Skip to main content

Local Delivery of Antibiotic and Antiseptic

  • Chapter
  • First Online:
Infection in Knee Replacement

Abstract

Total knee arthroplasty (TKA) is considered one of the most cost-effective orthopedic surgical procedures with more than one million procedures performed every year. Periprosthetic joint infection (PJI) is a rare but devastating complication associated with extensive economic, physical, and psychological costs. Early PJI has been associated with preoperative bacterial infection of the patient, or intraoperative bacterial contamination from surgical team, operative tools, and instruments. Currently, the use of perioperative systemic antibiotics in TJA is the only consensus recommendation by international authorities. In order to reduce the incidence of PJI, multiple prevention strategies have been progressively introduced. Intraoperative irrigation with antiseptic solutions could be considered a potential tool in reducing the risk of early PJI after TKA by preventing the formation of bacterial biofilm. To date, there is no shared consensus regarding the usage of the best antiseptic solution in order to prevent and/or eradicate biofilm formation. The application of antimicrobial agents at the site of musculoskeletal infections has been widely documented, ranging from the direct intra-articular infusion of antibiotic after TKA to the intrawound placement of antibiotic powder to prevent infection in spinal surgery. Due to a lack of clarification regarding the long-term efficacy of locally administrated antibiotics, the combination of antibiotics with implantable materials has been progressively investigated in order to provide a predictable release profile. Different implant-coating alternatives have been developed to reduce the risk of early PJI. The goal is to create a local environment favorable to the host and hostile to the microorganisms in order to reduce the bacterial adhesion to the implant and the subsequent biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.

    Google Scholar 

  2. Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthoplasty. 2008;23(7):984–91.

    Google Scholar 

  3. Haddad FS, Ngu A, Negus JJ. Prosthetic joint infections and cost analysis? Adv Exp Med Biol. 2017;971:93–100.

    CAS  PubMed  Google Scholar 

  4. Berríos-Torres SI, Umscheid CA, Bratzler DW, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection. JAMA Surg. 2017;152(8):784–91.

    PubMed  Google Scholar 

  5. Allegranzi B, Zayed B, Bischoff P, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288–303.

    PubMed  Google Scholar 

  6. Hanada M, Nishikino S, Hotta K, Furuhashi H, Hoshino H, Matsuyama Y. Intrawound vancomycin powder increases post-operative wound complications and does not decrease periprosthetic joint infection in primary total and unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2019;27:2322–7.

    PubMed  Google Scholar 

  7. Bosco JA, Bookman J, Slover J, Edusei E, Levine B. Principles of antibiotic prophylaxis in total joint arthroplasty: current concepts. J Am Acad Orthop Surg. 2015;23(8):e27–35.

    PubMed  Google Scholar 

  8. Cacciola G, Mancino F, Malahias MA, Sculco PK, Maccauro G, De Martino I. Diluted povidone-iodine irrigation prior to wound closure in primary and revision total joint arthroplasty of hip and knee: a review of the evidence. J Biol Regul Homeost Agents. 2020;34(3 Suppl 2):57–62.

    CAS  PubMed  Google Scholar 

  9. Kokavec M, Fristáková M. Efficacy of antiseptics in the prevention of post-operative infections of the proximal femur, hip and pelvis regions in orthopedic pediatric patients. Analysis of the first results. Acta Chir Orthop Traumatol Cech. 2008;75(2):106–9.

    CAS  PubMed  Google Scholar 

  10. Barnes S, Spencer M, Graham D, Johnson HB. Surgical wound irrigation: a call for evidence-based standardization of practice. Am J Infect Control. 2014;42:525–9.

    PubMed  Google Scholar 

  11. Blom A, Cho J, Fleischman A, et al. General assembly, prevention, antiseptic irrigation solution: proceedings of international consensus on orthopedic. J Arthroplasty. 2019;34(2S):S131–8.

    PubMed  Google Scholar 

  12. Chundamala J, Wright JG. The efficacy and risks of using povidone-iodine irrigation to prevent surgical site infection: an evidence-based review. Can J Surg. 2007;50:473–81.

