q

Check for
updates

PAYNT: A Tool for Inductive Synthesis
of Probabilistic Programs

Roman Andriushchenko!®, Milan Ceéka}(x) , Sebastian Junges?
Joost-Pieter Katoen®®, and Simon Stupinsky!

)

cti
! Brno University of Technology, Brno, Czech Republic \\):‘tifa:0¢/

ceskam@fit.vutbr.cz o
2 University of California, Berkeley, USA §,‘
3 RWTH Aachen University, Aachen, Germany ’66

Abstract. This paper presents PAYNT), a tool to automatically synthe-
sise probabilistic programs. PAYNT enables the synthesis of finite-state
probabilistic programs from a program sketch representing a finite fam-
ily of program candidates. A tight interaction between inductive oracle-
guided methods with state-of-the-art probabilistic model checking is at
the heart of PAYNT. These oracle-guided methods effectively reason
about all possible candidates and synthesise programs that meet a given
specification formulated as a conjunction of temporal logic constraints
and possibly including an optimising objective. We demonstrate the per-
formance and usefulness of PAYNT using several case studies from dif-
ferent application domains; e.g., we find the optimal randomized protocol
for network stabilisation among 3M potential programs within minutes,
whereas alternative approaches would need days to do so.

1 Introduction

Probabilistic programs are a powerful modelling language to describe systems
containing probabilistic uncertainty. Their correctness and efficiency can be
described as a set of declarative temporal constraints. Various verification tools
cater for automating their a posterior verification: does a program satisfy a spec-
ification? Here, we focus on finite-state programs and consider specifications
given as (conjunction of) temporal logic constraints. The automated verifica-
tion of such constraints is supported by probabilistic model checkers such as
STORM [19], PRISM [35] or MODEST [27].

These model checkers typically require a fixed program or a fixed model. This
is not always in line with their intended usage: To keep development costs man-
ageable and development cycles fast, system designs are preferably verified as

This work has been partially supported by the Czech Science Foundation grant
(GJ20-02328Y and the ERC AdG Grant 787914 FRAPPANT, NSF grants 1545126,
1646208 and 1837132, DARPA contracts FA8750-18-C-0101 (AA), FA8750-20-C-0156
(SDCPS), by Berkeley Deep Drive, and by Toyota under the iCyPhy center.

© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 856-869, 2021.
https://doi.org/10.1007/978-3-030-81685-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_40&domain=pdf
http://orcid.org/0000-0002-1286-934X
http://orcid.org/0000-0002-0300-9727
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-81685-8_40

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 857

specification ® = P4 [F failure] A ES%[F finished)]

L - @7 while((rand() % 3) < 2 {
while((rand() % 3) < 1) { \\ a=a+1;
et —> synthesuzy —>h

program sketch P family R of realizations a correct program Plr] = &

;/;/-hile((rand() % 3) < ?1) {
a=72+1;

}

Fig. 1. The workflow of the synthesis process.

early as possible. However, at early design stages not all system details are known
or they are deliberately left out, and systems or their models are incomplete—
they contain holes. A hole may e.g., reflect a partially implemented controller
for a complex system or an unspecified component for wireless communication.

A key aspect of the design cycle is to explore these designs, i.e., to do design
space exploration. The verification challenge now is to analyze all combinations of
fixing the hole with a concrete behavior/subsystem and reveal (Pareto-)optimal
designs. Alternatively, designs should be robust for engineering choices made
downstream, e.g., a system should ideally not depend on the specific character-
istics of a single communication interface. Verifying that every combination of
options satisfies the specification ensures that changes in available components
do not need to trigger a redesign.

The application areas above require to reason about the presence and absence
of designs (aka: realizations) satisfying a specification in a family of designs. To
allow for efficient reasoning it is crucial that this family is concisely represented.
A convenient way to describe such a family is to use sketching [2,45]. A sketch
can be thought of as a program (or model) with holes, naturally fitting the use
case outlined above.

Clearly, enumerating single realizations is unfeasible in the light of the combi-
natorial design space explosion. Instead, the prevalent approach connected with
sketching is based on inductive synthesis. The idea is to analyze a single realiza-
tion and generalize the analysis results to a set of realizations, often using the
notion of counterexamples. In probabilistic programs, such a notion is challeng-
ing, as counterexamples are typically complex objects [1].

