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Abstract. Stateless model checking (SMC) is one of the standard
approaches to the verification of concurrent programs. As scheduling
non-determinism creates exponentially large spaces of thread interleav-
ings, SMC attempts to partition this space into equivalence classes and
explore only a few representatives from each class. The efficiency of this
approach depends on two factors: (a) the coarseness of the partitioning,
and (b) the time to generate representatives in each class. For this rea-
son, the search for coarse partitionings that are efficiently explorable is
an active research challenge.

In this work we present RVF-SMC, a new SMC algorithm that uses a
novel reads-value-from (RVF) partitioning. Intuitively, two interleavings
are deemed equivalent if they agree on the value obtained in each read
event, and read events induce consistent causal orderings between them.
The RVF partitioning is provably coarser than recent approaches based
on Mazurkiewicz and “reads-from” partitionings. Our experimental eval-
uation reveals that RVF is quite often a very effective equivalence, as the
underlying partitioning is exponentially coarser than other approaches.
Moreover, RVF-SMC generates representatives very efficiently, as the
reduction in the partitioning is often met with significant speed-ups in
the model checking task.

1 Introduction

The verification of concurrent programs is one of the key challenges in formal
methods. Interprocess communication adds a new dimension of non-determinism
in program behavior, which is resolved by a scheduler. As the programmer has
no control over the scheduler, program correctness has to be guaranteed under
all possible schedulers, i.e., the scheduler is adversarial to the program and can
generate erroneous behavior if one can arise out of scheduling decisions. On the
other hand, during program testing, the adversarial nature of the scheduler is
to hide erroneous runs, making bugs extremely difficult to reproduce by testing
alone (aka Heisenbugs [1]). Consequently, the verification of concurrent programs
rests on rigorous model checking techniques [2] that cover all possible program
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behaviors that can arise out of scheduling non-determinism, leading to early
tools such as VeriSoft [3,4] and CHESS [5].

To battle with the state-space explosion problem, effective model checking for
concurrency is stateless. A stateless model checker (SMC) explores the behav-
ior of the concurrent program by manipulating traces instead of states, where
each (concurrent) trace is an interleaving of event sequences of the corresponding
threads [6]. To further improve performance, various techniques try to reduce the
number of explored traces, such as context bounded techniques [7–10] As many
interleavings induce the same program behavior, SMC partitions the interleav-
ing space into equivalence classes and attempts to sample a few representative
traces from each class. The most popular approach in this domain is partial-
order reduction techniques [6,11,12], which deems interleavings as equivalent
based on the way that conflicting memory accesses are ordered, also known as
the Mazurkiewicz equivalence [13]. Dynamic partial order reduction [14] con-
structs this equivalence dynamically, when all memory accesses are known, and
thus does not suffer from the imprecision of earlier approaches based on static
information. Subsequent works managed to explore the Mazurkiewicz partition-
ing optimally [15,16], while spending only polynomial time per class.

The performance of an SMC algorithm is generally a product of two factors:
(a) the size of the underlying partitioning that is explored, and (b) the total time
spent in exploring each class of the partitioning. Typically, the task of visiting
a class requires solving a consistency-checking problem, where the algorithm
checks whether a semantic abstraction, used to represent the class, has a con-
sistent concrete interleaving that witnesses the class. For this reason, the search
for effective SMC is reduced to the search of coarse partitionings for which the
consistency problem is tractable, and has become a very active research direc-
tion in recent years. In [17], the Mazurkiewicz partitioning was further reduced
by ignoring the order of conflicting write events that are not observed, while
retaining polynomial-time consistency checking. Various other works refine the
notion of dependencies between events, yielding coarser abstractions [18–20].
The work of [21] used a reads-from abstraction and showed that the consistency
problem admits a fully polynomial solution in acyclic communication topologies.
Recently, this approach was generalized to arbitrary topologies, with an algo-
rithm that remains polynomial for a bounded number of threads [22]. Finally,
recent approaches define value-centric partitionings [23], as well as partitionings
based on maximal causal models [24]. These partitionings are very coarse, as
they attempt to distinguish only between traces which differ in the values read
by their corresponding read events. We illustrate the benefits of value-based
partitionings with a motivating example.

1.1 Motivating Example

Consider a simple concurrent program shown in Fig. 1. The program has 98
different orderings of the conflicting memory accesses, and each ordering corre-
sponds to a separate class of the Mazurkiewicz partitioning. Utilizing the reads-
from abstraction reduces the number of partitioning classes to 9. However, when
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taking into consideration the values that the events can read and write, the num-
ber of cases to consider can be reduced even further. In this specific example,
there is only a single behaviour the program may exhibit, in which both read
events read the only observable value.

Thread1

1. w(x, 1)
2. w(y, 1)

Thread2

1. w(x, 1)
2. w(y, 1)
3. r(x)

Thread3

1. w(x, 1)
2. w(y, 1)
3. r(y)

Equivalence classes:

Mazurkiewicz [15] 98
reads-from [22] 9

value-centric [23] 7
this work 1

Fig. 1. Concurrent program and its underlying partitioning classes.

The above benefits have led to recent attempts in performing SMC using
a value-based equivalence [23,24]. However, as the realizability problem is NP-
hard in general [25], both approaches suffer significant drawbacks. In particular,
the work of [23] combines the value-centric approach with the Mazurkiewicz par-
titioning, which creates a refinement with exponentially many more classes than
potentially necessary. The example program in Fig. 1 illustrates this, where while
both read events can only observe one possible value, the work of [23] further
enumerates all Mazurkiewicz orderings of all-but-one threads, resulting in 7 par-
titioning classes. Separately, the work of [24] relies on SMT solvers, thus spending
exponential time to solve the realizability problem. Hence, each approach suffers
an exponential blow-up a-priori, which motivates the following question: is there
an efficient parameterized algorithm for the consistency problem? That is, we
are interested in an algorithm that is exponential-time in the worst case (as the
problem is NP-hard in general), but efficient when certain natural parameters
of the input are small, and thus only becomes slow in extreme cases.

Another disadvantage of these works is that each of the exploration algo-
rithms can end up to the same class of the partitioning many times, further
hindering performance. To see an example, consider the program in Fig. 1 again.
The work of [23] assigns values to reads one by one, and in this example, it needs
to consider as separate cases both permutations of the two reads as the orders
for assigning the values. This is to ensure completeness in cases where there are
write events causally dependent on some read events (e.g., a write event appear-
ing only if its thread-predecessor reads a certain value). However, no causally
dependent write events are present in this program, and our work uses a prin-
cipled approach to detect this and avoid the redundant exploration. While an
example to demonstrate [24] revisiting partitioning classes is a bit more involved
one, this property follows from the lack of information sharing between spawned
subroutines, enabling the approach to be massively parallelized, which has been
discussed already in prior works [21,23,26].
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1.2 Our Contributions

In this work we tackle the two challenges illustrated in the motivating example
in a principled, algorithmic way. In particular, our contributions are as follows.