    PubMed  PubMed Central  Google Scholar 

  13. Cheng MT, Chang MC, Wang ST, et al. Efficacy of dilute Betadine solution irrigation in the prevention of postoperative infection of spinal surgery. Spine (Phila Pa 1976). 2005;30:1689–93.

    Google Scholar 

  14. Oduwole KO, Glynn AA, Molony DC, et al. Anti-biofilm activity of sub-inhibitory povidone-iodine concentrations against Staphylococcus epidermidis and Staphylococcus aureus. J Orthop Res. 2010;28:1252–6.

    CAS  PubMed  Google Scholar 

  15. Goldenheim PD. In vitro efficacy of povidone-iodine solution and cream against methicillin-resistant Staphylococcus aureus. Postgrad Med J. 1993;69(Suppl 3):S62.

    CAS  PubMed  Google Scholar 

  16. Hoekstra MJ, Westgate SJ, Mueller S. Povidone-iodine ointment demonstrates in vitro efficacy against biofilm formation. Int Wound J. 2017;14(1):172–9.

    PubMed  Google Scholar 

  17. Kanno E, Tanno H, Suzuki A, Kamimatsuno R, Tachi M. Reconsideration of iodine in wound irrigation: the effects on Pseudomonas aeruginosa biofilm formation. J Wound Care. 2016;25(6):335–9.

    CAS  PubMed  Google Scholar 

  18. Von Keudell A, Canseco JA, Gomoll AH. Deleterious effects of diluted povidoneeiodine on articular cartilage. J Arthroplasty. 2013;28:918–21.

    Google Scholar 

  19. Kaysinger KK, Nicholson NC, Ramp WK, Kellam JF. Toxic effects of wound irrigation solutions on cultured tibiae and osteoblasts. J Orthop Trauma. 1995;9:303–11.

    CAS  PubMed  Google Scholar 

  20. Brown NM, Cipriano CA, Moric M, Sporer SM, Della Valle CJ. Dilute betadine lavage before closure for the prevention of acute postoperative deep periprosthetic joint infection. J Arthroplasty. 2012;27(1):27–30.

    PubMed  Google Scholar 

  21. Hernandez NM, Hart A, Taunton MJ, et al. Use of povidone-iodine irrigation prior to wound closure in primary Total hip and knee arthroplasty: an analysis of 11,738 cases. J Bone Joint Surg Am. 2019;101(13):1144–50.

    PubMed  Google Scholar 

  22. Calkins TE, Culvern C, Nam D, et al. Dilute betadine lavage reduces the risk of acute postoperative periprosthetic joint infection in aseptic revision total knee and hip arthroplasty: a randomized controlled trial. J Arthroplasty. 2020;35(2):538–543.e1.

    PubMed  Google Scholar 

  23. Haley CE, Marling-Cason M, Smith JW, et al. Bactericidal activity of antiseptics against methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1985;21:991–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. George J, Klika AK, Higuera CA. Use of chlorhexidine preparations in total joint arthroplasty. J Bone Jt Infect. 2017;2(1):15–22.

    PubMed  PubMed Central  Google Scholar 

  25. Lim KS, Kam PC. Chlorhexidine-pharmacology and clinical applications. Anesth Intensive Care. 2008;36(4):502–12.

    Google Scholar 

  26. Sobel AD, Hohman D, Jones J, Bisson LJ. Chlorhexidine gluconate cleansing has no effect on the structural properties of human patellar tendon allografts. Arthroscopy. 2012;28(12):1862–6.

    PubMed  Google Scholar 

  27. Kuyyakanond T, Quesnel LB. The mechanism of action of chlorhexidine. FEMS Microbiol Lett. 1992;100(1–3):211–5.

    CAS  PubMed  Google Scholar 

  28. Mathur S, Mathur T, Shrivastava R, Khatri R. Chlorhexidine: the gold standard in chemical plaque control. Natl J Physiol Pharm Pharmacol. 2011;1(2):45.