Driven by a range of applications, there has been significant algorithmic
progress in the analysis of probabilistic program sketches and temporal logic
constraints over the last years. Baier et al. [14] explored the use of sym-
bolic model-checking methods so as to consider sets of realizations at once.
Ceska et al. [12] used abstraction-refinement on sets of realizations and com-
plemented this with a counterexample-guided inductive synthesis approach [11].
The latter two approaches have recently been integrated [3] and yield a speed up
of multiple orders of magnitude over a baseline that enumerates all realizations.

This paper presents PAYNT! (Probabilistic progrAm sYNThesizer) that
takes a program sketch, concisely describing a finite family of finite Markov

! Available at https://github.com/gargantophob /synthesis.

https://github.com/gargantophob/synthesis

858 R. Andriushchenko et al.

chains (MCs), and a specification, and finds a family member (aka: realization)
that (potentially optimally) satisfies the specification, see Fig. 1. The design of
PAYNT is rooted in oracle-guided synthesis and enables the flexible combination
of a variety of state-of-the-art algorithms. For efficiency purposes, key algorithms
are implemented within the STORM [19] model checker that dominated recent
tool comparisons [24]. To deliver flexibility, the tool is built in a modular fashion
on top of a python API. To ease the learning curve, the tool takes a conservative
extension to the widespread PRISM language as input.

PAYNT aims at two user groups: First, it provides a development plat-
form for alternative algorithmic approaches, e.g. exploiting recent neurosym-
bolic approaches to find good designs. The tool provides the interface to define
sketches and all baseline algorithms under one roof. Secondly, the analysis of
sets of realizations is a valuable backend for automatic engines, e.g., when syn-
thesizing finite-state controllers for partially observable MDPs (POMDPs) [33].

Related work. The synthesis problems for parametric probabilistic systems can
be divided into two categories.

Topology synthesis, akin to aim of PAYNT, assumes a finite set of parameters
affecting the MC topology. Finding a realization satisfying a given reachability
property is NP-complete in the number of parameters [13], and can be naively
solved by analysing all individual family members. An alternative [14] is to
model the MC family by a Markov decision process (MDP) and use off-the-shelf
MDP model-checking algorithms. The ProFeat [14] and QFLan [47] tool take
this approach to quantitatively analyze alternative designs of software product
lines [23,36]. These tools are limited to small families. To improve the scalability,
inductive methods based on abstraction-refinement over the MDP representa-
tion [12], and counter-example guided inductive synthesis (CEGIS) for MCs [11]
have been proposed. As shown by the Maze model in Sect. 5, the topology syn-
thesis is closely linked to controller synthesis for POMDPs, a popular model for
planning in AT under uncertainty. Other recent approaches to POMDP controller
synthesis include the use of neural network oracles (obtained by reinforcement
learning) to guide the search [48] and adaptive learning schemes based on imi-
tation learning [30]. Note that the problem of sketching probabilistic programs
that fit given data as studied, e.g., in [39,44], is different.

Parameter synthesis considers models with a fixed topology but with uncer-
tain parameters associated to transition probabilities (or rates). It aims to ana-
lyze how the MC (or MDP) behaviour depends on the parameter values. Scalable
approximate parameter synthesis techniques treat identical parameters in differ-
ent transitions independently [10,42] and have been implemented in STORM [19]
and PrIsM [35]. Exact approaches construct rational functions for symbolic
reachability probabilities [16] and were improved in [18,25,29]. This approach
has been also applied to problems such as model repair [4,40].

Both synthesis problems can be attacked by search-based techniques that
do not ensure an exhaustive exploration of the parameter space. These include
evolutionary techniques [26,38] and genetic algorithms [22]. Their combination

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 859

observe determine

queue size power profile
__________ manager [----.___ -
Service request queue <A T service
requester | generate |Tl | IT2 | IT3 | lea“ > provider

request process request

Fig. 2. The server for request processing.

with parameter synthesis has been pursued in [8] and is implemented in the tool
RODES [9] to synthesize robust systems.