(1) We study the problem of verifying the sequentially consistent executions.
The problem is known to be NP-hard [25] in general, already for 3 threads.
We show that the problem can be solved in O(kd+1 · nk+1) time for an
input of n events, k threads and d variables. Thus, although the problem
NP-hard in general, it can be solved in polynomial time when the number of
threads and number of variables is bounded. Moreover, our bound reduces
to O(nk+1) in the class of programs where every variable is written by only
one thread (while read by many threads). Hence, in this case the bound is
polynomial for a fixed number of threads and without any dependence on
the number of variables.

(2) We define a new equivalence between concurrent traces, called the reads-
value-from (RVF) equivalence. Intuitively, two traces are RVF-equivalent if
they agree on the value obtained in each read event, and read events induce
consistent causal orderings between them. We show that RVF induces a
coarser partitioning than the partitionings explored by recent well-studied
SMC algorithms [15,21,23], and thus reduces the search space of the model
checker.

(3) We develop a novel SMC algorithm called RVF-SMC, and show that it
is sound and complete for local safety properties such as assertion viola-
tions. Moreover, RVF-SMC has complexity kd · nO(k) · β, where β is the
size of the underlying RVF partitioning. Under the hood, RVF-SMC uses
our consistency-checking algorithm of Item 1 to visit each RVF class during
the exploration. Moreover, RVF-SMC uses a novel heuristic to significantly
reduce the number of revisits in any given RVF class, compared to the
value-based explorations of [23,24].

(4) We implement RVF-SMC in the stateless model checker Nidhugg [27]. Our
experimental evaluation reveals that RVF is quite often a very effective
equivalence, as the underlying partitioning is exponentially coarser than
other approaches. Moreover, RVF-SMC generates representatives very effi-
ciently, as the reduction in the partitioning is often met with significant
speed-ups in the model checking task.

2 Preliminaries

General Notation. Given a natural number i ≥ 1, we let [i] be the set
{1, 2, . . . , i}. Given a map f : X → Y , we let dom(f) = X denote the domain of
f . We represent maps f as sets of tuples {(x, f(x))}x. Given two maps f1, f2 over
the same domain X, we write f1 = f2 if for every x ∈ X we have f1(x) = f2(x).
Given a set X ′ ⊂ X, we denote by f |X ′ the restriction of f to X ′. A binary
relation ∼ on a set X is an equivalence iff ∼ is reflexive, symmetric and transitive.



Stateless Model Checking Under a Reads-Value-From Equivalence 345

2.1 Concurrent Model

Here we describe the computational model of concurrent programs with shared
memory under the Sequential Consistency (SC) memory model. We follow a
standard exposition of stateless model checking, similarly to [14,15,21–23,28],
Concurrent Program. We consider a concurrent program H = {thri}k

i=1 of
k deterministic threads. The threads communicate over a shared memory G of
global variables with a finite value domain D. Threads execute events of the
following types.

(1) A write event w writes a value v ∈ D to a global variable x ∈ G.
(2) A read event r reads the value v ∈ D of a global variable x ∈ G.

Additionally, threads can execute local events which do not access global vari-
ables and thus are not modeled explicitly.

Given an event e, we denote by thr(e) its thread and by var(e) its global
variable. We denote by E the set of all events, and by R (W) the set of read
(write) events. Given two events e1, e2 ∈ E , we say that they conflict, denoted
e1 �� e2, if they access the same global variable and at least one of them is a
write event.
Concurrent Program Semantics. The semantics of H are defined by means
of a transition system over a state space of global states. A global state consists
of (i) a memory function that maps every global variable to a value, and (ii)
a local state for each thread, which contains the values of the local variables
and the program counter of the thread. We consider the standard setting of
Sequential Consistency (SC), and refer to [14] for formal details. As usual, H is
execution-bounded, which means that the state space is finite and acyclic.
Event Sets. Given a set of events X ⊆ E , we write R(X) = X ∩ R for the set
of read events of X, and W(X) = X ∩W for the set of write events of X. Given
a set of events X ⊆ E and a thread thr, we denote by Xthr and X �=thr the events
of thr, and the events of all other threads in X, respectively.
Sequences and Traces. Given a sequence of events τ = e1, . . . , ej , we denote
by E(τ) the set of events that appear in τ . We further denote R(τ) = R(E(τ))
and W(τ) = W(E(τ)).

Given a sequence τ and two events e1, e2 ∈ E(τ), we write e1 <τ e2 when e1
appears before e2 in τ , and e1 ≤τ e2 to denote that e1 <τ e2 or e1 = e2. Given
a sequence τ and a set of events A, we denote by τ |A the projection of τ on A,
which is the unique subsequence of τ that contains all events of A∩E(τ), and only
those events. Given a sequence τ and a thread thr, let τthr be the subsequence
of τ with events of thr, i.e., τ |E(τ)thr. Given two sequences τ1 and τ2, we denote
by τ1 ◦ τ2 the sequence that results in appending τ2 after τ1.

A (concrete, concurrent) trace is a sequence of events σ that corresponds to
a concrete valid execution of H. We let enabled(σ) be the set of enabled events
after σ is executed, and call σ maximal if enabled(σ) = ∅. As H is bounded,
all executions of H are finite and the length of the longest execution in H is a
parameter of the input.
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Reads-From and Value Functions. Given a sequence of events τ , we define
the reads-from function of τ , denoted RFτ : R(τ) → W(τ), as follows. Given a
read event r ∈ R(τ), we have that RFτ (r) is the latest write (of any thread)
conflicting with r and occurring before r in τ , i.e., (i) RFτ (r) �� r, (ii) RFτ (r) <τ

r, and (iii) for each w ∈ W(τ) such that w �� r and w <τ r, we have w ≤τ RFτ (r).
We say that r reads-from RFτ (r) in τ . For simplicity, we assume that H has an
initial salient write event on each variable.

Further, given a trace σ, we define the value function of σ, denoted
valσ : E(σ) → D, such that valσ(e) is the value of the global variable var(e)
after the prefix of σ up to and including e has been executed. Intuitively, valσ(e)
captures the value that a read (resp. write) event e shall read (resp. write) in σ.
The value function valσ is well-defined as σ is a valid trace and the threads of
H are deterministic.

