
Causality-Based Game Solving

Christel Baier1 , Norine Coenen2 , Bernd Finkbeiner2 , Florian Funke1 ,
Simon Jantsch1 , and Julian Siber2(B)

1 Technische Universität Dresden,
Dresden, Germany

{christel.baier,florian.funke,
simon.jantsch}@tu-dresden.de

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{norine.coenen,finkbeiner,julian.siber}@cispa.de

Abstract. We present a causality-based algorithm for solving two-
player reachability games represented by logical constraints. These games
are a useful formalism to model a wide array of problems arising, e.g.,
in program synthesis. Our technique for solving these games is based on
the notion of subgoals, which are slices of the game that the reachabil-
ity player necessarily needs to pass through in order to reach the goal.
We use Craig interpolation to identify these necessary sets of moves and
recursively slice the game along these subgoals. Our approach allows us
to infer winning strategies that are structured along the subgoals. If the
game is won by the reachability player, this is a strategy that progresses
through the subgoals towards the final goal; if the game is won by the
safety player, it is a permissive strategy that completely avoids a sin-
gle subgoal. We evaluate our prototype implementation on a range of
different games. On multiple benchmark families, our prototype scales
dramatically better than previously available tools.

1 Introduction

Two-player games are a fundamental model in logic and verification due to their
connection to a wide range of topics such as decision procedures, synthesis and
control [1,2,6,7,11,21]. Algorithmic techniques for finite-state two-player games
have been studied extensively for many acceptance conditions [20]. For infinite-
state games most problems are directly undecidable. However, infinite state
spaces occur naturally in domains like software synthesis [34] and cyber-physical
systems [23], and hence handling such games is of great interest. An elegant clas-
sification of infinite-state games that can be algorithmically handled, depending

This work was partially supported by DFG grant 389792660 as part of TRR 248
– CPEC, see https://perspicuous-computing.science, the Cluster of Excellence EXC
2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), DFG-
projects BA-1679/11-1 and BA-1679/12-1, the Research Training Group QuantLA
(GRK 1763), and by the European Research Council (ERC) Grant OSARES (No.
683300).

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 894–917, 2021.
https://doi.org/10.1007/978-3-030-81685-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_42&domain=pdf
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0003-2066-1511
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0001-7301-1550
http://orcid.org/0000-0003-1692-2408
http://orcid.org/0000-0003-0842-0029
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-81685-8_42


Causality-Based Game Solving 895

on the acceptance condition of the game, was given in [14]. The authors assume a
symbolic encoding of the game in a very general form. More recently, incomplete
procedures for solving infinite-state two-player games specified using logical con-
straints were studied [4,18]. While [4] is based on automated theorem-proving
for Horn formulas and handles a wide class of acceptance conditions, the work
in [18] focusses on reachability games specified in the theory of linear arithmetic,
and uses sophisticated decision procedures for that theory.

In this paper, we present a novel technique for solving logically represented
reachability games based on the notion of subgoals. A necessary subgoal is a
transition predicate that is satisfied at least once on every play that reaches
the overall goal. It represents an intermediate target that the reachability player
must reach in order to win. Subgoals open up game solving to the study of cause-
effect relationships in the form of counterfactual reasoning [28]: If a cause (the
subgoal) had not occurred, then the effect (reaching the goal) would not have
happened. Thus for the safety player, a necessary subgoal provides a chance to
win the game based on local information: If they control all states satisfying
the pre-condition of the subgoal, then any strategy that in these states picks a
transition outside of the subgoal is winning. Finding such a necessary subgoal
may let us conclude that the safety player wins without ever having to unroll
the transition relation.

On the other hand, passing through a necessary subgoal is in general not
enough for the reachability player to win. We call a subgoal sufficient if indeed
the reachability player has a winning strategy from every state satisfying the
post-condition of the subgoal. Dual to the description in the preceding para-
graph, sufficient subgoals provide a chance for the reachability player to win
the global game as they must merely reach this intermediate target. The two
properties differ in one key aspect: While necessity of a subgoal only considers
the paths of the game arena, for sufficiency the game structure is crucial.

We show how Craig interpolants can be used to compute necessary subgoals,
making our methods applicable to games represented by any logic that supports
interpolation. In contrast, determining whether a subgoal is sufficient requires a
partial solution of the given game. This motivates the following recursive app-
roach. We slice the game along a necessary subgoal into two parts, the pre-game
and the post-game. In order to guarantee these games to be smaller, we solve
the post-game under the assumption that the considered subgoal was bridged for
the last time. We conclude that the safety player wins the overall game if they
can avoid all initial states of the post-game that are winning for the reachability
player. Otherwise, the pre-game is solved subject to the winning condition given
by the sufficient subgoal consisting of these states. This approach does not only
determine which player wins from each initial state, but also computes sym-
bolically represented winning strategies with a causal structure. Winning safety
player strategies induce necessary subgoals that the reachability player cannot
pass, which constitutes a cause for their loss. Winning reachability player strate-
gies represent a sequence of sufficient subgoals that will be passed, providing
an explanation for the win. All missing proofs for our theoretical results can be
found in the full version of this paper [3].



896 C. Baier et al.

The Python-based implementation CabPy of our approach was used to com-
pare its performance to SimSynth [18], which is, to the best of our knowledge,
the only other available tool for solving linear arithmetic reachability games.
Our experiments demonstrate that our algorithm is competitive in many case
studies. We can also confirm the expectation that our approach heavily benefits
from qualitatively expressive Craig interpolants. It is noteworthy that like Sim-
Synth our approach is fully automated and does not require any input in the
form of hints or templates. Our contributions are summarized as follows:

– We introduce the concept of necessary and sufficient subgoals and show how
Craig interpolation can be used to compute necessary subgoals (Sect. 4).

– We describe an algorithm for solving logically represented two-player reacha-
bility games using these concepts. We also discuss how to compute represen-
tations of winning strategies in our approach (Sect. 5).

– We evaluate our approach experimentally through our Python-based tool
CabPy, demonstrating a competitive performance compared to the previ-
ously available tool SimSynth on various case studies (Sect. 6).

Related Work. The problem of solving linear arithmetic games is addressed
in [18] using an approach that relies on a dedicated decision procedure for quan-
tified linear arithmetic formulas, together with a method to generalize safety
strategies from truncated versions of the game that end after a prescribed number
of rounds. Other approaches for solving infinite-state games include deductive
methods that compute the winning regions of both players using proof rules [4],
predicate abstraction where an abstract controlled predecessor operation is used
on the abstract game representation [38], and symbolic BDD-based exploration
of the state space [15]. Additional techniques are available for finite-state games,
e.g., generalizing winning runs into a winning strategy for one of the players [31].

Our notion of subgoal is related to the concept of landmarks as used in
planning [22]. Landmarks are milestones that must be true on every successful
plan, and they can be used to decompose a planning task into smaller sub-tasks.
Landmarks have also been used in a game setting to prevent the opponent from
reaching their goal using counter-planning [32]. Whenever a planning task is
unsolvable, one method to find out why is checking hierarchical abstractions for
solvability and finding the components causing the problem [36].

Causality-based approaches have also been used for model checking of multi-
threaded concurrent programs [24,25]. In our approach, we use Craig interpo-
lation to compute the subgoals. Interpolation has already been used in similar
contexts before, for example to extract winning strategies from game trees [16]
or to compute new predicates to refine the game abstractions [10]. In [18], inter-
polation is used to synthesize concrete winning strategies from so called winning
strategy skeletons, which describe a set of strategies of which at least one is
winning.



