)

Check for
updates

IMITATOR 3: Synthesis of Timing
Parameters Beyond Decidability

Etienne André(®

Université de Lorraine, CNRS, Inria, LORIA,
54000 Nancy, France
Andre.Etienne@lipni3.fr

Abstract. Real-time systems are notoriously hard to verify due to non-
determinism, concurrency and timing constraints. When timing con-
stants are uncertain (in early the design phase, or due to slight vari-
ations of the timing bounds), timed model checking techniques may not
be satisfactory. In contrast, parametric timed model checking synthe-
sizes timing values ensuring correctness. IMITATOR takes as input an
extension of parametric timed automata (PTAs), a powerful formalism
to formally verify critical real-time systems. IMITATOR extends PTAs
with multi-rate clocks, global rational-valued variables and a set of addi-
tional useful features. We describe here the new features and algorithms
offered by IMITATOR 3, that moved along the years from a simple proto-
type dedicated to robustness analysis to a standalone parametric model
checker for timed systems.

Keywords: Parametric timed automata - Parameter synthesis -
Real-time systems

1 Introduction

Real-time systems are often used in critical environments, and may be verified
using formal methods. Such systems are notoriously hard to verify due to nonde-
terminism, concurrency and timing constraints. Timed model checking provides
designers with techniques to formally verify a real-time system. However, timed
model checking may not always be fully satisfactory: First, in the early design
phase, timing constants may not be known and, without them, model checking
is not possible; Second, at runtime, timing constants may vary (due to uncertain
bounds, or to processor clock drifts), in which case the model checking result
may not hold anymore. In contrast, parametric timed model checking synthesizes
timing values ensuring the system correctness.

Parametric timed automata (PTAs) are a powerful formalism to reason
about, and formally verify critical real-time systems [5]. PTAs are finite state

This work is partially supported by the ANR-NRF French-Singaporean research pro-
gram ProMiS (ANR-19-CE25-0015).
© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 552-565, 2021.
https://doi.org/10.1007/978-3-030-81685-8_26


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_26&domain=pdf
http://orcid.org/0000-0001-8473-9555
https://www.loria.science/ProMiS/
https://doi.org/10.1007/978-3-030-81685-8_26

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 553

6
5 .
4 4
[}
o
o 3 1
O
(=9
2
1
O | I
0 1 2 3 4 5 6
pTotal
(a) State space (b) 2-dimensional constraint

Fig. 1. Examples of graphical outputs

automata extended with clocks, i.e., real-valued variables evolving linearly, that
can be compared with either integer constants or parameters in guards (con-
straints to take a transition) and invariants (constraints to remain in a location).
IMITATOR takes as input networks of “IMITATOR PTAs” (IPTAs) extending
PTAs with several convenient features such as stopwatches, multi-rate clocks or
global shared rational-valued variables.
IMITATOR answers variants of the following problem:

Parameter synthesis problem:
INPUT: A network of IPTAs A and a specification ¢
PROBLEM: Synthesize the set of parameter valuations for which A satisfies ¢

IMITATOR answers this problem by synthesizing sets of parameter valuations
in the form of a finite disjunction of linear constraints over the parameters.

IMITATOR is a command-line only tool; its input is text-based (partially
inspired by HYTECH syntax [41]) and is “human-readable”, different from, e.g.,
XML. IMITATOR produces standardized result files (that can be possibly parsed
from external tools), and can produce graphical outputs, such as in Fig. 1.

The expressive power (i.e., ease to write a complicated model in a compact
manner) of the tool has been largely improved since IMITATOR 2.5 [17], and
IMITATOR is now a parametric timed model checker taking as inputs a model
and a property, implementing various synthesis algorithms.

2 An Expressive Input Language

Parametric Timed Automata (PTAs). Timed automata (TAs) [3] extend finite-
state automata with clocks, i.e., real-valued variables evolving at the same rate 1,



554 E. André

that can be compared to integers along edges (“guards”) or within locations
(“invariants”). Clocks can be reset (to 0) along transitions. PTAs extend TAs
with (timing) parameters, i.e., unknown rational-valued constants [5].

Ezample 1. In the model in Fig. 2 (that goes beyond the syntax of PTAs, see
Example 2), there are four locations, depicted as rounded rectangles. Invariants
are depicted using dotted rectangles. In the invariant of location working, clock x
is compared to parameter p;,:,;. The guard of the transition from coffee to
working compares clock ¢ to p.,fe.; this clock ¢ is reset to 0 along this transition.