2.2 Partial Orders

In this section we present relevant notation around partial orders, which are a
central object in this work.
Partial Orders. Given a set of events X ⊆ E , a (strict) partial order P over X is
an irreflexive, antisymmetric and transitive relation over X (i.e., <P ⊆ X × X).
Given two events e1, e2 ∈ X, we write e1 ≤P e2 to denote that e1 <P e2 or
e1 = e2. Two distinct events e1, e2 ∈ X are unordered by P , denoted e1 ‖P e2, if
neither e1 <P e2 nor e2 <P e1, and ordered (denoted e1 
 ‖P e2) otherwise. Given
a set Y ⊆ X, we denote by P |Y the projection of P on the set Y , where for
every pair of events e1, e2 ∈ Y , we have that e1 <P |Y e2 iff e1 <P e2. Given two
partial orders P and Q over a common set X, we say that Q refines P , denoted
by Q � P , if for every pair of events e1, e2 ∈ X, if e1 <P e2 then e1 <Q e2. A
linearization of P is a total order that refines P .
Lower Sets. Given a pair (X,P ), where X is a set of events and P is a partial
order over X, a lower set of (X,P ) is a set Y ⊆ X such that for every event
e1 ∈ Y and event e2 ∈ X with e2 ≤P e1, we have e2 ∈ Y .
Visible Writes. Given a partial order P over a set X, and a read event r ∈
R(X), the set of visible writes of r is defined as

VisibleWP (r) ={ w ∈ W(X) : (i) r �� w and (ii) r 
<P w and (iii) for each
w′ ∈ W(X) with r �� w′, if w <P w′ then w′ 
<P r }

i.e., the set of write events w conflicting with r that are not “hidden” to r by P .
The Program Order PO. The program order PO of H is a partial order
<PO⊆ E × E that defines a fixed order between some pairs of events of the same
thread, reflecting the semantics of H.

A set of events X ⊆ E is proper if (i) it is a lower set of (E ,PO), and (ii) for
each thread thr, the events Xthr are totally ordered in PO (i.e., for each distinct
e1, e2 ∈ Xthr we have e1 
 ‖PO e2). A sequence τ is well-formed if (i) its set of events
E(τ) is proper, and (ii) τ respects the program order (formally, τ � PO|E(τ)).
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Every trace σ of H is well-formed, as it corresponds to a concrete valid execution
of H. Each event of H is then uniquely identified by its PO predecessors, and by
the values its PO predecessor reads have read.

thr1 thr2 thr3

w(x, 1)

r(x)

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

r(y)

rea
d by

Fig. 2. A trace σ, the displayed events E(σ) are vertically ordered as they appear in σ.
The solid black edges represent the program order PO. The dashed red edges represent
the reads-from function RFσ. The transitive closure of all the edges then gives us the
causally-happens-before partial order �→σ.

Causally-Happens-Before Partial Orders. A trace σ induces a causally-
happens-before partial order �→σ ⊆ E(σ) × E(σ), which is the weakest partial
order such that (i) it refines the program order (i.e., �→σ � PO|E(σ)), and (ii) for
every read event r ∈ R(σ), its reads-from RFσ(r) is ordered before it (i.e.,
RFσ(r) �→σ r). Intuitively, �→σ contains the causal orderings in σ, i.e., it captures
the flow of write events into read events in σ together with the program order.
Figure 2 presents an example of a trace and its causal orderings.

3 Reads-Value-From Equivalence

In this section we present our new equivalence on traces, called the reads-value-
from equivalence (RVF equivalence, or ∼RVF, for short). Then we illustrate that
∼RVF has some desirable properties for stateless model checking.
Reads-Value-From Equivalence. Given two traces σ1 and σ2, we say that
they are reads-value-from-equivalent, written σ1 ∼RVF σ2, if the following hold.

(1) E(σ1) = E(σ2), i.e., they consist of the same set of events.
(2) valσ1 = valσ2 , i.e., each event reads resp. writes the same value in both.
(3) �→σ1 |R = �→σ2 |R, i.e., their causal orderings agree on the read events.

Figure 3 presents an intuitive example of RVF-(in)equivalent traces.
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σ1thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

σ2thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

σ3thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

Fig. 3. Three traces σ1, σ2, σ3, events of each trace are vertically ordered as they
appear in the trace. Traces σ1 and σ2 are RVF-equivalent (σ1 ∼RVF σ2), as they have
the same events, same value function, and the two read events are causally unordered
in both. Trace σ3 is not RVF-equivalent with either of σ1 and σ2. Compared to σ1

resp. σ2, the value function of σ3 differs (r(y) reads a different value), and the causal
orderings of the reads differ (r(x) �→σ3r(y)).

Soundness. The RVF equivalence induces a partitioning on the maximal traces
of H. Any algorithm that explores each class of this partitioning provably dis-
covers every reachable local state of every thread, and thus RVF is a sound
equivalence for local safety properties, such as assertion violations, in the same
spirit as in other recent works [21–24]. This follows from the fact that for any
two traces σ1 and σ2 with E(σ1) = E(σ2) and valσ1 = valσ2 , the local states of
each thread are equal after executing σ1 and σ2.

reads-value-from

reads-from[22,28]

value-centric[23]

data-centric[21] Mazurkiewicz[14,15,29]

Fig. 4. SMC trace equivalences. An edge from X to Y signifies that Y is always at least
as coarse, and sometimes coarser, than X.

Coarseness. Here we describe the coarseness properties of the RVF equiva-
lence, as compared to other equivalences used by state-of-the-art approaches in
stateless model checking. Figure 4 summarizes the comparison.

The SMC algorithms of [22] and [28] operate on a reads-from equivalence,
which deems two traces σ1 and σ2 equivalent if

(1) they consist of the same events (E(σ1) = E(σ2)), and
(2) their reads-from functions coincide (RFσ1 = RFσ2).

The above two conditions imply that the induced causally-happens-before partial
orders are equal, i.e., �→σ1 = �→σ2 , and thus trivially also �→σ1 |R = �→σ2 |R.
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Further, by a simple inductive argument the value functions of the two traces
are also equal, i.e., valσ1 = valσ2 . Hence any two reads-from-equivalent traces are
also RVF-equivalent, which makes the RVF equivalence always at least as coarse
as the reads-from equivalence.

The work of [23] utilizes a value-centric equivalence, which deems two traces
equivalent if they satisfy all the conditions of our RVF equivalence, and also
some further conditions (note that these conditions are necessary for correctness
of the SMC algorithm in [23]). Thus the RVF equivalence is trivially always at
least as coarse. The value-centric equivalence preselects a single thread thr, and
then requires two extra conditions for the traces to be equivalent, namely:

(1) For each read of thr, either the read reads-from a write of thr in both traces,
or it does not read-from a write of thr in either of the two traces.

(2) For each conflicting pair of events not belonging to thr, the ordering of the
pair is equal in the two traces.

Both the reads-from equivalence and the value-centric equivalence are in turn
as coarse as the data-centric equivalence of [21]. Given two traces, the data-
centric equivalence has the equivalence conditions of the reads-from equivalence,
and additionally, it preselects a single thread thr (just like the value-centric equiv-
alence) and requires the second extra condition of the value-centric equivalence,
i.e., equality of orderings for each conflicting pair of events outside of thr.

Finally, the data-centric equivalence is as coarse as the classical Mazurkiewicz
equivalence [13], the baseline equivalence for stateless model checking [14,15,29].
Mazurkiewicz equivalence deems two traces equivalent if they consist of the same
set of events and they agree on their ordering of conflicting events.

While RVF is always at least as coarse, it can be (even exponentially)
coarser, than each of the other above-mentioned equivalences. We illustrate
this in Appendix B of [30]. We summarize these observations in the following
proposition.