Causality-Based Game Solving 897

2 Motivating Example

Consider the scenario that an expensive painting is displayed in a large exhibition
room of a museum. It is secured with an alarm system that is controlled via a
control panel on the opposite side of the room. A security guard is sleeping at
the control panel and occasionally wakes up to check whether the alarm is still
armed. To steal the painting, a thief first needs to disable the alarm and then
reach the painting before the alarm has been reactivated. We model this scenario
as a two-player game between a safety player (the guard) and a reachability
player (the thief) in the theory of linear arithmetic. The moves of both players,
their initial positions, and the goal condition are described by the formulas:

Init ≡ ¬r ∧ x = 0 ∧ y = 0 ∧ p = 0 ∧ a = 1 ∧ t = 0,

Guard ≡ ¬r ∧ r′ ∧ x′ = x ∧ y′ = y ∧ p′ = p

∧ ((t′ = t − 1 ∧ a′ = a) ∨ (t ≤ 0 ∧ t′ = 2)), (sleep or wake up)
Thief ≡ r ∧ ¬r′ ∧ t′ = t

∧ x + 1 ≥ x′ ≥ x − 1 ∧ y + 1 ≥ y′ ≥ y − 1 (move)
∧ (x′ �= 0 ∨ y′ �= 10 =⇒ a′ = a) (alarm off)
∧ (x′ �= 10 ∨ y′ �= 5 ∨ a = 1 =⇒ p′ = p), (steal)

Goal ≡ ¬r ∧ p = 1.

The thief’s position in the room is modeled by two coordinates x, y ∈ R with
initial value (0, 0), and with every transition the thief can move some bounded
distance. Note that we use primed variables to represent the value of variables
after taking a transition. The control panel is located at (0, 10) and the painting
at (10, 5). The status of the alarm and the painting are described by two boolean
variables a, p ∈ {0, 1}. The guard wakes up every two time units, modeled by
the variable t ∈ R. The variables x, y are bounded to the interval [0, 10] and t to
[0, 2]. The boolean variable r encodes who makes the next move. In the presented
configuration, the thief needs more time to move from the control panel to the
painting than the guard will sleep. It follows that there is a winning strategy for
the guard, namely, to always reactivate the alarm upon waking up.

Although it is intuitively fairly easy to come up with this strategy for the
guard, it is surprisingly hard for game solving tools to find it. The main obstacle
is the infinite state space of this game. Our approach for solving games repre-
sented in this logical way imitates causal reasoning : Humans observe that in
order for the thief to steal the painting (i.e., the effect p = 1), a transition must
have been taken whose source state does not satisfy the pre-condition of (steal)
while the target state does. Part of this cause is the condition a = 0, i.e., the
alarm is off. Recursively, in order for the effect a = 0 to happen, a transition
setting a from 1 to 0 must have occurred, and so on.

Our approach captures these cause-effect relationships through the notion of
necessary subgoals, which are essential milestones that the reachability player has
to transition through in order to achieve their goal. The first necessary subgoal
corresponding to the intuitive description above is



898 C. Baier et al.

C1 = (Guard ∨ Thief ) ∧ p �= 1 ∧ p′ = 1.

In this case, it easy to see that C1 is also a sufficient subgoal, meaning that all
successor states of C1 are winning for the thief. Therefore, it is enough to solve
the game with the modified objective to reach those predecessor states of C1

from which the thief can enforce C1 being the next move (even if it is not their
turn). Doing so recursively produces the necessary subgoal

C2 = (Guard ∨ Thief ) ∧ a �= 0 ∧ a′ = 0,

meaning that some transition must have caused the effect that the alarm is
disabled. However, C2 is not sufficient which can be seen by recursively solving
the game spanning from successor states of C2 to C1. This computation has an
important caveat: After passing through C2, it may happen that a is reset to
1 at a later point (in this particular case, this constitutes precisely the winning
strategy of the safety player), which means that there is no canonical way to
slice the game along this subgoal into smaller parts. Hence the recursive call
solves the game from C2 to C1 subject to the bold assumption that any move
from a = 0 to a′ = 1 is winning for the guard. This generally underapproximates
the winning states of the thief. Remarkably, we show that this approximation is
enough to build winning strategies for both players from their respective winning
regions. In this case, it allows us to infer that moving through C2 is always a
losing move for the thief. However, at the same time, any play reaching Goal
has to move through C2. It follows that the thief loses the global game.

We evaluated our method on several configurations of this game, which we
call Mona Lisa. The results in Sect. 6 support our conjecture that the room size
has little influence on the time our technique needs to solve the game.

3 Preliminaries

We consider two-player reachability games defined by formulas in a given logic
L. We let L(V) be the L-formulas over a finite set of variables V, also called state
predicates in the following. We call V ′ = {v ′ | v ∈ V} the set of primed variables,
which are used to represent the value of variables after taking a transition.
Transitions are expressed by formulas in the set L(V ∪ V ′), called transition
predicates. For some formula ϕ ∈ L(V), we denote the substitution of all variables
by their primed variant by ϕ[V/V ′]. Similarly, we define ϕ[V ′/V].

For our algorithm we will require the satisfiability problem of L-formulas to
be decidable and Craig interpolants [13] to exist for any two mutually unsat-
isfiable formulas. Formally, we assume there is a function Sat : L(V) → B

that checks the satisfiability of some formula ϕ ∈ L(V) and an unsatisfiability
check Unsat : L(V) → B. For interpolation, we assume that there is a function
Interpolate : L(V) × L(V) → L(V) computing a Craig interpolant for mutually
unsatisfiable formulas: If ϕ,ψ ∈ L(V) are such that Unsat(ϕ ∧ ψ) holds, then
ψ =⇒ Interpolate(ϕ,ψ) is valid, Interpolate(ϕ,ψ) ∧ ϕ is unsatisfiable, and
Interpolate(ϕ,ψ) only contains variables shared by ϕ and ψ.



Causality-Based Game Solving 899

These functions are provided by many modern Satisfiability Modulo Theories
(SMT) solvers, in particular for the theories of linear integer arithmetic and linear
real arithmetic, which we will use for all our examples. Note that interpolation is
usually only supported for the quantifier-free fragments of these logics, while our
algorithm will introduce existential quantifiers. Therefore, we resort to quantifier
elimination wherever necessary, for which there are known procedures for both
linear integer arithmetic and linear real arithmetic formulas [29,33].

In order to distinguish the two players, we will assume that a Boolean vari-
able called r ∈ V exists, which holds exactly in the states controlled by the
reachability player. For all other variables v ∈ V, we let D(v) be the domain
of v, and we define D =

⋃{D(v) | v ∈ V}. In the remainder of the paper, we
consider the variables V and their domains to be fixed.

Definition 1 (Reachability Game). A reachability game is defined by a tuple
G = 〈Init ,Safe,Reach,Goal〉, where Init ∈ L(V) is the initial condition, Safe ∈
L(V ∪ V ′) defines the transitions of player SAFE, Reach ∈ L(V ∪ V ′) defines the
transitions of player REACH and Goal ∈ L(V) is the goal condition.

We require the formulas (Safe =⇒ ¬r) and (Reach =⇒ r) to be valid.

A state s of G is a valuation of the variables V, i.e., a function s : V → D
that satisfies s(v) ∈ D(v) for all v ∈ V. We denote the set of states by S, and we
let SSAFE be the states s such that s(r) = false, and SREACH be the states s such
that s(r) = true. The variable r determines whether REACH or SAFE makes the
move out of the current state, and in particular Safe ∧ Reach is unsatisfiable.

Given a state predicate ϕ ∈ L(V), we denote by ϕ(s) the closed formula we
get by replacing each occurrence of variable v ∈ V in ϕ by s(v). Similarly, given
a transition predicate τ ∈ L(V ∪V ′) and states s, s′, we let τ(s, s′) be the formula
we obtain by replacing all occurrences of v ∈ V in τ by s(v), and all occurrences
of v′ ∈ V ′ in τ by s′(v). For replacing only v ∈ V by s(v), we define τ(s) ∈ L(V ′).
A trap state of G is a state s such that (Safe ∨Reach)(s) ∈ L(V ′) is unsatisfiable
(i.e., s has no outgoing transitions).