IMITATOR Parametric Timed Automata (IPTAs). IMITATOR takes as input
models described as networks of IMITATOR parametric timed automata
(IPTAs). IPTAs extend PTAs with a set of useful features, described in the
following.

Global Rational-Valued Variables. Global variables (called “discrete”) can be
defined, and are part of the discrete part of a state, together with locations
(and different from clocks and parameters that are part of the continuous part).
Global variables in IMITATOR are exact rationals, following exact arithmetics
(as opposed to, e.g., floating-point arithmetic that can accumulate errors and
lead to faulty assertions). Exact rationals are encoded in IMITATOR using the
GNU MP library. Such discrete variables can be updated along transitions, and
can also be part of the clock guards and invariants; in fact, virtually any linear
expression over clocks, parameters and discrete variables can be used in guards,
invariants and updates. Non-linear arithmetic expressions over sole discrete vari-
ables are allowed too.

Automata Synchronization. IPTAs can be synchronized together on shared
actions, or by reading shared variables. All variables (clocks, parameters, dis-
crete) are potentially global in IMITATOR. This allows users to define models
component by component.

Arbitrary Flows. Since version 3.0, IMITATOR supports arbitrary (constant)
flows for clocks; this way, clocks do not necessarily evolve at the same time, and
can encode different concepts from only time: temperature, amount of comple-
tion, continuous cost... Their value can increase or decrease at any predefined rate
in each location, and can become negative. In that sense, IMITATOR’s clocks are
closer to continuous variables (as in hybrid automata) rather than TAs’ clocks;
nevertheless, we keep the name clock for sake of backward-compatibility. This
makes IMITATOR support a parametric extension of multi-rate automata [2].
This notably includes stopwatches, where clocks can have a 1- or O-rate [36].

Additional Syntaxr Improvements. Beyond the aforementioned increase of the
syntactic expressive power, the syntax was enhanced with accepting locations

(that can be used in properties), global constants, “if... then... else” con-
ditions in updates, and with the ability to include model fragments from different


https://gmplib.org/

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 555

r S Ptotal t 2 Pneed
restart Anb < mar — 1
14— Pueed drink
x,nb <0 t<0
nb <+ nb+1

T = Ptotal
done

t+0

finished t < Deoffec

t = DPeoffec
Ax > 0.8 X piotal
t<+0

z 2> 0.8 X protal

T = Ptotal

done t 2> 0.6 X preea
Anb < mazx — 1
workingFast drink
'
T < Piotal nb < nb+1

Fig. 2. An IPTA example: writing papers and drinking coffee

files (new syntax #include (modelpart.imi)). Several simplifications were made
to the syntax to keep it “human-readable”. For example, location workingFast of
Fig. 2 is written in IMITATOR syntax as follows:

‘loc workingFast: invariant x <= pTotal flow{x’ = 2}

Translations. Finally, translations of the model are available to other model
checkers such as HYTECH [41] and UPPAAL [42] (in both cases, not all features
can be translated since some of the features of IMITATOR do not exist in the
target tool, e.g., UPPAAL does not support parameters nor complex linear con-
straints over clocks (only “diagonal”)). Graphical translations of the model are
also available to JPEG, PDF and IXTEX formats.

Example 2. Consider the IPTA in Fig. 2, modeling a researcher writing papers.
The model features two clocks ¢ (measuring the time when needing a coffee)
and x (measuring the amount of work done on a given paper), both initially 0.
Their rate is always 1, unless otherwise specified (e.g., in workingFast). Initially,
the researcher is working (location working) on a paper, requiring an amount of
work pioiai. When the paper is completed (guard x = piya), the IPTA moves
to location finished. From there, at any time, the researcher can start working
on a new paper (transition back to working, updating x and ).

Alternatively, after at least a certain time (guard ¢ > p,,..q), the researcher
may need a coffee; this action can only be taken until a maximum number of
coffees have been drunk for this paper (nb < maz — 1), where nb is a dis-
crete global variable recording the number of coffees drunk while working on



556 E. André

the current paper. When drinking a coffee (location coffee), the work is obvi-
ously not progressing (& = 0). Drinking a coffee takes exactly p ... time units
(guard t = p.opee back to location working). Observe that, from the second paper
onwards (transition labeled with restart), the researcher is already half-way of
her/his need for a coffee (parametric update t < 0.5 X p,.cq [22]).