2 Using PAYNT

We exemplify the usage of PAYNT by the following synthesis problem.

Consider a server for request processing depicted in Fig. 2. Requests are gen-
erated (externally) in random intervals and upon arrival stored in a request
queue of capacity Qmax. When the queue is full, the request is lost. The server
has three profiles — sleeping, idle and active — that differ in their power con-
sumption. The requests are processed by the server only when it is in the active
state. Switching from a low-energy state into the active state requires additional
energy as well as an additional random latency before the request can be pro-
cessed. We further assume that the power consumption of request processing
depends on the current queue size. The operation time of the server is random
but finite.

The server is controlled by a power manager (PM) that observes the cur-
rent queue size and then sets the desired power profile. More precisely, the PM
distinguishes between four queue occupancy levels determined by the threshold
levels T1,T5, and T5. These values are controllable parameters that denote which
fraction of the queue capacity is occupied. In other words, the PM observes the
queue occupancy of the intervals: [0,T1], (T1, T3] etc. For each occupancy level,
the PM changes to the associated power profile Pi,..., Py € {0,1,2}, where
numbers 0 through 2 encode the profiles sleeping, idle and active, respectively.

PAYNT takes as an input a sketch — a program description in the PRISM
(or JANI) language containing some undefined parameters (holes) with associ-
ated options from domains. A PRISM program consists of one or more reactive
modules that may interact with each other using synchronization. A module
has a set of (bounded) variables that span its state space. Possible transitions
between states of a module are described by a set of guarded commands of the
form:

[action] guard — p;:update;...... + py, : update,,

If the guard evaluates to true, an update of the variables is chosen according to
the probability distribution given by expressions p; through p,,. The actions are
used to force two or more modules to make the command simultaneously (i.e. to
synchronize). The holes can appear in guards and updates. Replacing each hole
with one of its options yields a complete program with the semantics given by a

860 R. Andriushchenko et al.

finite-state Markov chain. The following sketch describes the PM (the modules
implementing the other components of the server are omitted for brevity).

module PM
pm : [0..2] init O; // O - sleep, 1 - idle, 2 - active
[syncO] q <= T1*QMAX -> (pm’=P1);
[syncO] q > T1*QMAX & q <= T2*QMAX -> (pm’=P2);
[syncO0] q > T2*QMAX & q <= T3*QMAX -> (pm’=P3);
[syncO] q > T3*QMAX -> (pm’=P4);
endmodule

In our example, we consider the following holes and domains describing;:
the thresholds 77 € {0,0.1,0.2,0.3,0.4},7> € {0.5},T3 € {0.6,0.7,0.8,0.9}2,
the corresponding power profiles Py, ..., Py € {0,1,2}, and the queue capacity
Qumax € {1,...,10}. The resulting sketch describes a design space of 10-5-4-3* =
16,200 different power managers where the average size of the underlying MC
(of the complete system) is around 900 states.

The goal is to find the concrete power manager, i.e., the instantiation of
the holes, that minimizes power consumption while the expected number of lost
requests during the operation time of the server is below 1. Such specification @
is formalized as a list of temporal logic formulae in the PRISM syntax:

R{"lost"}<= 1 [F "finished"] R{"power"}min=? [F "finished"]

Using the sketch and the specification @, PAYNT effectively explores the design
space and finds a hole assignment inducing a program that satisfies @, provided
such assignment exists. Otherwise, it reports that such design does not exist.
For the example, PAYNT produces the following output containing the hole
assignment and the quality wrt. @ of the corresponding program:

hole assignment: QMAX=5,T1=0,T2=0.5,T3=0.7,P1=1,P2=2,P3=2,P4=2
Rlexpl{"lost"}=0.6822759696 [F "finished"]
R[expl{"power"}min=9100.064246 [F "finished"]

The obtained optimal power manager has queue capacity 5 with thresholds (after
rounding) at 0, 2 = |5-0.5] and 3 = |5-0.7]. In addition, the power manager
always maintains an active profile unless the request queue is empty, in which
case the device is put into an idle state. This solution leads to the expected
number of lost requests of ~ 0.68 < 1 and the power consumption of 9,100 units.
PAYNT computes this optimal solution in one minute. This is three times faster
than a naive enumeration of all solutions.