A play of G starting in state s0 is a finite or infinite sequence of states
ρ = s0s1s2 . . . ∈ S+ ∪ Sω such that for all i < len(ρ) either Safe(si, si+1) or
Reach(si, si+1) is valid, and if ρ is a finite play, then slen(ρ) is required to be
a trap state. Here, len(s0 . . . sn) = n for finite plays, and len(ρ) = ∞ if ρ is
an infinite play. The set of plays of some game G = 〈Init ,Safe,Reach,Goal〉
is defined as Plays(G) = {ρ = s0s1s2 . . . | ρ is a play in G s.t. Init(s0) holds}.
REACH wins some play ρ = s0s1 . . . if the play reaches a goal state, i.e., if there
exists some integer 0 ≤ k ≤ len(ρ) such that Goal(sk) is valid. Otherwise, SAFE
wins play ρ. A reachability strategy σR is a function σR : S∗SREACH → S such that
if σR(ωs) = s′ and s is not a trap state, then Reach(s, s′) is valid. We say that
a play ρ = s0s1s2 . . . is consistent with σR if for all i such that si(r) = true
we have si+1 = σR(s0 . . . si). A reachability strategy σR is winning from some
state s if REACH wins every play consistent with σR starting in s. We define
safety strategies σS for SAFE analogously. We say that a player wins in or from
a state s if they have a winning strategy from s. Lastly, REACH wins the game G
if they win from some initial state. Otherwise, SAFE wins.



900 C. Baier et al.

We often project a transition predicate T onto the source or target states of
transitions satisfying T , which is taken care of by the formulas Pre(T ) = ∃V ′.T
and Post(T ) = ∃V. T . The notation ∃V (resp. ∃V ′) represents the existential
quantification over all variables in the corresponding set. Given ϕ ∈ L(V), we
call the set of transitions in G that move from states not satisfying ϕ, to states
satisfying ϕ, the instantiation of ϕ, formally:

Instantiate(ϕ,G) = (Safe ∨ Reach) ∧ ¬ϕ ∧ ϕ′.

4 Subgoals

We formally define the notion of subgoals. Let G = 〈Init ,Safe,Reach,Goal〉 be a
fixed reachability game throughout this section, where we assume that Init∧Goal
is unsatisfiable. Whenever this assumption is not satisfied in our algorithm, we
will instead consider the game G′ = 〈Init ∧¬Goal ,Safe,Reach,Goal〉 which does
satisfy it. As states in Init ∧Goal are immediately winning for REACH, this is not
a real restriction.

Definition 2 (Enforceable transitions). The set of enforceable transitions
relative to a transition predicate T ∈ L(V ∪ V ′) is defined by the formula

Enf(T ,G) = (Safe ∨ Reach) ∧ T ∧ ¬∃V ′.
(
Safe ∧ ¬T

)
.

The enforceable transitions operator serves a purpose similar to the controlled
predecessors operator commonly known in the literature, which is often used in a
backwards fixed point computation, called attractor construction [37]. For both
operations, the idea is to determine controllability by REACH. The main difference
is that we do not consider the whole transition relation, but only a predetermined
set of transitions and check from which predecessor states the post-condition of
the set can be enforced by REACH. These include all transitions in T controlled
by REACH and additionally transitions in T controlled by SAFE such that all other
transitions in the origin state of the transition also satisfy T . The similarity with
the controlled predecessor is exemplified by the following lemma:

Lemma 3. Let T be a transition predicate, and suppose that all states satisfying
Post(T )[V ′/V] are winning for REACH in G. Then all states in Pre(Enf(T,G)) are
winning for REACH in G.

Proof. Clearly, all states in Pre(Enf(T,G)) that are under the control of REACH
are winning for REACH, as in any such state they have a transition satisfying T
(observe that Enf(T,G) =⇒ T is valid), which leads to a winning state by
assumption.

So let s be a state satisfying Pre(Enf(T,G)) that is under the control of SAFE.
As Pre(Enf(T,G))(s) is valid, s has a transition that satisfies T (in particular,
s is not a trap state). Furthermore, we know that there is no s′ ∈ S such that
Safe(s, s′)∧¬T (s, s′) holds, and hence there is no transition satisfying ¬T from
s. Since Post(T )[V ′/V] is winning for REACH, it follows that from s player SAFE
cannot avoid playing into a winning state of REACH. ��



Causality-Based Game Solving 901

We now turn to a formal definition of necessary subgoals, which intuitively
are sets of transitions that appear on every play that is winning for REACH.

Definition 4 (Necessary subgoal). A necessary subgoal C ∈ L(V∪V ′) for G
is a transition predicate such that for every play ρ = s0s1 . . . of G and n ∈ N

such that Goal(sn) is valid, there exists some k < n such that C(sk, sk+1) is
valid.

Necessary subgoals provide a means by which winning safety player strategies
can be identified, as formalized in the following lemma.

Lemma 5. A safety strategy σS is winning in G if and only if there exists a
necessary subgoal C for G such that for all plays ρ = s0s1 . . . of G consistent
with σS there is no n ∈ N such that C(sn, sn+1) holds.

Proof. “ =⇒ ”. The transition predicate Goal [V/V ′] (i.e., transitions with end-
points satisfying Goal) is clearly a necessary subgoal. If σS is winning for SAFE,
then no play consistent with σS contains a transition in this necessary subgoal.
“⇐=”. Let C be a necessary subgoal such that no play consistent with σS con-
tains a transition of C. Then by Definition 4 no play consistent with σS contains
a state satisfying Goal . Hence σS is a winning strategy for SAFE. ��

Of course, the question remains how to compute non-trivial subgoals. Indeed,
using Goal as outlined in the proof above provides no further benefit over a
simple backwards exploration (see Remark 15 in the following section).

Ideally, a subgoal should represent an interesting key decision to focus the
strategy search. As we show next, Craig interpolation allows to extract partial
causes for the mutual unsatisfiability of Init and Goal and can in this way provide
necessary subgoals. Recall that a Craig interpolant ϕ between Init and Goal is
a state predicate that is implied by Goal , and unsatisfiable in conjunction with
Init . In this sense, ϕ describes an observable effect that must occur if REACH
wins, and the concrete transition that instantiates the interpolant causes this
effect.

Proposition 6. Let ϕ be a Craig interpolant for Init and Goal. Then the tran-
sition predicate Instantiate(ϕ,G) is a necessary subgoal.

Proof. As ϕ is an interpolant, it holds that Goal =⇒ ϕ is valid and Init ∧ ϕ
is unsatisfiable. Consider any play ρ = s0s1 . . . of G such that Goal(sn) is
valid for some n ∈ N. It follows that ¬ϕ(s0) and ϕ(sn) are both valid.
Consequently, there is some 0 ≤ i < n such that ¬ϕ(si) and ϕ(si+1) are
both valid. As all pairs (sk, sk+1) satisfy either Safe or Reach, it follows that(
Instantiate(ϕ,G)

)
(si, si+1) is valid. Hence, Instantiate(ϕ,G) is a necessary sub-

goal. ��
While avoiding a necessary subgoal is a winning strategy for SAFE, reaching a

necessary subgoal is in general not sufficient to guarantee a win for REACH. This
is because there might be some transitions in the necessary subgoal that produce



902 C. Baier et al.

the desired effect described by the Craig interpolant, but that trap REACH in a
region of the state space where they cannot enforce some other necessary effect
to reach goal. For the purpose of describing a set of transitions that is guaranteed
to be winning for the reachability player, we introduce sufficient subgoals.

Definition 7 (Sufficient subgoal). A transition predicate F ∈ L(V ∪
V ′) is called a sufficient subgoal if REACH wins from every state satisfying
Post(F )[V ′/V].

Example 8. Consider the Mona Lisa game G described in Sect. 2.

C1 = (Guard ∨ Thief ) ∧ p �= 1 ∧ p′ = 1

qualifies as sufficient subgoal, because REACH wins from every successor state as
all those states satisfy Goal . Also, every play reaching Goal eventually passes
C1, and hence C1 is also necessary. On the other hand,

C2 = (Guard ∨ Thief ) ∧ a �= 0 ∧ a′ = 0

is only a necessary subgoal in G, because SAFE wins from some (in fact all) states
satisfying Post(C2).