Also, whenever 80% of the work is done (guard z > 0.8 X py141), the researcher
may work twice as fast (location workingFast, with a rate 2 for clock ). In that
case, (s)he needs a coffee faster too (0.6 X p,eeq)-

All three durations p.ogee, Preed and piorq are timing parameters. We fix
their parameter domains as follows: pofec, Piotar € [0,00) and peeq € [1,00).
The maximum number of coffees maz € [0,00) is also a parameter; observe that
it is (only) compared to the discrete variable nb, and therefore can be seen as a
“discrete parameter”—which is allowed by the liberal syntax of IMITATOR.

The example in Fig. 2 could not be modeled with UPPAAL due to the presence
of timing parameters, stopwatches, multi-rate clocks and non-0 update. It may be
modeled using HYTECH; however, most algorithms implemented in IMITATOR
(even the most basic ones, such as liveness synthesis) do not exist in HYyTECH,
as HYTECH mainly focuses on basic state space computation.

3 A Variety of Synthesis Algorithms

The formalism of networks of IPTAs is “highly undecidable” for most problems.
Indeed, while several problems are decidable for timed automata (notably the
reachability [3]), most interesting problems become undecidable in the presence
of timing parameters [5,8] , notably when such parameters are unbounded [35].
On top of this, multi-rate automata together with linear constraints over the
clocks also yield undecidability [2]. Finally, the mere use of stopwatches, even
without the aforementioned extensions, brings undecidability [36]. Also note
that, in contrast to several existing model checkers, IMITATOR offers the use
of unbounded rational variables, therefore with an infinite domain. For all these
reasons, it is always possible to find examples of IPTAs for which the algorithms
implemented in IMITATOR would not terminate with an exact (sound and com-
plete) result. The rational behind IMITATOR is therefore to follow a “best-effort”
approach, by:

— using aggressive optimizations and abstractions (e.g., [11,19,45]), leading to
termination for most case studies in practice;

— outputting over- or under-approximated results, i.e., the set of synthesized
parameter valuations may be larger or smaller than the exact result.

IMITATOR outputs a standardized result (in a text file), that contains the syn-
thesized constraint with a set of information, and notably the walidity of the
constraint, i.e., whether the set of valuations is ezact (sound and complete), pos-
stbly over-approrimated, possibly under-approximated, or potentially invalid i.e.,
when both under-approximating and over-approximating heuristics were used.



IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 557

By default, IMITATOR attempts to synthesize an exact result; only when some
specific options are used (e.g., a limit on the number of states explored, or on
the computation time), approximations may be used. These approximations are
conservative for most algorithms; for example, if an approximation is used for
safety synthesis, then the result will be under-approximated (i.e., the system is
safe for all synthesized valuations—even though some more safe valuations may
exist).

IMITATOR offers two main classes of synthesis: i) Witness (or counter-
example), which attempts to exhibit at least one parameter valuation satisfying
the property; often, IMITATOR still outputs a symbolic set of valuations (i.e.,
a linear constraint over the parameters), but stops the analysis as soon as one
such set is found. 1) Normal synthesis, where IMITATOR attempts to synthesize
all parameter valuations satisfying the property.

Properties include reachability (denoted by “EF”, following the TCTL syn-
tax), safety (denoted by “AGnot”), liveness, deadlock-freeness, robustness, and
some others.

Throughout this section, we exemplify the main synthesis algorithms of IMI-
TATOR on Example 2.! All the results synthesized in the following are exact
(sound and complete), unless otherwise specified.

Safety. A first algorithm of IMITATOR is safety synthesis, i.e., synthesizing
parameter valuations for which a discrete state (location and/or valuation of
the discrete variables) is unreachable for all runs. For example, one synthesize
the valuations for which it is impossible to drink any coffee, i.e., it is impossible
to reach the coffee location of the “researcher” automaton of Fig. 2.

