer complexity analysis.

As in Sect. 3.3, we fix a target representation X = ∪n
i=1Cube(vi,vi) and

study the algorithm complexity with respect to
∑n

i=1 size(vi) + size(vi) ∈ Cd.
As some of the vectors v may contain infinite coordinates, we carefully specify
size(+∞) = size(−∞) = 1 and keep the usual definition of size(v).

Theorem 2 (SUB+EQ). LearnMaxCube terminates in at most n2d iter-
ations, where an iteration requires:

1. One equivalence query;
2. One maximal cube query, or equivalently, a linear number O(size(X)) of sub-

set queries.

Proof. At every iteration, one equivalence query is performed then FindMax-
IncCorner and FindMinIncCorner perform a binary search, resulting in a
linear number of subset similar (proof similar to Proposition 1).

In order to analyze the number of iterations of the main loop, let us first
remark that each added maximal cube is added only once: if we write vk the
k-th counterexample and Ck the learned maximal cube, then vk+1 ∈ X\∪k

i=1 Ci

and vk+1 ∈ Ck+1 so Ck+1 �= Ci for every i ∈ [1, k].
The number of iterations is therefore bounded by the number of max-

imal cubes. We proceed now to bound the number of maximal cubes: Let
C = Cube(v,v) be a maximal cube w.r.t. X. For any k ∈ [1, d] there exist
i, j ∈ [1, n] such that v[k] = vi[k] and v[k] = vj [k], hence at most n2 possibili-
ties for coordinate k.

As in Theorem 1 the number of iterations is polynomial in the number of
cubes n but exponential in the dimension d. As opposed to the LearnCubes
algorithm, the bound is not tight as the example Fig. 5b provides only a quadratic
number of maximal number of cubes. As the maximal cube concept can be
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related to the notion of prime implicant, examples of DNF formula with an
exponential of prime implicants (see for example [8]) can be translated into
union of cubes with an exponential number of maximal 0–1 cubes.

From a practical perspective, one can nonetheless argue that LearnMax-
Cube is likely to perform well in practice, by avoiding the overshooting problem
mentioned in Example 1 as H ⊆ X is an invariant. In fact, one can easily check
that if there are no adjacent1 cubes, the number of iterations becomes linear.

5 Applications and Experiments

In this section, we describe an immediate application of our learning algorithms
to monadic decomposition of quantifier-free Presburger formulas [15,29]. We
then report on experimental comparisons between our algorithms and existing
methods for the problem.

5.1 Application to Monadic Decomposition

Here we consider quantifier-free linear integer arithmetic formulas without mod-
ulo arithmetic:

ϕ ::=α1 ∼ α2 | ϕ ∧ ϕ | ϕ ∨ ϕ,

where ∼ ∈ {≤,≥,=}, and α1, α2 are integer linear combinations of the variables
x1, . . . , xn, i.e., αi is of the form c0+

∑n
j=1 cj .xj , where each ci ∈ Z. The formula

ϕ(x̄) is said to be satisfiable (written 〈Z; +〉 |= ϕ) if there exists an assignment
σ of x̄ to Z such that the formula becomes true. Of course, this is just a simple
fragment of the first-order theory of integer linear arithmetic and the notion
of 〈Z; +〉 |= ϕ can be defined in the same way even with quantifiers [14,18].
A formula ϕ is said to be monadic if it has only one variable. Every monadic
formula ϕ(x) in this fragment can be easily transformed into a union integer
intervals of the form: (1) l ≤ x ∧ x ≤ u where l, u ∈ Z, (2) l ≤ x where l ∈ Z, (3)
x ≤ u where u ∈ Z, or (4)  or ⊥.