If the set of transitions in the necessary subgoal C that lead to winning states
of REACH is definable in L then we call the transition predicate F that defines it
the largest sufficient subgoal included in C. It is characterized by the properties
(1) F =⇒ C is valid, and (2) if F ′ is such that F =⇒ F ′ is valid, then either
F ≡ F ′, or F ′ is not a sufficient subgoal. Since C is a necessary subgoal and
F is maximal with the properties above, REACH needs to see a transition in F
eventually in order to win. This balance of necessity and sufficiency allows us to
partition the game along F into a game that happens after the subgoal and one
that happens before.

Proposition 9. Let C be a necessary subgoal, and F be the largest sufficient
subgoal included in C. Then REACH wins from an initial state s in G if and only
if REACH wins from s in the pre-game

Gpre = 〈Init ,Safe ∧ ¬F,Reach ∧ ¬F,Pre(Enf(F,G))〉.

Proof. “ =⇒ ”. Suppose that REACH wins in G from s using strategy σR. Assume
for a contradiction that SAFE wins in Gpre from s using strategy σS . Consider
strategy σ′

S such that σ′
S (ωs′) = σS (ωs′) if (Safe ∧ ¬F )(s′) is satisfiable, and

else σ′
S (ωs′) = σ′′

S (ωs′), where σ′′
S is an arbitrary safety player strategy in G. Let

ρ = s0s1 . . . be the (unique) play of G consistent with both σR and σ′
S , where

s0 = s. Since σR is winning in G and C is a necessary subgoal in G, there must
exist some m ∈ N such that C(sm, sm+1) is valid. Let m be the smallest such
index. Since F =⇒ C, we know for all 0 ≤ k < m that ¬F (sk, sk+1) holds.
Hence, there is the play ρ′ = s0s1 . . . sm . . . in Gpre consistent with σS . The state
sm+1 is winning for REACH in G, as it is reached on a play consistent with the



Causality-Based Game Solving 903

winning strategy σR. Hence, we know that F (sm, sm+1) holds, because F is the
largest sufficient subgoal included in C. If (Reach ∧F )(sm, sm+1) held, we would
have that Pre(Enf(F,G)(sm) holds: a contradiction with ρ′ being consistent with
σS , which we assumed to be winning in Gpre. It follows that (Safe∧F )(sm, sm+1)
holds. We can conclude that (Safe ∧ ¬F )(sm) is unsatisfiable (i.e., sm is a trap
state in Gpre), because in all other cases SAFE plays according to σS , which cannot
choose a transition satisfying F . However, this implies that Pre(Enf(F,G)(sm)
holds, again a contradiction with ρ′ being consistent with winning strategy σS .
“⇐=”. If REACH wins in Gpre they have a strategy σR such that every play
consistent with σR reaches the set Pre(Enf(F,G)). As F is a sufficient subgoal,
the states Post(F ) are winning for REACH by definition. It follows by Lemma 3
that all states satisfying Pre(Enf(F,G)) are winning in G. Combining σR with a
strategy that wins in all these states yields a winning strategy for REACH in G. ��

5 Causality-Based Game Solving

Lemma 9 in the preceding section foreshadows how subgoals can be employed
in building a recursive approach for the solution of reachability games. Before
turning to our actual algorithm, we describe a way to symbolically represent
nondeterministic memoryless strategies. As discussed in [18], there is no ideal
strategy description language for the class of games we consider. Our approach
allows us to describe sets of concrete strategies as defined in Sect. 3 with linear
arithmetic formulas. This framework will prove convenient for strategy synthesis,
i.e., the computation of winning strategies instead of simply determining the
winner of the game.

5.1 Symbolically Represented Strategies

We will represent strategies for both players using transition predicates S ∈
L(V ∪ V ′), henceforth called symbolic strategies, where we only require that
(S =⇒ (Safe ∨ Reach)) is valid. A sequence s0 . . . sn ∈ S+ is called a play
prefix if it is a prefix of some play in G, (¬Goal)(sj) holds for all 0 ≤ j ≤ n,
and sn is not a trap state. We say that a play prefix ρ = s0 . . . sn conforms to a
symbolic reachability strategy S if for all j < n we have that S(sj , sj+1) holds
whenever sj ∈ SREACH (and analogously for safety strategies). A play conforms
to S if all its play prefixes conform to S. We say that S is winning for REACH in s
if all plays from s that conform to S are winning for REACH and all play prefixes
s0 . . . sn ∈ S∗SREACH from s that conform to S are such that (S ∧ Reach)(sn)
is satisfiable (and analogously for SAFE). The second condition ensures that the
player cannot be forced to play a transition outside of S by their opponent while
the play has not reached a trap state or Goal , and in particular guarantees the
existence of a concrete strategy (as defined in Sect. 3) conforming to S.

Lemma 10. If REACH (SAFE) has a winning symbolic strategy in s, then REACH

(SAFE) has a concrete winning strategy in s.



904 C. Baier et al.

Proof. Let S by a symbolic winning strategy for REACH. Let σR be any reach-
ability strategy such that for all play prefixes ωs ∈ S∗SREACH that conform to
S the formula S(s, σR(ωs)) is valid. Such a function is guaranteed to exist, as
(S∧Reach)(s) is satisfiable for all such play prefixes by definition. Furthermore,
σR is winning as all play prefixes of plays consistent with σR conform to S, and
hence all these plays are winning by assumption. The proof for SAFE is analogous.

��
This representation allows us to specify nondeterministic strategies, but clas-

sical memoryless strategies on finite arenas (specified as a function σ : SREACH → S
or SSAFE → S) can also be represented in this form using a disjunction over for-
mulas

∧
v∈V(v = s(v) ∧ v′ = σ(s)(v)) for varying s ∈ S.

The following lemma shows that a necessary subgoal directly yields a sym-
bolic strategy for SAFE if the subgoal is, in a certain sense, locally avoidable by
SAFE. It will be our main tool for synthesizing safety player strategies.

Lemma 11. Let C be a necessary subgoal for G and suppose that
Unsat(Enf(C,G)) holds. Then, Safe ∧ ¬C is a winning symbolic strategy for
SAFE in G.

5.2 A Recursive Algorithm

We now describe our algorithm which utilizes necessary subgoals to decompose
and solve two-player reachability games (Algorithm 1). It is incomplete in the
sense that it does not return on every input (Sect. 5.3 discusses special cases
with guaranteed termination). If the algorithm returns on input G, it returns
a triple (R,SREACH,SSAFE), where (1) R is a state predicate characterizing the
initial states that are winning for REACH in G, (2) SREACH is a symbolic strategy
for REACH that wins in all initial states satisfying R, and (3) SSAFE is a symbolic
strategy for SAFE that wins in all initial states satisfying Init ∧¬R. The returned
safety strategy SSAFE is such that ¬SSAFE is a necessary subgoal that SAFE can
avoid locally in the game G restricted to intial states Init ∧¬R (see Lemma 11).

Algorithm 1 works as follows. States satisfying Init and Goal are immediately
winning for REACH and thus always part of the returned formula R. Following
the discussion at the beginning of Sect. 4, further analysis considers the game
starting in the remaining initial states I = Init ∧ ¬Goal . If there is no such
state, we may return that all initial states are winning (line 5). Here, REACH
wins from R without playing any move, and hence SREACH = false is a valid
winning symbolic strategy (winning symbolic strategies are only required to
provide moves in prefixes that have not seen Goal so far). We may choose SSAFE

arbitrarily as there is no initial state winning for SAFE.
If the algorithm does not return in line 5, a necessary subgoal C between I and

Goal is computed by instantiating a Craig interpolant ϕ for the two predicates
(lines 6 and 7, see also Proposition 6). We break up the remaining description of
the algorithm into three parts, which correspond to the main cases that occur
when splitting the game along the subgoal C.



Causality-Based Game Solving 905

Algorithm 1: Reach(G)
In : reachability game G = 〈Init ,Safe,Reach,Goal〉
Out: triple (R,SREACH,SSAFE) s.t.