Proposition 1. RVF is at least as coarse as each of the Mazurkiewicz equiva-
lence [15], the data-centric equivalence [21], the reads-from equivalence [22], and
the value-centric equivalence [23]. Moreover, RVF can be exponentially coarser
than each of these equivalences.

In this work we develop our SMC algorithm RVF-SMC around the RVF
equivalence, with the guarantee that the algorithm explores at most one maxi-
mal trace per class of the RVF partitioning, and thus can perform significantly
fewer steps than algorithms based on the above equivalences. To utilize RVF, the
algorithm in each step solves an instance of the verification of sequential con-
sistency problem, which we tackle in the next section. Afterwards, we present
RVF-SMC.
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4 Verifying Sequential Consistency

In this section we present our contributions towards the problem of verifying
sequential consistency (VSC). We present an algorithm VerifySC for VSC, and
we show how it can be efficiently used in stateless model checking.
The VSC Problem. Consider an input pair (X,GoodW) where

(1) X ⊆ E is a proper set of events, and
(2) GoodW : R(X) → 2W(X) is a good-writes function such that w ∈ GoodW(r)

only if r �� w.

A witness of (X,GoodW) is a linearization τ of X (i.e., E(τ) = X) respecting the
program order (i.e., τ � PO|X), such that each read r ∈ R(τ) reads-from one of
its good-writes in τ , formally RFτ (r) ∈ GoodW(r) (we then say that τ satisfies
the good-writes function GoodW). The task is to decide whether (X,GoodW)
has a witness, and to construct one in case it exists.
VSC in Stateless Model Checking. The VSC problem naturally ties in with
our SMC approach enumerating the equivalence classes of the RVF trace parti-
tioning. In our approach, we shall generate instances (X,GoodW) such that (i)
each witness σ of (X,GoodW) is a valid program trace, and (ii) all witnesses
σ1, σ2 of (X,GoodW) are pairwise RVF-equivalent (σ1 ∼RVF σ2).
Hardness of VSC. Given an input (X,GoodW) to the VSC problem, let n =
|X|, let k be the number of threads appearing in X, and let d be the number of
variables accessed in X. The classic work of [25] establishes two important lower
bounds on the complexity of VSC:

(1) VSC is NP-hard even when restricted only to inputs with k = 3.
(2) VSC is NP-hard even when restricted only to inputs with d = 2.

The first bound eliminates the possibility of any algorithm with time complexity
O(nf(k)), where f is an arbitrary computable function. Similarly, the second
bound eliminates algorithms with complexity O(nf(d)) for any computable f .

In this work we show that the problem is parameterizable in k + d, and thus
admits efficient (polynomial-time) solutions when both variables are bounded.

4.1 Algorithm for VSC

In this section we present our algorithm VerifySC for the problem VSC. First we
define some relevant notation. In our definitions we consider a fixed input pair
(X,GoodW) to the VSC problem, and a fixed sequence τ with E(τ) ⊆ X.
Active Writes. A write w ∈ W(τ) is active in τ if it is the last write of its
variable in τ . Formally, for each w′ ∈ W(τ) with var(w′) = var(w) we have
w′ ≤τ w. We can then say that w is the active write of the variable var(w) in τ .
Held Variables. A variable x ∈ G is held in τ if there exists a read r ∈
R(X)\E(τ) with var(r) = x such that for each its good-write w ∈ GoodW(r) we



Stateless Model Checking Under a Reads-Value-From Equivalence 351

have w ∈ τ . In such a case we say that r holds x in τ . Note that several distinct
reads may hold a single variable in τ .
Executable Events. An event e ∈ E(X) \ E(τ) is executable in τ if E(τ) ∪ {e}
is a lower set of (X,PO) and the following hold.

(1) If e is a read, it has an active good-write w ∈ GoodW(e) in τ .
(2) If e is a write, its variable var(e) is not held in τ .

Memory Maps. A memory map of τ is a function from global variables to
thread indices MMapτ : G → [k] where for each variable x ∈ G, the map
MMapτ (x) captures the thread of the active write of x in τ .
Witness States. The sequence τ is a witness prefix if the following hold.

(1) τ is a witness of (E(τ), GoodW|R(τ)).
(2) For each r ∈ X \ R(τ) that holds its variable var(r) in τ , one of its good-

writes w ∈ GoodW(r) is active in τ .

Intuitively, τ is a witness prefix if it satisfies all VSC requirements modulo its
events, and if each read not in τ has at least one good-write still available to read-
from in potential extensions of τ . For a witness prefix τ we call its corresponding
event set and memory map a witness state.

Figure 5 provides an example illustrating the above concepts, where for
brevity of presentation, the variables are subscripted and the values are not
displayed.

thr1 thr2 thr3 thr4

wx

rx w′
x

ry

wy

ry

wx

rx

wy

Fig. 5. Event set X, and the good-writes function GoodW denoted by the green dotted
edges. The solid nodes are ordered vertically as they appear in τ . The grey dashed
nodes are in X \ E(τ). Events rx and w′

x are executable in τ . Event ry is not, its good-
write is not active in τ . Event wy is also not executable, as its variable y is held by
ry. The memory map of τ is MMapτ (x) = 1 and MMapτ (y) = 3. τ is a witness prefix,
and E(τ) with MMapτ together form its witness state.
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Algorithm 1: VerifySC
Input: Proper event set X and good-writes function GoodW : R(X) → 2W(X)

Output: A witness τ of (X,GoodW) if (X,GoodW) has a witness, else τ = ⊥
1 S ← {ε}; Done ← {ε}
2 while S �= ∅ do
3 Extract a sequence τ from S
4 if E(τ) = X then return τ ; // All events executed, witness found

5 foreach event e executable in τ do
6 Let τe ← τ ◦ e // Execute e

7 if � ∃τ ′ ∈ Done s.t. E(τe) = E(τ ′) and MMapτe
= MMapτ ′ then

8 Insert τe in S and in Done // New witness state reached

9 return ⊥ // No witness exists

Algorithm. We are now ready to describe our algorithm VerifySC, in Algorithm
1 we present the pseudocode. We attempt to construct a witness of (X,GoodW)
by enumerating the witness states reachable by the following process. We start
(Line 1) with an empty sequence ε as the first witness prefix (and state). We
maintain a worklist S of so-far unprocessed witness prefixes, and a set Done
of reached witness states. Then we iteratively obtain new witness prefixes (and
states) by considering an already obtained prefix (Line 3) and extending it with
each possible executable event (Line 6). Crucially, when we arrive at a sequence
τe, we include it only if no sequence τ ′ with equal corresponding witness state
has been reached yet (Line 7). We stop when we successfully create a witness
(Line 4) or when we process all reachable witness states (Line 9).
Correctness and Complexity. We now highlight the correctness and complex-
ity properties of VerifySC, while we refer to Appendix C of [30] for the proofs.
The soundness follows straightforwardly by the fact that each sequence in S is a
witness prefix. This follows from a simple inductive argument that extending a
witness prefix with an executable event yields another witness prefix. The com-
pleteness follows from the fact that given two witness prefixes τ1 and τ2 with
equal induced witness state, these prefixes are “equi-extendable” to a witness.
Indeed, if a suffix τ∗ exists such that τ1 ◦ τ∗ is a witness of (X,GoodW), then
τ2 ◦ τ∗ is also a witness of (X,GoodW). The time complexity of VerifySC is
bounded by O(nk+1 · kd+1), for n events, k threads and d variables. The bound
follows from the fact that there are at most nk · kd pairwise distinct witness
states. We thus have the following theorem.