#synth AGnot (loc[researcher] = coffee)

Pneed

10 )

Let us explain this result. The first disjunct is trivial: if the researcher is not
allowed to drink any coffee (maz < 1), the transition to coffee (guarded by
“nb < max —1") can never be taken. The second disjunct is, despite the relative
simplicity of this model, less trivial: assume for illustration that p,,.., = 10 and
Piotar = 1, and let us show that the researcher is still able to start drinking
a coffee in this situation. After the first paper completion (action restart), we
have © « 0 and ¢ < 5. After one time unit in location working (z = 1 and
t = 6), the researcher moves to workingFast, and can immediately move to coffee
(guard ¢t > 0.6 X py,c.q is now satisfied). This scenario, that can be seen on the
parametric state space output by IMITATOR (see Fig.1a), is also possible for

larger values of p;,;,;. This explains the strict inequality poi0 < ”'1"0”’.

The result is: maz € [0,1) V (ma;z; > 1A piora <

1 All finishing executions for our example using IMITATOR 3.0 “Cheese” ea560fd on a
Dell XPS 13 7390 Intel® Core™ i7-10510U CPU @ 1.80 GHz running Linux Mint
20 Ulyana terminate within < 1s. All examples and results can be found at [9].


https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0

558 E. André

Reachability. Reachability can be seen as the opposite of safety, i.e., the goal is
to synthesize parameter valuations for which a discrete state is reachable for at
least one run. For example, one can ask for the valuations for which it is possible
to drink at least one coffee:

#synth EF(loc[researcher] = coffee)

The result is maz > 1A piorar > ”’1’—6”, which is obviously the complement of the
result synthesized for the aforementioned safety property.
One can also synthesize valuations for which it is possible to drink at least

five coffees while working on some article (i.e., nb > 5).

#synth EF (loc[researcher] = coffee & nb >= 5)

The result is maz > 5 A prora; > :1% X Dneed-

Minimum-Time Reachability. Minimal-time synthesis [12] aims at synthesizing
parameter valuations minimizing the time needed to reach a discrete state. Here,
we can ask for the valuations for which it is possible to finish an article after
drinking at least 2 coffees:

#synth EFtmin(loc[researcher] = finished & nb >= 2)

The result is ”T + Dneed 2 X Deoffee < 2A maz > 2 and the minimal time is 2.
That is, any of these valuations guarantee the reachability of a state where the
researcher has drunk 2 coffees, and the minimum time is 2 (recall that p,,..q €

[1,00)).

Optimal Parameter Reachability. One can ask here for the valuations for which
the value of a given parameter is minimized or maximized when reaching a given
state. Let us ask for the valuations minimizing the value of p;,;,; when finishing
a paper after drinking (at least) 3 coffees.

#synth EFpmin(loc[researcher] = finished & nb >= 3, pTotal)

The result is maz > 3 A protar = 2.1 A ppeca = 1. Observe that p.,ge. is not
involved in this constraint (contrarily to minimum-time synthesis); indeed, the
time spent in drinking coffee does not impact the total duration of the work
(Piotal), as the progress of clock z is stopped in coffee.

Parametric Deadlock Freeness. Deadlocks are states in which no discrete action
can be taken, and time cannot elapse (“timelock”). Such situations may denote
ill-formed models. IMITATOR offers an algorithm [7] synthesizing parameter val-
uations for which the model is deadlock-free. In case of “early termination”
(predefined bound on the depth of the state space or on the computation time),
a backward procedure synthesizes a subset of correct (deadlock-free) valuations.

‘#synth DeadlockFree ‘




IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 559

For this property, the analysis does not terminate, as the state space is infinite
(unbounded rational-valued parameters, unbounded variable nb) and IMITATOR
needs to explore it as a whole to deduce deadlock-freeness for our example.

Adding a bound on the depth of the state space (option -depth-limit 40)
yields termination, with a pair of constraints: an under-approximated positive
constraint (i.e., valuations that are guaranteed to be deadlock-free) mazr < 16 Vv
(mazx > 16 A protar < 2—271),,,(.‘,(/), and an over-approximated negative constraint
(i-e., valuations that might be deadlocked) maz > 16 Apiprar > %p,,ml. Observe
that both constraints are complementary, i.e., IMITATOR is sure that the former
set is deadlock-free, and is not sure that the latter set contains deadlocks. (Note
that, in fact, the model is very likely to be deadlock-free for all valuations, even
though IMITATOR is not able to show it.)