– R ∈ L(V) represents the set of initial states winning for REACH;
– SREACH is a winning symbolic reachability strategy for states in R;
– SSAFE is a winning symbolic safety strategy for states in Init ∧ ¬R.

1 begin
2 R ← Init ∧ Goal
3 I ← Init ∧ ¬Goal
4 if Unsat(I ) then
5 return R, false, false

6 ϕ ← Interpolate(I ,Goal)
7 C ← Instantiate(ϕ, G)
8 if Unsat(Enf(C , G)) then
9 return R, false,Safe ∧ ¬C

10 Gpost ← 〈Post(C)[V ′/V],Safe ∧ ϕ,Reach ∧ ϕ,Goal〉
11 Rpost,S

post
REACH,S

post
SAFE ← Reach

(Gpost

)

12 F ← C ∧ Rpost[V/V ′]
13 if Unsat(Enf(F , G)) then

14 return R, false,Safe ∧ ¬F ∧ (ϕ =⇒ Spost
SAFE )

15 if Sat((Reach ∨ Safe) ∧ ϕ ∧ ¬ϕ′ ∧ ¬Goal) then
16 F ← F ∨ Goal [V/V ′]
17 ϕ ← false

18 Gpre ← 〈I,Safe ∧ ¬F ,Reach ∧ ¬F , Pre(Enf(F , G))〉
19 Rpre,S

pre
REACH,S

pre
SAFE ← Reach

(Gpre

)

20 return R ∨ Rpre,

21 combine(Spre
REACH, F,Spost

REACH),

22 (¬ϕ =⇒ Spre
SAFE) ∧ (ϕ =⇒ Spost

SAFE )

Case 1: SAFE can avoid the subgoal C. If the necessary subgoal C qualifies
for Lemma 11, we can immediately conclude that SAFE is winning for all states
statisfying I (lines 8 and 9). An instance of this case occurs if the interpolant
describes a bottleneck in the game which is fully controlled by SAFE. The winning
symbolic reachability strategy is Safe ∧ ¬C in this case (line 9), and we will
assume that safety strategies returned by recursive calls of the algorithm are
essentially negations of necessary subgoals that can be avoided by SAFE.

If Lemma 11 is not applicable, we next find those transitions in C that move
into a winning state for the safety player. This is achieved by analyzing the
post-game (line 10):



906 C. Baier et al.

Gpost = 〈Post(C)[V ′/V],Safe ∧ ϕ,Reach ∧ ϕ,Goal〉.

Its initial states are exactly the states one sees after bridging the subgoal C. In
order to make sure that Gpost is, in some sense, easier to solve than G, we restrict
both Safe and Reach to ϕ, which is the interpolant used to compute the subgoal
C. This has the effect of removing all transitions in states not satisfying ϕ,
making them trap states. For the safety player this makes Gpost easier to win
than G as all plays ending in such a trap state without seeing Goal before are
winning for SAFE in Gpost. Hence we formally have:

Lemma 12. If S is a winning symbolic reachability strategy from s in Gpost,
then S is also winning from s in G.

Due to the restriction to ϕ, intuitively REACH wins from a state s in Gpost if
they can win from s in G while staying inside the interpolant ϕ. In other words,
REACH must guarantee that the necessary subgoal C is not visited again in the
play. Still, the set Rpost, as returned in line 11 by the recursive call to Algorithm 1
on Gpost, is a sufficient subgoal in G, by the above lemma. Furthermore, if SAFE
can avoid all states satisfying Rpost (see line 13), then this also implies a winning
strategy from all initial states in I. The reason is that REACH can only win by
eventually visiting a state from which they can win without leaving ϕ again, as
(Goal =⇒ ϕ) is valid. This is not possible if SAFE can avoid all states in Rpost.

In this case we construct SSAFE as follows. We assume that ¬Spost
SAFE is a nec-

essary subgoal that can be locally avoided in Gpost from all states satisfying
Post(C)[V ′/V] ∧ ¬Rpost, and furthermore, we know that F := C ∧ Rpost[V/V ′]
can be locally avoided in G (line 13). Intuitively, playing according to Spost

SAFE in
Gpost yields a strategy for SAFE which avoids Goal and may move back into a
state satisfying ¬ϕ, which forces REACH to bridge the subgoal C again in order
to win. It follows that F ∨ (ϕ ∧ ¬Spost

SAFE) is a necessary subgoal from I that
can be locally avoided by SAFE in G, and the corresponding symbolic strategy
is Safe ∧ ¬F ∧ (ϕ =⇒ Spost

SAFE) (we additionally intersect the negated neces-
sary subgoal with Safe to ensure that the symbolic strategy only includes legal
transitions).

So far, the subgoal was such that SAFE could avoid it entirely, or at least
avoid all states from which REACH would win when forced to remain inside the
post-game. If this is not the case, then we also need to consider the pre-game
(line 18):

Gpre = 〈I,Safe ∧ ¬F ,Reach ∧ ¬F ,Pre(Enf(F ,G))〉.
which intuitively describes the game before bridging the interpolant C for the
last time. The exact definition of F will depend on whether C perfectly partitions
the game or not. In both cases F will be the largest sufficient subgoal contained
in a necessary subgoal, which lets us apply Proposition 9 to conclude that the
initial winning regions of G and Gpre coincide.

Case 2: The Subgoal Perfectly Partitions G. We say that ϕ perfectly parti-
tions G if (Reach∨Safe)∧ϕ∧¬ϕ′∧¬Goal is unsatisfiable (cf. line 15). Intuitively,



Causality-Based Game Solving 907

this means that there is no transition that “undoes” the effect of the subgoal C. If
this holds, then the restriction of Gpost to states satisfying ϕ is de facto no longer
a restriction, as no play can reach such a state anyway after passing through the
subgoal. This intuition is formalized by the following lemma.

Lemma 13. Assume that ϕ perfectly partitions G, and let s be a state satisfying
Post(C)[V ′/V]. Then REACH wins from s in Gpost if and only if REACH wins from
s in G.

It follows that F = C ∧ Rpost[V/V ′] is the largest sufficient subgoal included
in C. By Proposition 9, the same initial states are winning for REACH in Gpre

and in G. In this case, we construct the desired safety strategy (line 22) as

SSAFE = (¬ϕ =⇒ Spre
SAFE) ∧ (ϕ =⇒ Spost

SAFE),

where ¬Spre/post
SAFE are assumed to be necessary subgoals avoidable by SAFE in the

corresponding subgames. Intuitively, the combined strategy consists of following
Spre

SAFE as long as one remains in the pre-game, which, by induction hypothesis,
allows SAFE to avoid all transitions from F if starting in Rpre. If the play crosses
C ∧ ¬F , the strategy is to play according to the winning strategy of the post-
game.

A symbolic strategy for REACH can be given by combining pre- and post-
strategies as follows (line 21):

combine(Spre
REACH, F,Spost

REACH) := (Pre(Spost
REACH) =⇒ Spost

REACH)

∧ ((¬Pre(Spost
REACH) ∧ Pre(F )) =⇒ F )

∧ ((¬Pre(Spost
REACH) ∧ ¬Pre(F )) =⇒ Spre

REACH)

∧ (Pre(Spost
REACH) ∨ Pre(F ) ∨ Pre(Spre

REACH)).

This represents a nested conditional strategy that prefers the strategies of the
subgames in the priority order Spost

REACH, F , and finally Spre
REACH. The reason for this

order is that the winning condition in the post-game coincides with the global
winning objective (to reach Goal), while in the pre-game REACH tries to reach a
winning state in the post-game. The set F is exactly the bridge between these
two. The last condition makes sure that the strategy only includes transitions of
states in which it is winning.