Theorem 1. VSC for n events, k threads and d variables is solvable in O(nk+1 ·
kd+1) time. Moreover, if each variable is written by only one thread, VSC is
solvable in O(nk+1) time.

Implications. We now highlight some important implications of Theorem 1.
Although VSC is NP-hard [25], the theorem shows that the problem is param-
eterizable in k + d, and thus in polynomial time when both parameters are
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bounded. Moreover, even when only k is bounded, the problem is fixed-parameter
tractable in d, meaning that d only exponentiates a constant as opposed to n
(e.g., we have a polynomial bound even when d = log n). Finally, the algorithm
is polynomial for a fixed number of threads regardless of d, when every mem-
ory location is written by only one thread (e.g., in producer-consumer settings,
or in the concurrent-read-exclusive-write (CREW) concurrency model). These
important facts brought forward by Theorem 1 indicate that VSC is likely to be
efficiently solvable in many practical settings, which in turn makes RVF a good
equivalence for SMC.

4.2 Practical Heuristics for VerifySC in SMC

We now turn our attention to some practical heuristics that are expected to
further improve the performance of VerifySC in the context of SMC.
1. Limiting the Search Space. We employ two straightforward improvements
to VerifySC that significantly reduce the search space in practice. Consider the
for-loop in Line 5 of Algorithm 1 enumerating the possible extensions of τ . This
enumeration can be sidestepped by the following two greedy approaches.

(1) If there is a read r executable in τ , then extend τ with r and do not
enumerate other options.

(2) Let w be an active write in τ such that w is not a good-write of any r ∈
R(X)\E(τ). Let w ∈ W(X)\E(τ) be a write of the same variable (var(w) =
var(w)), note that w is executable in τ . If w is also not a good-write of any
r ∈ R(X)\E(τ), then extend τ with w and do not enumerate other options.

The enumeration of Line 5 then proceeds only if neither of the above two tech-
niques can be applied for τ . This extension of VerifySC preserves complete-
ness (not only when used during SMC, but in general), and it can be signifi-
cantly faster in practice. For clarity of presentation we do not fully formalize
this extended version, as its worst-case complexity remains the same.
2. Closure. We introduce closure, a low-cost filter for early detection of VSC
instances (X,GoodW) with no witness. The notion of closure, its beneficial prop-
erties and construction algorithms are well-studied for the reads-from consistency
verification problems [21,22,31], i.e., problems where a desired reads-from func-
tion is provided as input instead of a desired good-writes function GoodW. Fur-
ther, the work of [23] studies closure with respect to a good-writes function, but
only for partial orders of Mazurkiewicz width 2 (i.e., for partial orders with no
triplet of pairwise conflicting and pairwise unordered events). Here we define
closure for all good-writes instances (X,GoodW), with the underlying partial
order (in our case, the program order PO) of arbitrary Mazurkiewicz width.

Given a VSC instance (X,GoodW), its closure P (X) is the weakest partial
order that refines the program order (P � PO|X) and further satisfies the fol-
lowing conditions. Given a read r ∈ R(X), let Cl(r) = GoodW(r)∩VisibleWP (r).
The following must hold.
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(1) Cl(r) 
= ∅.
(2) If (Cl(r), P |Cl(r)) has a least element w, then w <P r.
(3) If (Cl(r), P |Cl(r)) has a greatest element w, then for each w ∈ W(X) \

GoodW(r) with r �� w, if w <P r then w <P w.
(4) For each w ∈ W(X) \ GoodW(r) with r �� w, if each w ∈ Cl(r) satisfies

w <P w, then we have r <P w.

If (X,GoodW) has no closure (i.e., there is no P with the above conditions),
then (X,GoodW) provably has no witness. If (X,GoodW) has closure P , then
each witness τ of VSC(X,GoodW) provably refines P (i.e., τ � P ).

Finally, we explain how closure can be used by VerifySC. Given an input
(X,GoodW), the closure procedure is carried out before VerifySC is called.
Once the closure P of (X,GoodW) is constructed, since each solution of
VSC(X,GoodW) has to refine P , we restrict VerifySC to only consider sequences
refining P . This is ensured by an extra condition in Line 5 of Algorithm 1, where
we proceed with an event e only if it is minimal in P restricted to events not yet
in the sequence. This preserves completeness, while further reducing the search
space to consider for VerifySC.
3. VerifySC Guided by Auxiliary Trace. In our SMC approach, each time
we generate a VSC instance (X,GoodW), we further have available an auxiliary
trace σ̃. In σ̃, either all-but-one, or all, good-writes conditions of GoodW are
satisfied. If all good writes in GoodW are satisfied, we already have σ̃ as a witness
of (X,GoodW) and hence we do not need to run VerifySC at all. On the other
hand, if case all-but-one are satisfied, we use σ̃ to guide the search of VerifySC,
as described below.

We guide the search by deciding the order in which we process the sequences
of the worklist S in Algorithm 1. We use the auxiliary trace σ̃ with E(σ̃) = X.
We use S as a last-in-first-out stack, that way we search for a witness in a depth-
first fashion. Then, in Line 5 of Algorithm 1 we enumerate the extension events
in the reverse order of how they appear in σ̃. We enumerate in reverse order, as
each resulting extension is pushed into our worklist S, which is a stack (last-in-
first-out). As a result, in Line 3 of the subsequent iterations of the main while
loop, we pop extensions from S in order induced by σ̃.

5 Stateless Model Checking

We are now ready to present our SMC algorithm RVF-SMC that uses RVF to
model check a concurrent program. RVF-SMC is a sound and complete algorithm
for local safety properties, i.e., it is guaranteed to discover all local states that
each thread visits.

RVF-SMC is a recursive algorithm. Each recursive call of RVF-SMC is argu-
mented by a tuple (X,GoodW, σ, C) where:

(1) X is a proper set of events.
(2) GoodW : R(X) → 2W(X) is a desired good-writes function.
(3) σ is a valid trace that is a witness of (X,GoodW).
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(4) C : R → Threads → N is a partial function called causal map that tracks
implicitly, for each read r, the writes that have already been considered as
reads-from sources of r.