A monadic decomposition [29] of a formula ϕ(x̄) is a boolean combination
ψ(x̄) of monadic formulas that is equivalent to ϕ over the theory, i.e., 〈Z; +〉 |=
∀x̄(ϕ ↔ ψ). Of course, not all formulas admit a monadic decomposition (e.g., x =
y). It was shown in [15] that deciding if a formula in the theory be monadically
decomposable is coNP-complete2. Veanes et al. [29] provides a generic semi-
decision procedure for computing a monadic decomposition of a quantifier-free
formula as an if-then-else formula that is applicable to pretty much all theories
considered in SMT. Despite its genericity, the procedure runs rather well, e.g.,
as the authors showed on their benchmarking in [29].

1 Two cubes C1 and C2 are adjacent if min
{∑

i |v1[i] − v2[i]
∣
∣ | v1 ∈ C1,v2 ∈ C2

} ≤ 1.
2 The proof in [15] uses modulo constraints to show that monadic decomposition of a

two-variable formula ϕ(x, y) is coNP-complete. Modulo constraints could be easily
removed by allowing more integer variables.
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The application of our learning algorithms to computing monadic decom-
position arises from the following observation. Since each monadic decompo-
sition can be transformed into DNF, a monadic decomposition of a formula
ϕ(x̄) over 〈Z; +〉 can be constructed as a finite union of (possibly infinite)
hypercubes, where an infinite hypercube arises when a variable is either not
bounded from above or not bounded from below (or both). Conversely, a finite
union H of possibly infinite hypercubes can also be easily transformed into
a boolean combination of monadic formulas ϕH . For example, the formula
(0 ≤ x ≤ 5 ∧ 3 ≤ y ≤ 10) ∨ (8 ≤ x) corresponds to the union of hypercubes
Cube((0, 3), (5, 10))∪ Cube((8,−∞), (+∞,+∞)). Furthermore, all relevant ora-
cles admit a straightforward implementation:
– A membership query v̄ requires checking 〈Z; +〉 |= ϕ(v̄), which can be checked

in polynomial-time because ϕ is quantifier-free.
– An equivalence query H can be reduced to checking

〈Z; +〉 |= (ϕH ∧ ¬ϕ) ∨ (ϕ ∧ ¬ϕH).

This is a single satisfiability check of quantifier-free integer-linear arithmetic
formula, for which highly-optimized solvers exist (e.g., Z3 [26]).

– A subset query H can similarly be reduced to checking

〈Z; +〉 |= (ϕH ∧ ¬ϕ).

This is also a single satisfiability check over 〈Z; +〉.
This allows us to apply both of our learning algorithms to the problem.

Monadic decomposition has numerous applications including quantifier elimi-
nation [29], string solving [15], and symbolic finite automata/transducers [13,29],
among others. In the following example we illustrate how our learning algo-
rithm(s) could be applied to improving quantifier elimination for the theory of
linear integer arithmetic.
Example 2. Consider a formula of the form ∀x̄∃y ϕ(x̄, ȳ), where ϕ is a formula in
linear integer arithmetic without modulo constraints. Suppose that ϕ is monad-
ically decomposable, and is equivalent to the formula

∨n
i=1 Di(x̄, ȳ), where each

Di is a disjunction of monadic predicates over the variables x̄∪ ȳ. We assume
w.l.o.g. that each Di is satisfiable. Then, this formula is equisatisfiable (over
linear integer arithmetic) to ψ := ∀x̄ (

∨n
i=1 Di(x̄, c̄i)) , where ȳ in Di are replaced

by fresh constants c̄i (i.e. two distinct Di,D
′
i use different constants). This can

be proven by a simple application of skolemization, and observing that each
occurrence of f(x̄) in any disjunct is of the form a < f(x̄) < b, where a ∈
{−∞} ∪ Z and b ∈ Z ∪ {∞}, implying that f(x̄) can be replaced by a single
constant, which does not depend on x̄. Finally, let D′

i be the conjuncts in Di only
involving variables in x̄. Checking that ψ is true reduces to checking satisfiability
of