Liveness Synthesis. A new feature of IMITATOR 3 is cycle synthesis, i.e., param-
eter valuations for which there exists an infinite run, possibly passing infinitely
often by a given discrete state (Biichi condition). IMITATOR uses by default
an original algorithm by Laure Petrucci and Jaco van de Pol based on NDFS
extended with parametric subsumption and pruning [45] (other algorithms, such
as BFS, are also available [11]). In our running example , one can ask for the
valuations for which the researcher infinitely often writes papers after drinking
(at least) 3 coffees for each of them.

‘#synth CycleThrough(loc[researcher] = finished & nb>=3)

The result is mazr > 3 A piorar = 2.1 X Doeed.

Robustness. Inherited from earlier versions of IMITATOR, one can apply the
inverse method [29] (also called trace preservation [21]) that, given a reference
parameter valuation, synthesizes the set of parameter valuations for which the
set of “traces” (discrete behaviors, i.e., abstracting time information away) is
the same as for this reference valuation.

#synth TracePreservation(pTotal = 10, pNeed = 5, pCoffee = 3, max = 3) ‘

The result is: (3 X Dneed = Ptotal Z 2 x Pneed N mazx € [273)) \ (21 X Pneed >
Diotal = 2 X Ppeed N\ maz > 3). The synthesized constraint can be seen as a
characterization of the robustness of the original parameter valuation.

Synthesis Using Patterns. Another way to specify properties is to use a set of pre-
defined observer patterns [6,28]. Observer patterns are translated into observer
automata (called reachability testing in [1]), and their correctness reduces to
reachability. This procedure is transparent to the user, i.e., (s)he only needs to
specify the pattern and IMITATOR takes care of the translation and synthesis.
IMITATOR patterns specify the order between actions, extended with (possibly
parametric) timing information. The syntax is detailed in the user manual, and
the semantics is given in [6].

For example, one can synthesize the set of valuations such that, every time
the researcher restarts a new article, (s)he completes it within 5 time units. That



560 E. André

is, every occurrence of the restart action must be followed within (at most) 5
time units by the done action.

#synth pattern(everytime restart then eventually done within 5) ‘

A part of the valuations set is: maz > 6 A5 — 6 X peofee > Diotal = 47 X Precd.
A graphical 2D representation projected onto pioie and peoge. (setting
Dnecd = 2 and maz = 3) is given in Fig. 1b.

Other Algorithms. IMITATOR features a number of additional algorithms,
including i) non-Zeno infinite run synthesis [27], ii) behavioral cartography [16]
that partitions the parameter space into tiles where the discrete behavior is uni-
form, or i) parametric reachability preservation, that takes as input a discrete
state and a reference valuation, and synthesizes valuations for which this dis-
crete state is reachable iff it is reachable for the reference valuation [25]. The two
latter algorithms can be distributed over a cluster, showing interesting results,
and can be used to perform reachability synthesis while being faster than the
normal reachability synthesis algorithm for some benchmarks [14,15]. Finally,
compositional verification for a subclass of IPTAs (a parametric extension of
event-recording automata [4]) was proposed in [24].

4 Distribution

IMITATOR is distributed under the terms of the GNU General Public License.
Its source code is therefore publicly available, and benefited from several contrib-
utors’ additions. IMITATOR is available online?, together with its documentation,
and a benchmarks library [26].

IMITATOR depends on several libraries. Notably, the core engine relies on
the Parma Polyhedra Library (PPL) [32] for the computation of symbolic states.
As a consequence, IMITATOR can be cumbersome to compile. For this reason,
standalone binaries are available for all Linux-like systems. A Docker version®
(made by Jaime Arias) and a prototype Web service are available too.

An extensive user manual, explaining all algorithms and providing users with
a full description of the input syntax for models and properties, is available [10].

5 A Selection of Applications

IMITATOR was applied to a variety of both academic and industrial case stud-
ies over the last few years. These applications range within several domains,
including real-time systems, testing and monitoring, cybersecurity, or hardware
verification. One can cite:

2 https://www.imitator.fr.
3 https://hub.docker.com/r/imitator/imitator/.
4 https://imitator.lipn.univ-paris13.fr/.


https://www.gnu.org/licenses/gpl-3.0.html
https://www.imitator.fr
https://hub.docker.com/r/imitator/imitator/
https://imitator.lipn.univ-paris13.fr/

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 561

— the parametric verification of an asynchronous memory circuit by ST-
Microelectronics (from a model described in [37]),

— verification of parametric scheduling problems by Astrium Space Transporta-
tion [40] and ArianeGroup SAS [13],

— analysis of music scores [38],

— verifying the multi-processor image processing system of an unmanned aerial
aircraft with uncertain periods, as a benchmark made public by Thales [46],

— parametric pattern matching and monitoring of logs from the automative
industry [20],

— synthesis of timing/cost parameters in attack-fault trees [23,31],

— testing product lines using parametric constraints [44],

— verification of an industrial asynchronous leader election algorithm by Thales
using IMITATOR combined with abstractions [18§],

— performing parametric opacity analyses for timed automata [30], and

— synthesis of parameter valuations guaranteeing liveness properties for the
Bounded Retransmission Protocol [11].