Further, we maintain a function ancestors : R(X) → {true, false}, where for each
read r ∈ R(X), ancestors(r) stores a boolean backtrack signal for r. We now
provide details on the notions of causal maps and backtrack signals.
Causal Maps. The causal map C serves to ensure that no more than one max-
imal trace is explored per RVF partitioning class. Given a read r ∈ enabled(σ)
enabled in a trace σ, we define forbidsCσ(r) as the set of writes in σ such that C
forbids r to read-from them. Formally, forbidsCσ(r) = ∅ if r 
∈ dom(C), otherwise
forbidsCσ(r) = {w ∈ W(σ) | w is within first C(r)(thr(w)) events of σthr}. We say
that a trace σ satisfies C if for each r ∈ R(σ) we have RFσ(r) 
∈ forbidsCσ(r).
Backtrack Signals. Each call of RVF-SMC (with its GoodW) operates with a
trace σ̃ satisfying GoodW that has only reads as enabled events. Consider one of
those enabled reads r ∈ enabled(σ̃). Each maximal trace satisfying GoodW shall
contain r, and further, one of the following two cases is true:

(1) In all maximal traces σ′ satisfying GoodW, we have that r reads-from some
write of W(σ̃) in σ′.

(2) There exists a maximal trace σ′ satisfying GoodW, such that r reads-from
a write not in W(σ̃) in σ′.

Whenever we can prove that the first above case is true for r, we can use this fact
to prune away some recursive calls of RVF-SMC while maintaining completeness.
Specifically, we leverage the following crucial lemma, and present the proof in
Appendix D of [30].

Lemma 1. Consider a call RVF-SMC(X,GoodW, σ, C) and a trace σ̃ extending
σ maximally such that no event of the extension is a read. Let r ∈ enabled(σ̃)
such that r 
∈ dom(C). If there exists a trace σ′ that (i) satisfies GoodW and C,
and (ii) contains r with RFσ′(r) 
∈ W(σ̃), then there exists a trace σ that (i)
satisfies GoodW and C, (ii) contains r with RFσ(r) ∈ W(σ̃), and (iii) contains
a write w 
∈ W(σ̃) with r �� w and thr(r) 
= thr(w).

We then compute a boolean backtrack signal for a given RVF-SMC call and
read r ∈ enabled(σ̃) to capture satisfaction of the consequent of Lemma 1. If the
computed backtrack signal is false, we can safely stop the RVF-SMC exploration
of this specific call and backtrack to its recursion parent.
Algorithm. We are now ready to describe our algorithm RVF-SMC in detail,
Algorithm 2 captures the pseudocode of RVF-SMC(X,GoodW, σ, C). First, in
Line 1 we extend σ to σ̃ maximally such that no event of the extension is a
read. Then in Lines 2–5 we update the backtrack signals for ancestors of our
current recursion call. After this, in Lines 6–11 we construct a sequence of reads
enabled in σ̃. Finally, we proceed with the main while-loop in Line 13. In each
while-loop iteration we process an enabled read r (Line 14), and we perform
no more while-loop iterations in case we receive a false backtrack signal for r.
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Algorithm 2: RVF-SMC(X,GoodW, σ, C)
Input: Proper set of events X, good-writes function GoodW, valid trace σ that

is a witness of (X,GoodW), causal map C.
1 σ̃ ← σ ◦ σ̂ where σ̂ extends σ maximally such that no event of σ̂ is a read
2 foreach w ∈ E(σ̂) do // All extension events are writes

3 foreach r ∈ dom(ancestors) do // All ancestor mutations are reads

4 if r �� w and thr(r) �= thr(w) then // Potential new source for r to read-from

5 ancestors(r) ← true // Set backtrack signal to true

6 mutate ← ε // Construct a sequence of enabled reads

7 foreach r ∈ enabled(σ̃) do // Enabled events in σ̃ are reads

8 if r ∈ dom(C) then // Causal map C is defined for r

9 mutate ← mutate ◦ r // Insert r to the end of mutate

10 else // Causal map C is undefined for r

11 mutate ← r ◦ mutate // Insert r to the beginning of mutate

12 backtrack ← true
13 while backtrack = true and mutate �= ε do
14 r ← pop front of mutate // Process next read of mutate

15 if r �∈ dom(C) then
16 backtrack ← false
17 Fr ← VisibleWPO|E(σ̃)(r) \ forbidsCσ̃(r) // Visible writes not forbidden by C
18 Dr ← {valσ̃(w) : w ∈ Fr} // The set of values that r may read

19 foreach v ∈ Dr do // Process each value

20 X ′ ← X ∪ E(σ̃) ∪ {r} // New event set

21 GoodW′ ← GoodW ∪ {(r, { w ∈ Fr | valσ̃(w) = v })} // New good-writes

22 σ′ ← VerifySC(X ′,GoodW′) // VerifySC guided by σ̃ ◦ r

23 if σ′ �= ⊥ then // (X′,GoodW′) has a witness

24 C′ ← C
25 ancestors(r) ← backtrack // Record ancestor

26 RVF-SMC(X ′,GoodW′, σ′, C′)
27 backtrack ← ancestors(r) // Retrieve backtrack signal

28 delete r from ancestors // Unrecord ancestor

29 foreach thr ∈ Threads do // Update causal map C(r) for each thread

30 C(r)(thr) ← |E(σ̃)thr| // Number of events of thr in σ̃

When processing r, first we collect its viable reads-from sources in Line 17, then
we group the sources by value they write in Line 18, and then in iterations of
the for-loop in Line 19 we consider each value-group. In Line 20 we form the
event set, and in Line 21 we form the good-write function that designates the
value-group as the good-writes of r. In Line 22 we use VerifySC to generate a
witness, and in case it exists, we recursively call RVF-SMC in Line 26 with the
newly obtained events, good-write constraint for r, and witness.

To preserve completeness of RVF-SMC, the backtrack-signals technique can
be utilized only for reads r with undefined causal map r 
∈ dom(C) (cf. Lemma 1).
The order of the enabled reads imposed by Lines 6–11 ensures that subsequently,
in iterations of the loop in Line 13 we first consider all the reads where we can
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utilize the backtrack signals. This is an insightful heuristic that often helps in
practice, though it does not improve the worst-case complexity.

Thread thr1

1. w1(x, 1)
2. r1(x)
3. w2(y, 1)

Thread thr2

1. w3(x, 1)
2. w4(y, 1)
3. r2(y)
4. w5(x, 2)
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Fig. 6. RVF-SMC (Algorithm 2). Circles represent nodes of the recursion tree. Below
each circle is its corresponding event set E(σ̃) and the enabled reads (dashed grey).
Writes with green background are good-writes (GoodW) of its corresponding-variable
read. Writes with red background are forbidden by C for its corresponding-variable
read. Dashed arrows represent recursive calls. (Color figure online)

Example. Figure 6 displays a simple concurrent program on the left, and
its corresponding RVF-SMC (Algorithm 2) run on the right. We start with
RVF-SMC(∅, ∅, ε, ∅) (A). By performing the extension (Line 1) we obtain the
events and enabled reads as shown below (A). First we process read r1 (Line
14). The read can read-from w1 and w3, both write the same value so they are
grouped together as good-writes of r1. A witness is found and a recursive call to
(B) is performed. In (B), the only enabled event is r2. It can read-from w2 and
w4, both write the same value so they are grouped for r2. A witness is found, a
recursive call to (C) is performed, and (C) concludes with a maximal trace. Cru-
cially, in (C) the event w5 is discovered, and since it is a potential new reads-from
source for r1, a backtrack signal is sent to (A). Hence after RVF-SMC backtracks
to (A), in (A) it needs to perform another iteration of Line 13 while-loop. In
(A), first the causal map C is updated to forbid w1 and w3 for r1. Then, read r2
is processed from (A), creating (D). In (D), r1 is the only enabled event, and w5

is its only C-allowed write. This results in (E) which reports a maximal trace.
The algorithm backtracks and concludes, reporting two maximal traces in total.
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Theorem 2. Consider a concurrent program H of k threads and d variables,
with n the length of the longest trace in H. RVF-SMC is a sound and complete
algorithm for local safety properties in H. The time complexity of RVF-SMC is
kd · nO(k) · β, where β is the size of the RVF trace partitioning of H.