Let us consider a more complex variant of the synthesis problem inspired by
the well-studied model of a dynamical power manger for complex electronic sys-
tems [5,21]. The corresponding sketch describes around 43M available solutions
with an the average MC size of 3.6k states. While enumeration needs more than
1month to find the optimal power manager, PAYNT solves it within 10 h.

2 Note that this simply ensures that T} < T» < T3. PAYNT further supports restric-
tions—additional constraints on parameter combinations.

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 861

3 Synthesis of Probabilistic Programs

We formalize the synthesis problems supported by PAYNT and briefly present
state-of-the-art synthesis algorithms; more details can be found in [3,11,12].

Problem Statement

Sketch. PAYNT uses sketches to define the set of designs. Let P be a sketch
containing holes from the set H = {Hy}, with R; being the set of options
available for hole Hy. Let R = [I, Ri denote the set of all hole assignments
(realizations), P[r] denote the program induced by a substitution r € R and D,
denote the underlying MC. Note that the size of the set R is exponential in |H|.

Specification. PAYNT supports conjunctions of specifications with reachability
and expected rewards. For a set T' of target states, reachability properties p =
Pean[F 7] with A € [0,1] and e {<,<,>,>} express that the probability
to reach T relates to A € [0,1] according to <. Ezpected reward properties
© = Esn[F T express that the expected reward accumulated before T is reached
relates to A € RT according to e {<,<}. Let P[r] = ¢ denote that the
program P[r| induced by the realisation r satisfies ¢. For a specification ¢ =
{@i}ier given by a finite set of properties, we write P[r] = & to denote Vi € I :

Plr] = @i

Synthesis problems. PAYNT is able to answer two types of synthesis questions
for a PRISM sketch P with a set R of realizations and a specification @:

Feasibility: Find a realization r € R such that P[r] = ®.

Maximality: For property ¢max, find a realization r* € R such that

r* € argmax {P[P[r] E ¢Ymax] | P[r] E ?}.

rerR

Variants of the maximal synthesis problem for expected rewards and minimiza-
tion are defined analogously. PAYNT also supports a relaxed variant of max-
imal synthesis, e-mazimal synthesis: find a realization r* such that P[r*] E &
and P[P[r*] E ¢max] > (1—¢) - max, .z {P[P[r] F ¢max] | P[r] = @} for a given
e € (0,1].

Existing Synthesis Methods

Synthesis methods can be classified into two orthogonal groups: i) complete
methods allowing to prove non-existence or optimally of the given problem,
and ii) incomplete methods leveraging various smart search strategies and evo-
lutionary algorithms [22,26,38]. While its architecture is flexible, the current

862 R. Andriushchenko et al.

o) R P
l RCR l r € R+bounds l
Abstr-Oracle 7 Learner —] CE-Oracle
eachr e R, rE® nor =@ rE®

Fig. 3. Oracle-guided synthesis (adapted from [3]).

release of PAYNT is built around state-of-the-art complete methods. As a base-
line and reference algorithm, the tool implements the so-called one-by-one app-
roach [15] which simply enumerates through each realization r € R. The design-
space explosion renders this approach unusable for large problems, necessitating

the usage of advanced techniques that exploit any structure of the family of
MCs.

Oracle-guided synthesis. At the heart of PAYNT is an oracle-guided induc-
tive synthesis approach [31,32,46]. A learner selects a realization r and passes
it to an oracle. The oracle answers whether r satisfies @ and, crucially, gives
additional information, usually a counter-example (CE), whenever this is not
the case. PAYNT implements two orthogonal different oracles: (a) an inductive
oracle CE examines single realizations to infer statements about other realiza-
tions [11]. (b) a deductive oracle AR (Abstraction Refinement) argues about sets
of realizations by considering (an aggregation of) these realizations at once [12].
PAYNT supports the combined use of these two oracles as a hybrid synthesis
method [3].