    CAS  Google Scholar 

  29. Frisch NB, Kadri OM, Tenbrunsel T, Abdul-Hak A, Qatu M, Davis JJ. Intraoperative chlorhexidine irrigation to prevent infection in total hip and knee arthroplasty. Arthroplast Today. 2017;3(4):294–7.

    PubMed  PubMed Central  Google Scholar 

  30. Smith DC, Maiman R, Schwechter EM, Kim SJ, Hirsh DM. Optimal irrigation and debridement of infected total joint implants with chlorhexidine gluconate. J Arthroplasty. 2015;30:1820–2.

    PubMed  Google Scholar 

  31. Liu JX, Werner J, Kirsch T, Zuckerman JD, Virk MS. Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts. J Bone Jt Infect. 2018;3(4):165–72.

    PubMed  PubMed Central  Google Scholar 

  32. Wang Z, Zheng J, Zhao Y, et al. Preoperative bathing with chlorhexidine reduces the incidence of surgical site infections after total knee arthroplasty: a meta-analysis. Medicine (Baltimore). 2017;96(47):e8321.

    CAS  Google Scholar 

  33. Whiteside LA, Peppers M, Nayfeh TA, Roy ME. Methicillin-resistant Staphylococcus aureus in TKA treated with revision and direct intra-articular antibiotic infusion. Clin Orthop Relat Res. 2011;469(1):26–33.

    PubMed  Google Scholar 

  34. Ghobrial GM, Cadotte DW, Williams K Jr, Fehlings MG, Harrop JS. Complications from the use of intrawound vancomycin in lumbar spinal surgery: a systematic review. Neurosurg Focus. 2015;39:E11.

    PubMed  Google Scholar 

  35. O’Neill KR, Smith JG, Abtahi AM, Archer KR, Spengler DM, McGirt MJ, Devin CJ. Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J. 2011;11:641–6.

    PubMed  Google Scholar 

  36. Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK. Decreased risk of wound infection after posterior cervical fusion with routine local application of vancomycin powder. Spine (Phila Pa 1976). 2013;38:991–4.

    Google Scholar 

  37. Sweet FA, Roh M, Sliva C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine (Phila Pa 1976). 2011;36:2084–8.

    Google Scholar 

  38. Dial BL, Lampley AJ, Green CL, Hallows R. Intrawound vancomycin powder in primary total hip arthroplasty increases rate of sterile wound complications. Hip Pelvis. 2018;30:37–44.

    PubMed  PubMed Central  Google Scholar 

  39. Bakhsheshian J, Dahdaleh NS, Lam SK, Savage JW, Smith ZA. The use of vancomycin powder in modern spine surgery: systematic review and meta-analysis of the clinical evidence. World Neurosurg. 2015;83:816–23.

    PubMed  Google Scholar 

  40. Kang DG, Holekamp TF, Wagner SC, Lehman RA Jr. Intrasite vancomycin powder for the prevention of surgical site infection in spine surgery: a systematic literature review. Spine J. 2015;15:762–70.

    PubMed  Google Scholar 

  41. Cooper JJ, Florance H, McKinnon JL, Laycock PA, Aiken SS. Elution profiles of tobramycin and vancomycin from high-purity calcium sulphate beads incubated in a range of simulated body fluids. J Biomater Appl. 2016;31(3):357–65.

    CAS  PubMed  Google Scholar 

  42. Cavanaugh DL, Berry J, Yarboro SR, Dahners LE. Better prophylaxis against surgical site infection with local as well as systemic antibiotics. An in vivo study. J Bone Joint Surg Am. 2009;91(8):1907.

    PubMed  PubMed Central  Google Scholar 

  43. Edelstein AI, Weiner JA, Cook RW. Intra-articular vancomycin powder eliminates methicillin-resistant S. aureus in a rat model of a contaminated intraarticular implant. J Bone Joint Surg Am. 2017;99(3):232–8.

    PubMed  Google Scholar 

  44. Qadir R, Ochsner JL, Chimento GF, Meyer MS, Waddell B, Zavatsky JM. Establishing a role for vancomycin powder application for prosthetic joint infection prevention-results of a wear simulation study. J Arthroplasty. 2014;29:1449–56.