Novelties of the Exploration. Here we highlight some key aspects of
RVF-SMC. First, we note that RVF-SMC constructs the traces incrementally
with each recursion step, as opposed to other approaches such as [15,22] that
always work with maximal traces. The reason of incremental traces is techni-
cal and has to do with the value-based treatment of the RVF partitioning. We
note that the other two value-based approaches [23,24] also operate with incre-
mental traces. However, RVF-SMC brings certain novelties compared to these
two methods. First, the exploration algorithm of [24] can visit the same class
of the partitioning (and even the same trace) an exponential number of times
by different recursion branches, leading to significant performance degradation.
The exploration algorithm of [23] alleviates this issue using the causal map data
structure, similar to our algorithm. The causal map data structure can provably
limit the number of revisits to polynomial (for a fixed number of threads), and
although it offers an improvement over the exponential revisits, it can still affect
performance. To further improve performance in this work, our algorithm com-
bines causal maps with a new technique, which is the backtrack signals. Causal
maps and backtrack signals together are very effective in avoiding having differ-
ent branches of the recursion visit the same RVF class.
Beyond RVF Partitioning. While RVF-SMC explores the RVF partitioning in
the worst case, in practice it often operates on a partitioning coarser than the one
induced by the RVF equivalence. Specifically, RVF-SMC may treat two traces σ1

and σ2 with same events (E(σ1) = E(σ2)) and value function (valσ1 = valσ2) as
equivalent even when they differ in some causal orderings (�→σ1 |R 
= �→σ2 |R). To
see an example of this, consider the program and the RVF-SMC run in Fig. 6.
The recursion node (C) spans all traces where (i) r1 reads-from either w1 or
w3, and (ii) r2 reads-from either w2 or w4. Consider two such traces σ1 and
σ2, with RFσ1(r2) = w2 and RFσ2(r2) = w4. We have r1 �→σ1r2 and r1 
�→σ2

r2,
and yet σ1 and σ2 are (soundly) considered equivalent by RVF-SMC. Hence the
RVF partitioning is used to upper-bound the time complexity of RVF-SMC. We
remark that the algorithm is always sound, i.e., it is guaranteed to discover all
thread states even when it does not explore the RVF partitioning in full.

6 Experiments

In this section we describe the experimental evaluation of our SMC approach
RVF-SMC. We have implemented RVF-SMC as an extension in Nidhugg [27], a
state-of-the-art stateless model checker for multithreaded C/C++ programs that
operates on LLVM Intermediate Representation. First we assess the advantages
of utilizing the RVF equivalence in SMC as compared to other trace equivalences.
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Then we perform ablation studies to demonstrate the impact of the backtrack
signals technique (cf. Sect. 5) and the VerifySC heuristics (cf. Sect. 4.2).

In our experiments we compare RVF-SMC with several state-of-the-art SMC
tools utilizing different trace equivalences. First we consider VC-DPOR [23], the
SMC approach operating on the value-centric equivalence. Then we consider
Nidhugg/rfsc [22], the SMC algorithm utilizing the reads-from equivalence. Fur-
ther we consider DC-DPOR [21] that operates on the data-centric equivalence,
and finally we compare with Nidhugg/source [15] utilizing the Mazurkiewicz
equivalence.1 The works of [22] and [32] in turn compare the Nidhugg/rfsc algo-
rithm with additional SMC tools, namely GenMC [28] (with reads-from equiva-
lence), RCMC [29] (with Mazurkiewicz equivalence), and CDSChecker [33] (with
Mazurkiewicz equivalence), and thus we omit those tools from our evaluation.

There are two main objectives to our evaluation. First, from Sect. 3 we know
that the RVF equivalence can be up to exponentially coarser than the other
equivalences, and we want to discover how often this happens in practice. Second,
in cases where RVF does provide reduction in the trace-partitioning size, we aim
to see whether this reduction is accompanied by the reduction in the runtime of
RVF-SMC operating on RVF equivalence.
Setup. We consider 119 benchmarks in total in our evaluation. Each benchmark
comes with a scaling parameter, called the unroll bound. The parameter controls
the bound on the number of iterations in all loops of the benchmark. For each
benchmark and unroll bound, we capture the number of explored maximal traces,
and the total running time, subject to a timeout of one hour. In Appendix E
of [30] we provide further details on our setup.

Fig. 7. Runtime and traces comparison of RVF-SMC with VC-DPOR.

1 The MCR algorithm [24] is beyond the experimental scope of this work, as that tool
handles Java programs and uses heavyweight SMT solvers that require fine-tuning.
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Fig. 8. Runtime and traces comparison of RVF-SMC with Nidhugg/rfsc.

Fig. 9. Runtime and traces comparison of RVF-SMC with DC-DPOR.

Fig. 10. Runtime and traces comparison of RVF-SMC with Nidhugg/source.
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Results. We provide a number of scatter plots summarizing the comparison of
RVF-SMC with other state-of-the-art tools. In Fig. 7, Fig. 8, Fig. 9 and Fig. 10
we provide comparison both in runtimes and explored traces, for VC-DPOR,
Nidhugg/rfsc, DC-DPOR, and Nidhugg/source, respectively. In each scatter plot,
both its axes are log-scaled, the opaque red line represents equality, and the two
semi-transparent lines represent an order-of-magnitude difference. The points
are colored green when RVF-SMC achieves trace reduction in the underlying
benchmark, and blue otherwise.
Discussion: Significant Trace Reduction. In Table 1 we provide the results
for several benchmarks where RVF achieves significant reduction in the trace-
partitioning size. This is typically accompanied by significant runtime reduction,
allowing is to scale the benchmarks to unroll bounds that other tools cannot han-
dle. Examples of this are 27 Boop4 and scull loop, two toy Linux kernel drivers.

In several benchmarks the number of explored traces remains the same for
RVF-SMC even when scaling up the unroll bound, see 45 monabsex1, reorder 5
and singleton in Table 1. The singleton example is further interesting, in that while
VC-DPOR and DC-DPOR also explore few traces, they still suffer in runtime
due to additional redundant exploration, as described in Sects. 1 and 5.