6 Related Tools

HYTECH [41] was the first model checker for hybrid systems (a class of for-
malisms beyond PTAs), including parameters; it is not maintained anymore.

UPPAAL [42] is a state-of-the-art tool for modeling and verifying systems
modeled as networks of timed automata and extended with variables and
data structures; while UPPAAL became a major tool for model checking timed
automata, it does not support parametric verification, and the use of clocks is
restricted to comparing one clock with one constant or with another clock, while
IMITATOR allows a liberal syntax based on polyhedra.

ROMEO [43] performs parameter synthesis for parametric time Petri nets
with inhibitor arcs [47].

While RoMEO shares similarities with IMITATOR, it does not support (exten-
sions of) timed automata, and notably not multi-rate clocks.

SpaceEx [39] is a tool for verifying hybrid systems. It is not specifically ded-
icated to parameter synthesis, and mainly targets safety and reachability, in
contrast to IMITATOR that proposes multiple synthesis algorithms.

IMITATOR’s input syntax also shares some similarities with that of PHAVer-
Lite [33] (a fork of PHAVer and predecessor of SpaceEx, that uses PPLite [34]
instead of PPL [32]), coming from the fact that both IMITATOR and PHAVerLite
originate from the HYTECH syntax.

7 Perspectives

To gain some further speed for models that require less expressiveness (notably
no strict inequality nor rational-valued variables), offering to replace PPL [32]
with PPLite [34], or using standard 32-bit integers instead of GNU MP rationals
is on our agenda.



562 E. André

Acknowledgement. While the author has been the main developer of IMITATOR
since 2008, several colleagues brought very valuable enhancements, notably Camille

Coti and Sami Evangelista [14] (on distributed algorithms), Nguyen Hoang Gia [27]
(on non-Zeno algorithms), Vincent Bloemen [12] (on minimal-time synthesis), Laure
Petrucci and Jaco van de Pol [11] (on NDFS-based cycle synthesis), and Jaime Arias
for multiple practical enhancements. Many thanks to Dylan Marinho for a careful
rereading of this paper, and to Stephan Merz for useful suggestions.

References

1. Aceto, L., Bouyer, P., Burgueno, A., Larsen, K.G.: The power of reachability test-
ing for timed automata. TCS 300(1-3), 411-475 (2003). https://doi.org/10.1016/
S0304-3975(02)00334-1

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. TCS 138(1), 3-34
(1995). https://doi.org/10.1016,/0304-3975(94)00202-T

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183-235 (1994).
https://doi.org/10.1016,/0304-3975(94)90010-8

4. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of
timed automata. TCS 211(1-2), 253-273 (1999). https://doi.org/10.1016,/S0304-
3975(97)00173-4

5. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S.; Aggarwal, A. (eds.) STOC, pp. 592-601. ACM,
New York, NY, USA (1993). https://doi.org/10.1145/167088.167242

6. André, E.: Observer patterns for real-time systems. In: Liu, Y., Martin, A. (eds.)
ICECCS, pp. 125-134. IEEE Computer Society, July 2013. https://doi.org/10.
1109/ICECCS.2013A26

7. André, E.: Parametric deadlock-freeness checking timed automata. In: Sampaio,
A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 469-478. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46750-4_27

8. André, E.: What’s decidable about parametric timed automata? STTT 21(2), 203~
219 (2019). https://doi.org/10.1007/s10009-017-0467-0

9. André, E.: Artifact for IMITATOR 3.0, April 2021. https://doi.org/10.5281 /zenodo.
4723415

10. André, E.: IMITATOR user manual, January 2021. https://github.com/imitator-
model-checker/imitator /releases/download /v3.0.0 /IMITATOR-user-manual. pdf