∧n
i=1 ¬D′

i.
To make this example concrete, we consider the formula ∀x∃y(x ≥ 0 →

x + y ≥ 5 ∧ y ≥ 0). A monadic decomposition of the quantifier-free part is
x < 0 ∨ ∨5

i=0(x ≥ i ∧ y ≥ 5 − i). Therefore, checking the above formula can be
reduced to satisfiability of x ≥ 0 ∧ ∧5

i=0 x < i which is not satisfiable.
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5.2 Experiments

In order to assess the performance of the algorithms FindMaxCorner and
FindMinCorner respectively introduced in Sect. 3 and Sect. 4, we consider
prototype implementations. The following prototypes and experiments can be
found in [24].

Variants. Although the methods were presented with binary search strategies
in mind, we also implemented a more naive unary search procedure to obtain
the corners. As later noticed in the experiments, unary search may be preferred
for very small cubes and performs especially well for cubes which are based 0–
1 integer programs, while binary search achieves better performance for larger
cubes. Consequently, we refer to a third variation of the algorithm called “opti-
mized”, combining unary search for small instances and binary search for large
values. More precisely two variants of the overshooting algorithm from Sect. 3
and three variants of the max cubes algorithm from Sect. 4 are presented, called
respectively overshoot unary and overshoot binary and max unary, max binary
and max optimized.

Tool Comparison. Evaluation is performed against a generic monadic decom-
position procedure mondec1 from [29] by Veanes et al., which works over an
arbitrary base theory and outputs an if-then-else formula, which could be expo-
nentially more succinct than a formula in DNF. The algorithm, which exploits
the python-Z3 framework [26], uses a kind of a decision tree search heuristics to
split the input into monadic predicates.

Implementation. Similarly to mondec1, our prototype is implemented in python
using the python-Z3 framework, but is specialized in handling linear integer
arithmetic formula, and that outputted formulas will be in DNF, unlike mondec1.
For monadic decomposition applications, oracles queries are converted to appro-
priate Z3 satisfaction queries since a (possibly non-monadic) representation of
the target set is already known.

(a) 50 overlapping cubes and the diagonal
x+ y = 50.

(b) 100 big Cubes.

Fig. 6. Benchmarks for Z
2.
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5.3 Benchmark Suite

Our benchmark suite is restricted to the problem of monadic decomposition of
linear integer arithmetic, and its purpose is to stress-test our learning algorithms
and mondec1 against various kinds of “extreme conditions”. The suite consists
of six classes of monadically decomposable example formulas, which were con-
structed to test five features (see below). Note that the given formulas themselves
might contain non-monadic predicates.

Table 1. Features of conducted benchmarks. A “+”
(resp. “-”) indicates a high (resp. low) presence of a
feature.

Overlap # Cubes |Cube| Dimension Unbounded

(a) + + − − −
(b) + − − + −
(c) + + − − −
(d) + + + − −
(e) − + − − −
(f) + + + − +

The five features (left to
right in Table 1) represent the
presence of (1) a large amount
of cube overlaps, (2) a large
number of cubes, (3) a large
cube, (4) large dimension, and
(5) an unbounded cube. We
hypothesized that these five
features play important roles
in how fast the algorithms
perform, which are indeed
validated in our experimental
results. The six classes of formulas are elaborated below.

(a) K Diagonal Restricted consists of K overlapping cubes of length and width
2 and one diagonal as shown in Fig. 6a. The cubes overlap with at most two
other cubes and stack up diagonally. The algorithms need to return all the
cubes left of the diagonal.

(b) 10 cubes in Z
d consists of K = 10 overlapping cubes of size 2d stacking up

diagonally similar to the benchmark K Diagonal Restricted without diagonal
restriction.

(c) K Diagonal Unrestricted is a variation of Fig. 6a where the algorithms need
to return all the cubes and all the points on the diagonal.

(d) K Big Overlapping Cube is a benchmark testing large cubes as depicted
in Fig. 6b. It consists of K overlapping cubes of length and width 100 and
are overlapping and stacking up diagonally like the benchmark K Diagonal
Restricted.