Figure 3 [3] illustrates the communication between the learner and the two
oracles. The Abstr-Oracle analyzes a sub-family R with 3 possible outcomes: 1)
it proves that all its realizations satisfy @, i.e., that the synthesis problem is
feasible, or 2) it proves that all its realizations violate @, i.e., the learner can
safely discard R, or 3) the analysis is inconclusive and it returns safe bounds on
the best- and worst-case behavior of all realizations in R wrt. @. The CE-Oracle
analyzes a realization r and either proves that r satisfies @ or it generalizes r
into a subfamily R’. The learner can discard R’ since it is guaranteed that all
its realizations violate @. In the hybrid approach, the CE-Oracle exploits the
bounds in order to compute smaller CEs allowing a better generalization. The
learner maintains a queue of subfamilies R’ C R that has to be further processed
and also controls which oracle is used based on their previous performance.

4 Tool Architecture of PAYNT

PAYNT is implemented on top of the probabilistic model checker Storm [19].
While the high-performance parts were implemented in C++, we use a python
API to flexibly construct the overall synthesis loop. For SMT-solving, we use

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 863

input: | sketch P ‘ family R of realizations ‘ | specification ® |

subfamily
queue

A
conflict R' C R
all violate ¢

CE generator D, ¥ &
MaxSat‘ greedy

Fig. 4. The tool architecture (Color figure online)

Z3 [37]. PAYNT takes a PRISM [35] or JANI [7] sketch and a set of tempo-
ral properties, and returns a satisfying realization, if such exists. Otherwise, it
reports that no such realization exists.

Figure4 depicts a high-level view on the tool architecture, which primarily
consists of components for family handling (purple), chain building (green)
and model checkers (red).

The family handlers are used to store information about the previously cov-
ered design space: Member enumeration simply iterates over all realizations. The
SAT representation stores a SAT-formula describing unexplored realizations and
uses the SMT solver Z3 for linear (bounded) integer arithmetic to retrieve the
next candidate realization. The subfamily queue stores a collection of unexplored
subfamilies and refines these subfamilies as hyper-rectangles. The chain builders
take as input a single assignment r € R or a set R’ C R of realizations, and
produce an representation of the MC or a quotient MDP, respectively in the
internal memory model of the model checkers. The model checkers are then used
to verify these chains. They either output yes/no or, in the case of MDPs, pro-
vide lower and upper bounds on satisfiability probabilities. PAYNT includes a
module for counterexample generation by using either a MaxSat [17,49] or a
greedy state-expansion [3] approach.

Figure4 also illustrates three analysis loops that mirror the behaviour of
1-by-1 enumeration (the baseline), CEGIS and AR. The 1-by-1 approach sim-
ply iterates over all possible realizations until a satisfying one is obtained. The
CEGIS loop additionally constructs counterexamples to each unsatisfying real-
ization r € R, yielding a whole subset R’ C R of realizations that are pruned
from the family. In contrast to this enumeration, the AR loop constructs and
model checks MDPs from the subfamily queue and subsequently refines these
subfamilies if the obtained bounds on satisfiability yield inconclusive results.

864 R. Andriushchenko et al.

Table 1. Case study statistics and PAYNT synthesis times versus the naive 1-by-1 enu-
meration. Two problems per model are considered: an optimal synthesis problem (hard)
and a feasibility problem (easy). In both cases, all realizations need to be explored to
prove optimality and unsatisfiability, resp. Values indicated with * are estimates.

Model Number of parameters | Family size | Average MC size | 1-by-1 enumeration | Tool performance
Hard Easy

DPM 16 43M 3.6k 35days * 9.3h 1.1h

Maze 22 9.4M 0.2k 1.8 days* 1h 54 min

Herman | 7 3.1M 1.1k 1.5days * 17min | 1.1 min

Pole 17 1.3M 5.6k 1lday * 8.5min | 5s

Grid 8 65k 1.2k 32 min 37s 21s

The hybrid approach combines both AR and CEGIS approaches and switches
between the two loops mid-execution. In particular, the integrated method exe-
cutes the abstraction-refinement loop and, whenever it encounters an undecid-
able family that needs to be split, CEGIS takes a chance at analyzing it for
a limited time period. If some family members are excluded based on a coun-
terexample, the CEGIS engine updates the corresponding SAT representation
to ensure it does not analyze the same member twice. There are two additional
links that couple the AR and CEGIS loops and enable efficient integrated anal-
ysis. First is the use of bounds from MDP model checking during the greedy
CE generation to allow the construction of larger family-aware conflicts. Since
these bounds are associated with the states of the quotient MDP M7® for the
(sub-)family and counterexamples are constructed as sub-MCs of the MC D,.,
r € R, in the integrated setting we construct D, directly from M™, to save time
on converting bound values between the two chains.