Case 3: The subgoal does not perfectly partition G. If Sat((Reach ∨
Safe) ∧ ϕ ∧ ¬ϕ′ ∧ ¬Goal) is true in line 15, we can no longer assume that F is
the largest sufficient subgoal in C. The reason is that SAFE may win in Gpost by
moving out of the subgame, but if this move leads to a winning state for REACH in
G, then such a strategy is winning in Gpost, but not in G. So we can only assume
that F is sufficient (this follows by Lemma 12). In order to apply Proposition
9 we extend F by all transitions that move directly into Goal (line 16). This
immediately yields a necessary and sufficient subgoal, and so again Proposition
9 applies to Gpre (line 18). We could have also added Goal -states to F in Case



908 C. Baier et al.

2, but we have observed that not doing so improves the performance of our
procedure considerably.

The reachability strategy is composed of Spre
REACH, F , and Spost

REACH exactly as in
Case 2 (line 21). As all transitions in F are losing for SAFE, and these are the only
ones that are removed in Gpre, essentially SAFE can play using the same strategies
in G and Gpre. We implement this by setting ϕ to false (line 17), in which case
SSAFE (line 22) equals (true =⇒ Spre

SAFE) ∧ (false =⇒ Spost
SAFE) ≡ Spre

SAFE.
Finally, we formally state the partial correctness of the algorithm, using the

ideas from above.

Theorem 14 (Partial correctness). If Reach(G) returns (R,SREACH,SSAFE),
then

– R characterizes the set of initial states that are winning for REACH in G,
– SREACH is a winning symbolic reachability strategy from R,
– SSAFE is a winning symbolic safety strategy from Init ∧ ¬R.

Remark 15 (Simulating the attractor). Note that Craig interpolants are
by no means unique. If we choose the interpolation function so that
Interpolate(I,Goal) always returns Goal (this is a valid interpolant), Algo-
rithm 1 essentially simulates the attractor. In this case the subgoal C (line 7)
contains exactly the transitions that move directly into Goal . All states in
Post(C)[V ′/V] are then winning for REACH and hence Rpost would be equiva-
lent to Post(C)[V ′/V], which implies that C ≡ F holds in this case. The new
goal states in Gpre are set to Pre(Enf(F,G)), which are exactly the states in
Pre(C) that either are controlled by REACH, or such that all their transitions are
included in F . Hence the set Pre(Enf(F,G)) is exactly the classical controlled
predecessor.

One effect of slicing the game along general subgoals is that the initial pred-
icate of the post-game (which describes all states satisfying the post-condition
of the subgoal) may be satisfied by many states that do not necessarily need
to be considered in order to decide who wins from the initial states of G (for
example, because they are not reachable from any initial state, or cannot reach
Goal). This can be a drawback if the (superfluous) size of the subgames makes
them hard to solve. Notably, this is in general less of an issue for approaches
based on unrolling of the transition relation: The method of solving increasingly
large step-bounded games [18] will only consider states that are reachable from
Init , while backwards fixpoint computations will not explore states that do not
reach Goal . A way of coping with this is to provide additional information on the
domains of variables, whenever this is available (we discuss the effect of bounding
variable domains in Sect. 6). Indeed, in the case where all variable domains are
finite, Algorithm 1 is guaranteed to terminate, as shown in the next subsection.

5.3 Special Cases with Guaranteed Termination

Deciding the winner in the types of games we consider is generally undecid-
able (see [18] for the case that L is linear real arithmetic). Since Algorithm 1



Causality-Based Game Solving 909

returns a correct result whenever it terminates, this implies that it cannot always
terminate. In this section, we give two important cases in which we can prove
termination.

Theorem 16. If the domains of all variables in G are finite, then Reach(G)
terminates.

Remark 17 (Time complexity). The termination argument in the proof yields
a single-exponential upper bound on the runtime of the algorithm, where the
input size is measured in the number of concrete transitions of the game. This
is because in both recursive calls the subgames may be “almost” as large as the
input – they are only guaranteed to have at least one concrete transition less.

We now show that, under certain assumptions, our algorithm also terminates
for games that have a finite bisimulation quotient. To this end, we first clarify
what bisimilarity means in our setting. A relation R ⊆ S × S over the states of
G is called a bisimulation on G, if

– for all (s1, s2) ∈ R the formulas Goal(s1) ⇐⇒ Goal(s2), Init(s1) ⇐⇒
Init(s2) and r(s1) ⇐⇒ r(s2) are valid (recall that r holds exactly in states
controlled by REACH).

– for all (s1, s2) ∈ R and s′
1 ∈ S such that (Safe ∨ Reach)(s1, s′

1) holds, there
exists s′

2 ∈ S such that (Safe ∨ Reach)(s2, s′
2) holds, and (s′

1, s
′
2) ∈ R.

– for all (s1, s2) ∈ R and s′
2 ∈ S such that (Safe ∨ Reach)(s2, s′

2) holds, there
exists s′

1 ∈ S such that (Safe ∨ Reach)(s1, s′
1) holds, and (s′

1, s
′
2) ∈ R.

We say that s1 and s2 are bisimilar (denoted by s1 ∼ s2) if there exists a bisim-
ulation R such that (s1, s2) ∈ R. Bisimilarity is an equivalence relation, and
it is the coarsest bisimulation on G. The equivalence classes are called bisim-
ulation classes. As the winning region of any player can be expressed in the
μ-calculus [39] and the μ-calculus is invariant under bisimulation [9], it follows
that bisimilar states are won by the same player.

Lemma 18. Let R be a bisimulation on G. If (s1, s2) ∈ R, then REACH wins
from s1 in G if and only if REACH wins from s2 in G.

We will assume that for each bisimulation class Si there exists a formula
ψi ∈ L(V) that defines Si, formally: For all s ∈ S, ψi(s) holds if and only if
s ∈ Si. Furthermore, we will assume that the interpolation procedure respects ∼,
formally: Interpolate(ϕ,ψ) is equivalent to a disjunction of formulas ψi. Such an
interpolant exists if ψ or ϕ already satisfy this assumption.

Theorem 19. Let G be a reachability game with finite bisimulation quotient
under ∼ and assume that all bisimulation classes of G are definable in L. Fur-
thermore, assume that Interpolate respects ∼. Then, Reach(G) terminates.



910 C. Baier et al.

6 Case Studies

In this section we evaluate our approach on a number of case studies. Our pro-
totype CabPy2 is written in Python and implements the game solving part of
the presented algorithm. Extending it to returning a symbolic strategy using the
ideas outlined above is straightforward. We compared our prototype with Sim-
Synth [18], the only other readily available tool for solving linear arithmetic
games. The evaluation was carried out with Ubuntu 20.04, a 4-core Intel®

Core™ i5 2.30 GHz processor, as well as 8 GB of memory. CabPy uses the
PySMT [19] library as an interface to the MathSAT5 [12] and Z3 [30] SMT
solvers. On all benchmarks, the timeout was set to 10 min. In addition to the
winner, we report the runtime and the number of subgames our algorithm visits.
Both may vary with different SMT solvers or in different environments.

6.1 Game of Nim

Game of Nim is a classic game from the literature [8] and played on a number of
heaps of stones. Both players take turns of choosing a single heap and removing
at least one stone from it. We consider the version where the player that removes
the last stone wins. Our results are shown in Fig. 1. In instances with three heaps
or more we bounded the domains of the variables in the instance description, by
specifying that no heap exceeds its initial size and does not go below zero.

Following the discussion in Sect. 5.3, we need to bound the domains to ensure
the termination of our tool on these instances. Remarkably, bounding the vari-
ables was not necessary for instances with only two heaps, where our tool CabPy
scales to considerably larger instances than SimSynth. We did not add the same
constraints to the input of SimSynth, as for SimSynth this resulted in longer
runtimes rather than shorter. In Game of Nim, there are no natural necessary
subgoals that the safety player can locally control.

The results (see Fig. 1) demonstrate that our approach is not completely
dependent on finding the right interpolants and is in particular also competitive
when the reachability player wins the game. We suspect that SimSynth performs
worse in these cases because the safety player has a large range of possible moves
in most states, and inferring the win of the reachability player requires the tool
to backtrack and try our all of them.