11. André, E., Arias, J., Petrucci, L., Pol, J.: Iterative bounded synthesis for effi-
cient cycle detection in parametric timed automata. In: TACAS 2021. LNCS, vol.
12651, pp. 311-329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72016-2_17

12. André, E., Bloemen, V., Petrucci, L., van de Pol, J.: Minimal-time synthesis for
parametric timed automata. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 211-228. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17465-1_12

13. André, E.7 Coquard, E., Fribourg, L., Jerray, J., Lesens, D.: Scheduling synthe-
sis for a launcher flight control using parametric stopwatch automata. In: Keller,
J., Penczek, W. (eds.) ACSD, pp. 13-22. IEEE (2019). https://doi.org/10.1109/
ACSD.2019.00006

14. André, E., Coti, C., Evangelista, S.: Distributed behavioral cartography of timed
automata. In: Dongarra, J., Ishikawa, Y., Atsushi, H. (eds.) EuroMPI/ASIA; pp.
109-114. ACM, September 2014. https://doi.org/10.1145/2642769.2642784


https://doi.org/10.1016/S0304-3975(02)00334-1
https://doi.org/10.1016/S0304-3975(02)00334-1
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1145/167088.167242
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1007/978-3-319-46750-4_27
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.5281/zenodo.4723415
https://doi.org/10.5281/zenodo.4723415
https://github.com/imitator-model-checker/imitator/releases/download/v3.0.0/IMITATOR-user-manual.pdf
https://github.com/imitator-model-checker/imitator/releases/download/v3.0.0/IMITATOR-user-manual.pdf
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1109/ACSD.2019.00006
https://doi.org/10.1109/ACSD.2019.00006
https://doi.org/10.1145/2642769.2642784

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 563

André, E., Coti, C., Nguyen, H.G.: Enhanced distributed behavioral cartography
of parametric timed automata. In: Butler, M., Conchon, S., Zaidi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 319-335. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 21

André, E., Fribourg, L.: Behavioral cartography of timed automata. In: Kucera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76-90. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15349-5_5

André, E., Fribourg, L., Kiihne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33-36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9_6

André, E., Fribourg, L., Mota, J.-M., Soulat, R.: Verification of an industrial asyn-
chronous leader election algorithm using abstractions and parametric model check-
ing. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 409-424.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_19

André, E., Fribourg, L., Soulat, R.: Merge and conquer: state merging in para-
metric timed automata. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS,
vol. 8172, pp. 381-396. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02444-8_27

André, E., Hasuo, 1., Waga, M.: Offline timed pattern matching under uncertainty.
In: Lin, A.W., Sun, J. (eds.) ICECCS, pp. 10-20. IEEE Computer Society (2018).
https://doi.org/10.1109/ICECCS2018.2018.00010

André, E., Lime, D., Markey, N.: Language preservation problems in parametric
timed automata. LMCS 16, January 2020. https://doi.org/10.23638/LMCS-16(1:
5)2020

André, E., Lime, D., Ramparison, M.: Parametric updates in parametric timed
automata. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol. 11535, pp.
39-56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21759-4.3
André, E., Lime, D., Ramparison, M., Stoelinga, M.: Parametric analyses of attack-
fault trees. In: Keller, J., Penczek, W. (eds.) ACSD, pp. 33-42. IEEE (2019).
https://doi.org/10.1109/ACSD.2019.00008

André, E., Lin, S.-W.: Learning-based compositional parameter synthesis for event-
recording automata. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 17-32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60225-7_2

André, E., Lipari, G., Nguyen, H.G., Sun, Y.: Reachability preservation based
parameter synthesis for timed automata. In: Havelund, K., Holzmann, G., Joshi,
R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 50-65. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9_5

André, E., Marinho, D., van de Pol, J.: A benchmarks library for extended timed
automata. In: Loulergue, F., Wotawa, F. (eds.) TAP (2021). (to appear)

André, E., Nguyen, H.G., Petrucci, L., Sun, J.: Parametric model checking timed
automata under non-zenoness assumption. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 35-51. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8_3

André, E., Petrucci, L.: Unifying patterns for modelling timed relationships in
systems and properties. In: Moldt, D., Rélke, H., Storrle, H. (eds.) PNSE, vol.
1372, pp. 25-40. CEUR-WS, June 2015