The implementation of PAYNT is composed of 30 Python modules contain-
ing 7k source lines of code. These metrics consider only our implementation and
do not include the extensions contributed to STORM and its Python API, invoked
by PAYNT. All modules adhere to coding conventions for the Python code PEP
8 [41,43] and are documented with Sphinz for automatic generation of docu-
mentation. The specific logic components are tested with unit tests to maintain
their correct functionality. Regression tests verify the accuracy and correctness
of the synthesis results. Our tests currently cover more than 90% of the source
code lines.

5 Performance Evaluation and Applicability

Table1 lists the results of PAYNT on two variants (hard and easy) of five
different case studies from various domains taken from [11,12]. Further on, we
demonstrate the applicability of PAYNT and interpret the synthesis results for
two of these case studies. All experiments are run on an Ubuntu 19.04 machine
with Intel i5-8300H (4 cores at 2.3 GHz) and using up to 8 GB RAM, with all
the algorithms being executed single-threaded. The artefact allowing to repro-
duce the experiments is avaiable at https://doi.org/10.5281 /zenodo.4726056.

https://doi.org/10.5281/zenodo.4726056

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 865

Maze. This synthesis problem can be seen as an instance of POMDP controller
synthesis. A robot is deployed at a random location inside a known maze, see
Fig. 5. The robot is only equipped with a simple wall sensor, and cannot distin-
guish maze cells with identical sets of surrounding walls such as cells 1 and 3,
and cells 11 through 13. Observation-equivalent cells are indicated by the same
color in Fig. 5. Possible actions are movements in the four cardinal directions.
Movements are subject to a random error: e.g., upon moving east, with a small
probability the robot actually moves west. We sketch a robot controller that
helps it to reach the exit of the maze (cell 12). The controller may use a single
bit of memory initially having the value 0. The holes in this sketch are taken
actions (where to steer, how to change the memory bit) based on the current
observation (detected walls, current memory state). This sketch describes a fam-
ily of 9.4M candidate programs. Our goal is to find a realization that minimizes
the expected number of steps to reach the exit.

Using the inductive synthesis tech-
niques, PAYNT explores the set of

candidate realizations in an hour (1- 007 4 4 0o 10X

. < : <

by-1 enumeration takes more than one 0 ot > 2 < T
day) and synthesizes the controller 1\ 0 X \L 1\ 0 1\ 0
. . . 0 1 0 0

depicted in Fig. 5. Here arrows repre- 5 6 7

sent the steering direction based on
the current memory value (number
at the base of an arrow), as well
as the corresponding memory update
(number at the tip of an arrow). For
instance, a robot in cell 1 goes west
if the memory value is 0 and goes

-
—>
o o
-
—>
o O:;
—_ e\ <
o O

oo
©

X o
NS
w—-=0—>

X O

-

Fig. 5. The spatial structure of Maze. Cells

herwis th h . h with identical sets of surrounding walls are
cast otherwise, without changing the depicted with similar colors. The arrows

memory in either case. A robot at cell depict the synthesized controller. (Color
0 always goes east and sets its memory figure online)

bit to 1. The synthesized controller is

optimal. If a robot reaches a cell with a unique set of enclosing walls (cells 0,
2 and 4), then it knows its precise position within the maze and can navigate
to the exit. Similarly, navigating north from cells 11 or 13 ensures to eventually
reach cells 0 or 4. If the robot is deployed in an orange or purple cell, then it
has to ‘try’ one possible direction in order to recognize its position within the
maze. For example, a robot deployed at cells 5-10 will first go north (recall that
the initial memory value is 0), from where it can determine its cell. Note that in
this observation group it is indeed more beneficial to first explore north since the
robot is twice as likely to be initially deployed at locations 5/7/8/10, as com-
pared to locations 6 and 9. The expected time to reach the exit for this policy is
~9.8 steps. Note that this cannot be improved by adding more memory to the
controller.