6.2 Corridor

We now consider an example that demonstrates the potential of our method in
case the game structure contains natural bottlenecks. Consider a corridor of 100
rooms arranged in sequence, i.e., each room i with 0 ≤ i < 100 is connected
to room i + 1 with a door. The objective of the reachability player is to reach

2 The source code of CabPy and our experimental data are both available at
https://github.com/reactive-systems/cabpy. We provide a virtual machine image
with CabPy already installed for reproducing our evaluation [35].

https://github.com/reactive-systems/cabpy


Causality-Based Game Solving 911

CabPy SimSynth
Heaps Subgames Time(s) Time(s) Winner
(4,4) 19 1.50 10.44 REACH

(4,5) 23 1.92 12.74 SAFE

(5,5) 23 1.99 85.75 REACH

(5,6) 27 2.90 91.66 SAFE

(6,6) 28 3.04 Timeout REACH

(6,7) 31 3.76 Timeout SAFE

(20,20) 88 94.85 Timeout REACH

(20,21) 94 113.04 Timeout SAFE

(30,30) 128 364.13 Timeout REACH

(30,31) 135 404.02 Timeout SAFE

(3,3,3)b 23 13.63 2.85 SAFE

(1,4,5)b 32 7.00 289.85 REACH

(4,4,4)b 33 50.55 24.39 SAFE

(2,4,6)b 38 19.77 Timeout REACH

(5,5,5)b 33 127.89 162.50 SAFE

(3,5,6)b 40 86.56 Timeout REACH

(2,2,2,2)b 39 84.79 213.79 REACH

(2,2,2,3)b 41 102.01 Timeout SAFE

Fig. 1. Experimental results for the Game of Nim. The notation (h1, . . . , hn) denotes
the instance played on n heaps, each of which consists of hi stones. Instances marked
with b indicate that the variable domains were explicitly bounded in the input for
CabPy.

CabPy SimSynth
r Subgames Time(s) Time(s) Winner
10 10 0.57 3.93 SAFE

20 20 1.23 20.48 SAFE

40 40 3.42 121.96 SAFE

60 60 7.36 Timeout SAFE

80 80 17.72 Timeout SAFE

100 100 26.36 Timeout SAFE

Fig. 2. Experimental results for the Corridor game. The safety player controls the door
between rooms r − 1 and r.

room 100 and they are free to choose valid values from R
2 for the position in

each room at every other turn. The safety player controls some door to a room
r ≤ 100. Naturally, a winning strategy is to prevent the reachability player from
passing that door, which is a natural bottleneck and necessary subgoal on the
way to the last room.

The experimental results are summarized in Fig. 2. We evaluated several ver-
sions of this game, increasing the length from the start to the controlled door.



912 C. Baier et al.

The results confirm that our causal synthesis algorithm finds the trivial strategy
of closing the door quickly. This is because Craig interpolation focuses the sub-
goals on the room number variable while ignoring the movement in the rooms
in between, as can be seen by the number of considered subgames. SimSynth,
which tries to generalize a strategy obtained from a step-bounded game, strug-
gles because the tool solves the games that happen between each of the doors
before reaching the controlled one.

6.3 Mona Lisa

The game described in Sect. 2 between a thief and a security guard is very well
suited to further assess the strength and limitations of both our approach as well
as of SimSynth. We ran several experiments with this scenario, scaling the size
of the room and the sleep time of the guard, as well as trying a scenario where
the guard does not sleep at all. Scaling the size of the room makes it harder
for SimSynth to solve this game with a forward unrolling approach, while our
approach extracts the necessary subgoals irrespective of the room size. However,
scaling the guard’s sleep time makes it harder to solve the subgame between
the two necessary subgoals, while it only has a minor effect on the length of the
unrolling needed to stabilize the play in a safe region, as done by SimSynth.

The results in Fig. 3 support this conjecture. The size of the room has almost
no effect at all on both the runtime of CabPy and the number of considered
subgames. However, as the results for a sleep value of 4 show, the employed com-
bination of quantifier elimination and interpolation introduces some instability
in the produced formulas. This means we may get different Craig interpolants
and slice the game with more or less subgoals. Therefore, we see a lot of potential
in optimizing the interplay between the employed tools for quantifier elimina-
tion and interpolation. The phenomenon of the runtime being sensitive to these
small changes in values is also seen with SimSynth, where a longer sleep time
sometimes means a faster execution.

6.4 Program Synthesis

Lastly, we study two benchmarks that are directly related to program synthesis.
The first problem is to synthesize a controller for a thermostat by filling out an
incomplete program, as described in [4]. A range of possible initial values of the
room temperature c is given, e.g., 20.8 ≤ c ≤ 23.5, together with the temperature
dynamics which depend on whether the heater is on (variable o ∈ B). The
objective for SAFE is to control the value of o in every round such that c stays
between 20 and 25. This is a common benchmark for program synthesis tools
and both CabPy and SimSynth solve it quickly (see Fig. 4). The other problem
relates to Lamport’s bakery algorithm [26]. We consider two processes using this
protocol to ensure mutually exclusive access to a shared resource. The game
describes the task of synthesizing a scheduler that violates the mutual exclusion.
This essentially is a model checking problem, and we study it to see how well
the tools can infer a safety invariant that is out of control of the safety player.



Causality-Based Game Solving 913

CabPy SimSynth
Size Sleep Subgames Time(s) Time(s) Winner

10× 10 - 7 0.61 4.79 SAFE

20× 20 - 7 0.60 25.26 SAFE

40× 40 - 7 0.61 157.62 SAFE

10× 10 1 10 4.22 20.31 SAFE

20× 20 1 11 4.34 36.44 SAFE

40× 40 1 11 4.65 226.14 SAFE

10× 10 2 13 5.88 7.40 SAFE

20× 20 2 14 5.98 60.00 SAFE

40× 40 2 13 5.92 270.48 SAFE

10× 10 3 18 26.58 13.94 SAFE

20× 20 3 17 26.19 115.53 SAFE

40× 40 3 18 27.85 290.12 SAFE

10× 10 4 30 175.27 13.96 SAFE

20× 20 4 22 204.79 60.08 SAFE

40× 40 4 27 123.95 319.47 SAFE

CabPy SimSynth
Size Sleep Subgames Time(s) Time(s) Winner

10× 10 - 7 0.61 4.79 SAFE

20× 20 - 7 0.60 25.26 SAFE

40× 40 - 7 0.61 157.62 SAFE

10× 10 1 10 4.22 20.31 SAFE

20× 20 1 11 4.34 36.44 SAFE

40× 40 1 11 4.65 226.14 SAFE

10× 10 2 13 5.88 7.40 SAFE

20× 20 2 14 5.98 60.00 SAFE

40× 40 2 13 5.92 270.48 SAFE

10× 10 3 18 26.58 13.94 SAFE

20× 20 3 17 26.19 115.53 SAFE

40× 40 3 18 27.85 290.12 SAFE

10× 10 4 30 175.27 13.96 SAFE

20× 20 4 22 204.79 60.08 SAFE

40× 40 4 27 123.95 319.47 SAFE

Fig. 3. Experimental results for the Mona Lisa game.

CabPy SimSynth
Name Subgames Time(s) Time(s) Winner

Thermostat 6 0.44 0.39 SAFE

Bakery 46 18.25 Timeout SAFE

CabPy SimSynth
Name Subgames Time(s) Time(s) Winner

Thermostat 6 0.44 0.39 SAFE

Bakery 46 18.25 Timeout SAFE

Fig. 4. Experimental results for program synthesis problems.

For our approach, this makes no difference, as both players may play through a
subgoal and the framework is well suited to find a safety invariant. The forward
unrolling approach of SimSynth, however, seems to explore the whole state
space before inferring safety, and fails to find an invariant before a timeout.