André, E., Soulat, R.: The Inverse Method. FOCUS Series in Computer Engineer-
ing and Information Technology, p. 176, ISTE Ltd and John Wiley & Sons Inc.
Hoboken (2013)


https://doi.org/10.1007/978-3-319-25423-4_21
https://doi.org/10.1007/978-3-319-25423-4_21
https://doi.org/10.1007/978-3-642-15349-5_5
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-030-11245-5_19
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.23638/LMCS-16(1:5)2020
https://doi.org/10.23638/LMCS-16(1:5)2020
https://doi.org/10.1007/978-3-030-21759-4_3
https://doi.org/10.1109/ACSD.2019.00008
https://doi.org/10.1007/978-3-319-60225-7_2
https://doi.org/10.1007/978-3-319-60225-7_2
https://doi.org/10.1007/978-3-319-17524-9_5
https://doi.org/10.1007/978-3-319-17524-9_5
https://doi.org/10.1007/978-3-319-57288-8_3
https://doi.org/10.1007/978-3-319-57288-8_3

564

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

E. André

André, E., Sun, J.: Parametric timed model checking for guaranteeing timed opac-
ity. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 115-130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3.7

Arias, J., Budde, C.E., Penczek, W., Petrucci, L., Sidoruk, T., Stoelinga, M.:
Hackers vs. Security: attack-defence trees as asynchronous multi-agent systems.
In: Lin, S.-W., Hou, Z., Mahony, B. (eds.) ICFEM 2020. LNCS, vol. 12531, pp.
3-19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63406-3_1
Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Programm. 72(1-2), 3-21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

Becchi, A., Zaffanella, E.: Revisiting polyhedral analysis for hybrid systems. In:
Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 183-202. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32304-2_10

Becchi, A., Zaffanella, E.: PPLite: zero-overhead encoding of NNC polyhedra. Inf.
Comput. 275, 104620 (2020). https://doi.org/10.1016/j.ic.2020.104620

Benes, N., Bezdék, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldérsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69-81. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_6

Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138-152. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4_12

Chevallier, R., Encrenaz-Tipheéne, E., Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
FMSD 34(1), 59-81 (2009). https://doi.org/10.1007/s10703-008-0061-x

Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed music scores. In:
ICMC. Michigan Publishing, August 2013

Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379-395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling
problems using the inverse method. In: Reynolds, M., Terenziani, P., Moszkowski,
B. (eds.) TIME, pp. 73-80. IEEE Computer Society Press, September 2012.
https://doi.org/10.1109/TIME.2012.10

Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. STTT 1(1-2), 110-122 (1997). https://doi.org/10.1007/s100090050008
Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134—
152 (1997). https://doi.org/10.1007/s100090050010

Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54-57. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2_6

Luthmann, L., Gerecht, T., Stephan, A., Biirdek, J., Lochau, M.: Minimum/max-
imum delay testing of product lines with unbounded parametric real-time con-
straints. J. Syst. Softw. 149, 535-553 (2019). https://doi.org/10.1016/j.jss.2018.
12.028


https://doi.org/10.1007/978-3-030-31784-3_7
https://doi.org/10.1007/978-3-030-31784-3_7
https://doi.org/10.1007/978-3-030-63406-3_1
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1016/j.ic.2020.104620
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/s10703-008-0061-x
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1109/TIME.2012.10
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1016/j.jss.2018.12.028
https://doi.org/10.1016/j.jss.2018.12.028

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 565

45. Nguyen, H.G., Petrucci, L., van de Pol, J.: Layered and collecting NDFS with
subsumption for parametric timed automata. In: Lin, A.W., Sun, J. (eds.)
ICECCS, pp. 1-9. IEEE Computer Society, December 2018. https://doi.org/10.
1109/ICECCS2018.2018.00009

46. Sun, Y., André, E., Lipari, G.: Verification of two real-time systems using para-
metric timed automata. In: Quinton, S., Vardanega, T. (eds.) WATERS, July 2015

47. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch
Petri nets. J. Univ. Comput. Sci. 15(17), 3273-3304 (2009). https://doi.org/10.
3217 /jucs-015-17-3273

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.3217/jucs-015-17-3273
https://doi.org/10.3217/jucs-015-17-3273
http://creativecommons.org/licenses/by/4.0/

	IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability
	1 Introduction
	2 An Expressive Input Language
	3 A Variety of Synthesis Algorithms
	4 Distribution
	5 A Selection of Applications
	6 Related Tools
	7 Perspectives
	References