866 R. Andriushchenko et al.

Herman. This case study considers a token ring with an odd number of stations
that are connected by a unidirectional ring. Each station has a Boolean flag,
observable by itself and by its successor in the ring. A station has a token when
the two flags it observes are identical. A good configuration is a situation in
which only one station has a token. All other configurations are faulty. A token
protocol is self-stabilizing, if the ring gets from a faulty configuration into a good
configuration. The performance can be measured as stabilization time, i.e., the
expected number of rounds to reach a good configuration.

We sketch a variant of Herman’s randomized self-stabilization protocol [6,28,
34]. In this protocol, all stations behave the same?®. The protocol is synchronized,
and in every round a station without token flips its flag. Every station that has
a token must choose whether to pass a token (by setting its flag accordingly). In
the original protocol this choice is the resolved on a single (biased) coin flip. We
are interested in the synthesis of alternatives. We give each station an additional
single bit of memory and the choice between 25 different coin biases. The param-
eters in the sketch are the choice of a coin based on the memory value as well
as the memory updates. By resolving the choices, we obtain the same protocol
for each station. The parameter combinations yield a family of 3.1M programs
and the goal of the synthesizer is to identify the one that minimizes stabilization
time from an initial configuration (all flags true). For a sketch describing a sys-
tem with 5stations, PAYNT finds the optimal protocol in around 18 min, while
the 1-by-1 enumeration takes more than a day. The obtained optimal strategy
relies on initially using the most fair coins available (bias a2 0.25) and keeping
the memory bit at 1. Whenever a process eventually decides to keep the token,
the memory is reset to 0 and the process starts using highly unfair coins (bias
~0.07), implying that the process is more likely to keep its token for a long
time until it is eventually passed further. Using this strategy, the system can on
average stabilize in four rounds.

References

1. Abrahdm, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hahnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65-121. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07317-0_3

2. Alur, R., et al.: Syntax-guided synthesis. In: Proceedings of the IEEE International
Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 1-17,
October 2013

3. Andriushchenko, R., Ceska, M., Junges, S., Katoen, J.-P.: Inductive synthesis for
probabilistic programs reaches new horizons. In: TACAS 2021. LNCS, vol. 12651,
pp. 191-209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-
211

3 In such anonymous networks, stabilization cannot be solved in a deterministic
way [20].

https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-030-72016-2_11
https://doi.org/10.1007/978-3-030-72016-2_11

10.

11.

12.

13.

14.

15.

16.

17.

18.

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 867

Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326-340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9_30

Benini, L., Bogliolo, A., Paleologo, G.A., Micheli, G.D.: Policy optimization for
dynamic power management. IEEE Trans. CAD Integr. Circ. Syst. 18(6), 813-833
(1999)

Bruna, M., Grigore, R., Kiefer, S., Ouaknine, J., Worrell, J.: Proving the Herman-
protocol conjecture. In: ICALP, LIPIcs, vol. 55, pp. 104:1-104:12. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik (2016)

Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151-168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140-158
(2018)

Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: RODES: a
robust-design synthesis tool for probabilistic systems. In: Bertrand, N., Bortolussi,
L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 304-308. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66335-7_20

Ceska, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Inf. 54(6), 589-623
(2017)

Ceska, M., Hensel, C., Junges, S., Katoen, J.-P.: Counterexample-driven synthesis
for probabilistic program sketches. In: ter Beek, M.H., Mclver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 101-120. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8_8

Ceska, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov
chains. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 172—
190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_10
Chonev, V.: Reachability in augmented interval Markov chains. In: Filiot, E.,
Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp. 79-92. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30806-3_7

Chrszon, P., Dubslaff, C., Kliippelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45-75 (2018)

Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14, 589-612
(2012)

Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280-294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0-21

Dehnert, C., Jansen, N., Wimmer, R., Abrahém, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146-162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6-11