(e) K Diagonal is built as the set of points along the diagonal x = y ≤ K.
(f) Example 2 is generalized to any K ∈ N by x ≥ 0 → x + y ≥ K ∧ y ≥ 0. Its

unbounded nature makes it tractable by max optimized and mondec1 only.

5.4 Results

Experiments were conducted on an AMD Ryzen 5 1600 Six-Core CPU with
16 GB of RAM running on Windows 10. The results are summarized in Fig. 7
where each graph represents one benchmark comparing the run times of each
algorithm.
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(a) Benchmark on K Diagonal Re-
stricted in Z

2.
The x-axis encodes the amount of
cubes K.
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(b) Benchmark on 10 cubes in Z
d.

The x-axis encodes the dimension d.
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(c) Benchmark on K Diagonal Unre-
stricted in Z

2.
The x-axis encodes the amount of
cubes K.
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(d) Benchmark on K Big Cubes in Z
2.

The x-axis encodes the amount of
cubes K.
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0
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(e) Benchmark on K Diagonal in Z
2.

The x-axis encodes the maximal value
for x and y.

50 100150200250300350400450500
0

200

(f) Benchmark on Example 2 in Z
2.

The x-axis encodes parameter K.

overshooting unary overshooting binary maxcube unary
maxcube binary maxcube optimized mondec1

Fig. 7. Benchmark results. The y-axis encodes the time in seconds. The timeout is set
to1800 s.
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The overshooting phenomenon can be observed in Fig. 7c and Fig. 7e with
its quadratic shape, as d = 2. In Fig. 7b, the running time quickly diverges as d
increases, as anticipated by Example 1.

When the considered cubes are small, as in Fig. 7a and Fig. 7c, the unary
search algorithms outperform their binary counterparts, meaning the few addi-
tional queries made by the binary search are more costly than a direct enumer-
ation. The optimized variant is therefore a good compromise in all cases.

Figure 7d depicts a benchmark with many large cubes for a fixed dimension.
While the impact of the overshooting phenomenon remains contained, the max-
cube unary search variant is particularly slow. This can be explained by the
size of the cubes making unary search inefficient, combined with the already
expensive cost of every single inclusion query.

The mondec1 algorithm is comparable to the overshooting algorithms in
Fig. 7e. It also performs particularly well in Fig. 7f, which we conjecture is due
to the conciseness of the solution in if-then-else form used by mondec1.

Overall, the maxcube algorithm in its optimized form is the most stable
algorithm for this benchmark set and should be preferred when an inclusion
oracle is available. The extra cost of these queries are here taken into account
and remain affordable when implemented with Z3 queries.

6 Conclusion and Future Work

We have presented a polynomial-time algorithm in Angluin’s exact learning
framework using membership and equivalence for learning a finite union of rec-
tilinear cubes over Z

d over any fixed dimension d. By considering an additional
subset oracle, learning possibly infinite cubes can be achieved with the same com-
plexity, but a simpler and faster learning algorithm in practice. The technique
enables the introduction of auxiliary oracles, namely the corner (resp. maximal
cube) oracle when a membership (resp. subset) oracle is provided. While ora-
cles for subset queries tend to be difficult to implement, this turns out not to
be the case for our proposed application of computing monadic decompositions
of quantifier-free integer linear arithmetic formulas without modulo constraints,
which is successfully solved by our algorithm.

We mention three future research directions. First, extensions to modulo
operations could be explored, by encoding periodicity on d additional coordi-
nates and providing adequate oracles on the encoded target. A second direc-
tion consists in applying these learning techniques to the verification of systems
by learning invariants which are monadically decomposable in a small num-
ber of cubes. Lastly, one promising direction to further improve our algorithms
is to investigate how to leverage if-then-else formula representations as used in
mondec1 [29], which could be exponentially more succinct than formulas in DNF.
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