Table 1. Benchmarks with trace reduction achieved by RVF-SMC. The unroll bound
is shown in the column U. Symbol “–” indicates one-hour timeout. Bold-font entries
indicate the smallest numbers for respective benchmark and unroll.

Benchmark U RVF-SMC VC-DPOR Nidh/rfsc DC-DPOR Nidh/source

27 Boop4 threads: 4 Traces 10 1337215 1574287 11610040 – –

12 2893039 – – – –

Times 10 837 s 1946 s 2616 s – –

12 2017 s – – – –

45 monabsex1

threads: U

Traces 7 1 423360 262144 7073803 25401600

8 1 – 4782969 – –

Times 7 0.09 s 784 s 33 s 3239 s 2819 s

8 0.09 s – 677 s – –

reorder 5 threads:

U+1

Traces 9 4 1644716 1540 1792290 –

30 4 – 54901 – –

Times 9 0.10 s 1711 s 0.44 s 974 s –

30 0.09 s – 49 s – –

scull loop threads: 3 Traces 2 3908 15394 749811 884443 3157281

3 115032 – – – –

Times 2 6.55 s 83 s 403 s 1659 s 1116 s

3 266 s – – – –

singleton threads:

U+1

Traces 20 2 2 20 20 –

30 2 – 30 – –

Times 20 0.07 s 179 s 0.08 s 171 s –

30 0.08 s – 0.10 s – –
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Table 2. Benchmarks with little-to-no trace reduction by RVF-SMC. Symbol † indi-
cates that a particular benchmark operation is not handled by the tool.

Benchmark U RVF-SMC VC-DPOR Nidh/rfsc DC-DPOR Nidh/source

13 unverif threads: U Traces 5 14400 14400 14400 14400 14400

6 518400 – 518400 – 518400

Times 5 7.45 s 63 s 3.33 s 68 s 2.72 s

6 376 s – 134 s – 84 s

approxds append

threads: U

Traces 6 50897 1256381 198936 1114746 9847080

7 923526 – 4645207 – –

Times 6 60 s 995 s 67 s 944 s 2733 s

7 2078 s – 2003 s – –

chase-lev-dq threads:

3

Traces 4 87807 † 175331 † 175331

5 227654 † 448905 † 448905

Times 4 289 s † 71 s † 71 s

5 995 s † 210 s † 200 s

linuxrwlocks threads:

U+1

Traces 1 56 † 59 † 59

2 62018 † 70026 † 70026

Times 1 0.12 s † 0.09 s † 0.13 s

2 42 s † 15 s † 9.50 s

pgsql threads: 2 Traces 3 3906 3906 3906 3906 3906

4 335923 335923 335923 335923 335923

Times 3 3.30 s 5.98 s 1.01 s 4.00 s 0.51 s

4 412 s 911 s 107 s 616 s 51 s

Discussion: Little-to-no Trace Reduction. Table 2 presents several bench-
marks where the RVF partitioning achieves little-to-no reduction. In these cases
the well-engineered Nidhugg/rfsc and Nidhugg/source dominate the runtime.

RVF-SMC Ablation Studies. Here we demonstrate the effect that fol-
lows from our RVF-SMC algorithm utilizing the approach of backtrack signals
(see Sect. 5) and the heuristics of VerifySC (see Sect. 4.2). These techniques have
no effect on the number of the explored traces, thus we focus on the runtime.
The left plot of Fig. 11 compares RVF-SMC as is with a RVF-SMC version that
does not utilize the backtrack signals (achieved by simply keeping the backtrack
flag in Algorithm 2 always true). The right plot of Fig. 11 compares RVF-SMC
as is with a RVF-SMC version that employs VerifySC without the closure and
auxiliary-trace heuristics. We can see that the techniques almost always result
in improved runtime. The improvement is mostly within an order of magnitude,
and in a few cases there is several-orders-of-magnitude improvement.

Finally, in Fig. 12 we illustrate how much time during RVF-SMC is typically
spent on VerifySC (i.e., on solving VSC instances generated during RVF-SMC).
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Fig. 11. Ablation studies of RVF-SMC. The left plot compares RVF-SMC with and
without backtrack signals. The right plots compares RVF-SMC with and without the
closure and auxiliary-trace heuristics of Sect. 4.2.

Fig. 12. Histogram that illustrates the percentage of time spent solving VSC instances
during RVF-SMC.

7 Conclusions

In this work we developed RVF-SMC, a new SMC algorithm for the verification
of concurrent programs using a novel equivalence called reads-value-from (RVF).
On our way to RVF-SMC, we have revisited the famous VSC problem [25].
Despite its NP-hardness, we have shown that the problem is parameterizable in
k+d (for k threads and d variables), and becomes even fixed-parameter tractable
in d when k is constant. Moreover we have developed practical heuristics that
solve the problem efficiently in many practical settings.

Our RVF-SMC algorithm couples our solution for VSC to a novel explo-
ration of the underlying RVF partitioning, and is able to model check many
concurrent programs where previous approaches time-out. Our experimental
evaluation reveals that RVF is very often the most effective equivalence, as the
underlying partitioning is exponentially coarser than other approaches. More-
over, RVF-SMC generates representatives very efficiently, as the reduction in
the partitioning is often met with significant speed-ups in the model checking
task. Interesting future work includes further improvements over the VSC, as
well as extensions of RVF-SMC to relaxed memory models.



364 P. Agarwal et al.

Acknowledgments. The research was partially funded by the ERC CoG 863818
(ForM-SMArt) and the Vienna Science and Technology Fund (WWTF) through project
ICT15-003.

References

1. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: OSDI (2008)

2. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

3. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL (1997)

4. Godefroid, P.: Software model checking: the VeriSoft approach. FMSD 26(2), 77–
101 (2005)

5. Ball, T., Musuvathi, M., Qadeer, S.: Chess: a systematic testing tool for concurrent
software. Technical report (2007)

6. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer, Secaucus (1996)

7. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. SIGPLAN Not. 42(6), 446–455 (2007)

8. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. FMSD 35(1), 73–97 (2009)

9. Chini, P., Kolberg, J., Krebs, A., Meyer, R., Saivasan, P.: On the complexity of
bounded context switching. In: Pruhs, K., Sohler, C. (eds.) 25th Annual European
Symposium on Algorithms (ESA 2017), Leibniz International Proceedings in Infor-
matics (LIPIcs), Dagstuhl, Germany, vol. 87, pp. 27:1–27:15. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. (2017)

10. Baumann, P., Majumdar, R., Thinniyam, R.S., Zetzsche, G.: Context-bounded
verification of liveness properties for multithreaded shared-memory programs. In:
Proceedings of ACM Programming Language, vol. 5, no. POPL, pp. 1–31 (2021)

11. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. STTT 2(3), 279–287 (1999)

12. Peled, D.: All from one, one for all: on model checking using representatives. In:
CAV (1993)

13. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 30

14. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL (2005)

15. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: POPL (2014)
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