Dehnert, C., et al.: PROPhESY: a probabilistic parameter synthesis tool. In: Kroen-
ing, D., Pasireanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214-231. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13

https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-66335-7_20
https://doi.org/10.1007/978-3-030-30942-8_8
https://doi.org/10.1007/978-3-030-30942-8_8
https://doi.org/10.1007/978-3-030-17465-1_10
https://doi.org/10.1007/978-3-030-30806-3_7
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-21690-4_13

868

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

R. Andriushchenko et al.

Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunéak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592-600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643-644 (1974)

Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilis-
tic models for quality-of-service software engineering (t). In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 319-330,
November 2015

Gerasimou, S., Calinescu, R., Tamburrelli, G.: Synthesis of probabilistic models for
quality-of-service software engineering. Autom. Softw. Eng. 25(4), 785-831 (2018)
Ghezzi, C., Sharifloo, A.M.: Model-based verification of quantitative non-functional
properties for software product lines. Inf. Softw. Technol. 55(3), 508-524 (2013)
Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 69-92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17502-3_5

Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3—19 (2011)
Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comp. Surv. 45(1), 11:1-11:61 (2012)
Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Abrahém, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593-598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63—-67 (1990)
Hutschenreiter, L., Baier, C., Klein, J.: Parametric markov chains: PCTL complex-
ity and fraction-free Gaussian elimination. GandALF. EPTCS 256, 16-30 (2017)
Inala, J.P., Bastani, O., Tavares, Z., Solar-Lezama, A.: Synthesizing programmatic
policies that inductively generalize. In: ICLR (2020)

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE, pp. 215-224. ACM (2010)

Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693-726 (2017)

Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1-2), 99-134 (1998)
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic verification of Herman’s
self-stabilisation algorithm. Formal Aspects Comput. 24(4), 661-670 (2012)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1.47

Lanna, A., Castro, T., Alves, V., Rodrigues, G., Schobbens, P.Y., Apel, S.: Feature-
family-based reliability analysis of software product lines. Inf. Softw. Technol. 94,
59-81 (2018)

Lindemann, C.: Performance modelling with deterministic and stochastic Petri
nets. SIGMETRICS Perform. Eval. Rev. 26(2), 3 (1998)

Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: WOSP /SIPEW, pp. 105-116. ACM (2010)

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 869

Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: PLDI, pp. 208-217. ACM (2015)

Pathak, S., Abrahém, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy app-
roach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295-309. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9_21

Peters, T.: The Zen of Python. PEP 20 (2004). https://www.python.org/dev/
peps/pep-0020/

Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50-67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3_4

van Rossum, G., Warsaw, B., Coghlan, N.: Style guide for Python code. PEP 8
(2001). https://www.python.org/dev/peps/pep-0008/

Saad, F.A., Cusumano-Towner, M.F., Schaechtle, U., Rinard, M.C., Mansinghka,
V.K.: Bayesian synthesis of probabilistic programs for automatic data modeling.
In: Proceedings of the ACM on Programming Languages, vol. 3(POPL), pp. 1-32
(2019)

Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis, USA (2008)
Solar-Lezama, A., Rabbah, R., Bodik, R., Ebcioglu, K.: Programming by sketching
for bit-streaming programs. In: PLDI, pp. 281-294. ACM (2005)

Vandin, A., ter Beek, M.H., Legay, A., Lluch Lafuente, A.: QFLan: a tool for the
quantitative analysis of highly reconfigurable systems. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 329-337. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_19

Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. In: International Conference on Machine Learning,
pp. 5045-5054. PMLR (2018)

Wimmer, R., Jansen, N., Vorpahl, A., Abrahém, E., Katoen, J.P., Becker, B.:
High-level counterexamples for probabilistic automata. Logical Meth. Comput. Sci.
11(1) (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-17524-9_21
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.1007/978-3-319-95582-7_19
http://creativecommons.org/licenses/by/4.0/

	PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs
	1 Introduction
	2 Using PAYNT
	3 Synthesis of Probabilistic Programs
	4 Tool Architecture of PAYNT
	5 Performance Evaluation and Applicability
	References