7 Conclusion

Our work is a step towards the fully automated synthesis of software. It tar-
gets symbolically represented reachability games which are expressive enough
to model a variety of problems, from common game benchmarks to program
synthesis problems. The presented approach exploits causal information in the
form of subgoals, which are parts of the game that the reachability player needs
to pass through in order to win. Having computed a subgoal, which can be done
using Craig interpolation, the game is split along the subgoal and solved recur-
sively. At the same time, the algorithm infers a structured symbolic strategy
for the winning player. The evaluation of our prototype implementation CabPy



914 C. Baier et al.

shows that our approach is practically applicable and scales much better than
previously available tools on several benchmarks. While termination is only guar-
anteed for games with finite bisimulation quotient, the experiments demonstrate
that several infinite games can be solved as well.

This work opens up several interesting questions for further research. One
concerns the quality of the returned strategies. Due to its compositional nature,
at first sight it seems that our approach is not well-suited to handle global
optimization criteria, such as reaching the goal in fewest possible steps. On the
other hand, the returned strategies often involve only a few key decisions and
we believe that therefore the strategies are often very sparse, although this has
to be further investigated. We also plan to automatically extract deterministic
strategies from the symbolic ones [5,17] we currently consider.

Another question regards the computation of subgoals. The performance of
our algorithm is highly influenced by which interpolant is returned by the solver.
In particular this affects the number of subgames that have to be solved, and
how complex they are. We believe that template-based interpolation [27] is a
promising candidate to explore for computing good interpolants. This could be
combined with the possibility for the user to provide templates or expressive
interpolants directly, thereby benefiting from the user’s domain knowledge.

References

1. Alur, R., Moarref, S., Topcu, U.: Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 501–516. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 49

2. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 251–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 14

3. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-
based game solving. CoRR (2021). https://arxiv.org/abs/2105.14247, long version
with appendix

4. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based app-
roach to solving games on infinite graphs. In: Principles of Programming Languages
(POPL). ACM, New York (2014). https://doi.org/10.1145/2535838.2535860

5. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-based methods
for circuit synthesis. In: Formal Methods in Computer-Aided Design (FMCAD).
IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987592

6. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. Electron. Notes Theor. Comput. Sci.
190(4), 3–16 (2007). https://doi.org/10.1016/j.entcs.2007.09.004

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007. In Commemoration of Amir Pnueli

8. Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math.
3(1/4), 35–39 (1901). https://doi.org/10.2307/1967631

https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-41540-6_14
https://arxiv.org/abs/2105.14247
https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1109/FMCAD.2014.6987592
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.2307/1967631


Causality-Based Game Solving 915

9. Bradfield, J.C., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem,
J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and Practi-
cal Reasoning, vol. 3, pp. 721–756, North-Holland (2007). https://doi.org/10.1016/
s1570-2464(07)80015-2

10. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75698-9 2

11. Chen, Y., T̊amov̊u, J., Belta, C.: LTL Robot Motion Control based on Automata
Learning of Environmental Dynamics. In: International Conference on Robotics
and Automation. IEEE (2012). https://doi.org/10.1109/ICRA.2012.6225075

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

13. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957). https://doi.org/10.
2307/2963594

14. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-
state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 536–550. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-
0 36

15. Edelkamp, S.: Symbolic exploration in two-player games: preliminary results. In:
The International Conference on AI Planning & Scheduling (AIPS), Workshop on
Model Checking (2002)

16. Eén, N., Legg, A., Narodytska, N., Ryzhyk, L.: SAT-based strategy extraction
in reachability games. In: Conference on Artificial Intelligence (AAAI) (2015).
https://ojs.aaai.org/index.php/AAAI/article/view/9752

17. Ehlers, R., Moldovan, D.: Sparse positional strategies for safety games. In: Workshop
on Synthesis (SYNT), EPTCS (2012). https://doi.org/10.4204/EPTCS.84.1

18. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proc. ACM
Program. Lang. 2(POPL) (2017). https://doi.org/10.1145/3158149

19. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

20. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

21. Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm for strategy synthe-
sis in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 477–492. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
31980-1 31

22. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks in planning. J. Artif.
Intell. Res. 22(1), 215–278 (2004)

23. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthe-
sis for climate controller using Uppaal Tiga. In: Raskin, J.-F., Thiagarajan, P.S.
(eds.) FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75454-1 17

24. Kupriyanov, A., Finkbeiner, B.: Causality-based verification of multi-threaded pro-
grams. Concur. Theory (CONCUR) (2013). https://doi.org/10.1007/978-3-642-
40184-8 19

25. Kupriyanov, A., Finkbeiner, B.: Causal termination of multi-threaded programs.
Comput. Aided Verification (CAV) (2014). https://doi.org/10.1007/978-3-319-
08867-9 54

https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1007/978-3-540-75698-9_2
https://doi.org/10.1109/ICRA.2012.6225075
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1007/3-540-44685-0_36
https://ojs.aaai.org/index.php/AAAI/article/view/9752
https://doi.org/10.4204/EPTCS.84.1
https://doi.org/10.1145/3158149
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-540-31980-1_31
https://doi.org/10.1007/978-3-540-31980-1_31
https://doi.org/10.1007/978-3-540-75454-1_17
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-319-08867-9_54
https://doi.org/10.1007/978-3-319-08867-9_54


916 C. Baier et al.

26. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093

27. Leroux, J., Rümmer, P., Subotić, P.: Guiding Craig interpolation with domain-
specific abstractions. Acta Informatica 53(4), 387–424 (2016). https://doi.org/10.
1007/s00236-015-0236-z

28. Menzies, P., Beebee, H.: Counterfactual theories of causation. In: Zalta, E.N.
(ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Metaphysics
Research Lab (2020)

29. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 243–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
89439-1 18

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

31. Narodytska, N., Legg, A., Bacchus, F., Ryzhyk, L., Walker, A.: Solving games with-
out controllable predecessor. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 533–540. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 35

32. Pozanco, A., E-Mart́ın, Y., Fernández, S., Borrajo, D.: Counterplanning using goal
recognition and landmarks. In: International Joint Conference on Artificial Intelli-
gence (IJCAI) (2018). https://doi.org/10.24963/ijcai.2018/668

33. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du I congres de Mathématiciens des Pays Slaves (1929)

34. Ryzhyk, L., Chubb, P., Kuz, I., Le Sueur, E., Heiser, G.: Automatic device driver syn-
thesis with termite. In: Symposium on Operating Systems Principles (SOSP). Asso-
ciation for Computing Machinery (ACM) (2009). https://doi.org/10.1145/1629575.
1629583

35. Siber, J.: The Virtual Machine containing CabPy (2021). https://doi.org/10.6084/
m9.figshare.14493804.v3

36. Sreedharan, S., Srivastava, S., Smith, D.E., Kambhampati, S.: Why can’t you do
that HAL? Explaining unsolvability of planning tasks. In: International Joint Con-
ference on Artificial Intelligence (IJCAI) (2019). https://doi.org/10.24963/ijcai.
2019/197

37. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-59042-0 57

38. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. Formal Meth.
Comput. Aided Des. (FMCAD) (2014). https://doi.org/10.1109/FMCAD.2014.
6987617

39. Zappe, J.: Modal μ-calculus and alternating tree automata. In: Grädel, E., Thomas,
W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp.
171–184. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4 10

https://doi.org/10.1145/361082.361093
https://doi.org/10.1007/s00236-015-0236-z
https://doi.org/10.1007/s00236-015-0236-z
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_35
https://doi.org/10.1007/978-3-319-08867-9_35
https://doi.org/10.24963/ijcai.2018/668
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.6084/m9.figshare.14493804.v3
https://doi.org/10.6084/m9.figshare.14493804.v3
https://doi.org/10.24963/ijcai.2019/197
https://doi.org/10.24963/ijcai.2019/197
https://doi.org/10.1007/3-540-59042-0_57
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1007/3-540-36387-4_10


Causality-Based Game Solving 917

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Causality-Based Game Solving
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Subgoals
	5 Causality-Based Game Solving
	5.1 Symbolically Represented Strategies
	5.2 A Recursive Algorithm
	5.3 Special Cases with Guaranteed Termination

	6 Case Studies
	6.1 Game of Nim
	6.2 Corridor
	6.3 Mona Lisa
	6.4 Program Synthesis

	7 Conclusion
	References