    PubMed  Google Scholar 

  45. Otte JE, Politi JR, Chambers B, Smith CA. Intrawound vancomycin powder reduces early prosthetic joint infections in revision hip and knee arthroplasty. Surg Technol Int. 2017;30:284–9.

    PubMed  Google Scholar 

  46. Patel NN, Guild GN, Kumar AR. Intrawound vancomycin in primary hip and knee arthroplasty: a safe and cost-effective means to decrease early periprosthetic joint infection. Arthroplast Today. 2018;4:479–83.

    PubMed  PubMed Central  Google Scholar 

  47. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 2012;27(8 Suppl):61.

    PubMed  Google Scholar 

  48. Matziolis G, Brodt S, Böhle S, Kirschberg J, Jacob B, Röhner E. Intraarticular vancomycin powder is effective in preventing infections following total hip and knee arthroplasty. Sci Rep. 2020;10:13053.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970;41(11):511–5.

    CAS  PubMed  Google Scholar 

  50. Anagnostakos K, Fürst O, Kelm J. Antibiotic-impregnated PMMA hip spacers: current status. Acta Orthop. 2006;77(4):628–37.

    PubMed  Google Scholar 

  51. Cui Q, Mihalko WM, Shields JS, Ries M, Saleh KJ. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J Bone Joint Surg Am. 2007;89(4):871–82.

    PubMed  Google Scholar 

  52. Parvizi J, Saleh KJ, Ragland PS, Pour AE, Mont MA. Efficacy of antibiotic-impregnated cement in total hip replacement. Acta Orthop. 2008;79(3):335–41.

    PubMed  Google Scholar 

  53. Jämsen E, Huhtala H, Puolakka T, Moilanen T. Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am. 2009;91(1):38–47.

    PubMed  Google Scholar 

  54. Iarikov D, Demian H, Rubin D, Alexander J, Nambiar S. Choice and doses of antibacterial agents for cement spacers in treatment of prosthetic joint infections: review of published studies. Clin Infect Dis. 2012;55(11):1474–80.

    CAS  PubMed  Google Scholar 

  55. Hinarejos P, Guirro P, Leal J, et al. The use of erythromycin and colistin-loaded cement in total knee arthroplasty does not reduce the incidence of infection: a prospective randomized study in 3000 knees. J Bone Joint Surg Am. 2013;95(9):769–74.

    PubMed  Google Scholar 

  56. Wahlig H, Dingeldein E, Bergmann R, Reuss K. The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study. J Bone Joint Surg Br. 1978;60-B(2):270–5.

    CAS  PubMed  Google Scholar 

  57. Wahlig H, Dingeldein E, Bergmann R, Reuss K. Experimentelle und pharmakokinetische Untersuchungen mit gentamycin-PMMA-Kugeln [experimental and pharmacokinetic studies with gentamicin PMMA beads (author’s transl)]. Zentralbl Chir. 1979;104(14):923–33.

    CAS  PubMed  Google Scholar 

  58. Walenkamp GH, Vree TB, van Rens TJ. Gentamicin-PMMA beads. Pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res. 1986;(205):171–83.

    Google Scholar 

  59. Howlin RP, Brayford MJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother. 2015;59(1):111–20.

    CAS  PubMed  Google Scholar 

  60. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588–95.

    CAS  PubMed  Google Scholar 

  61. Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001;47(6):885–91.

    CAS  PubMed  Google Scholar 

  62. Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials. 2003;24(10):1829–31.

    CAS  PubMed  Google Scholar 

  63. Burd TA, Anglen JO, Lowry KJ, Hendricks KJ, Day D. In vitro elution of tobramycin from bioabsorbable polycaprolactone beads. J Orthop Trauma. 2001;15(6):424–8.

    CAS  PubMed  Google Scholar 

  64. Peters CL, Hines JL, Bachus KN, Craig MA, Bloebaum RD. Biological effects of calcium sulfate as a bone graft substitute in ovine metaphyseal defects. J Biomed Mater Res A. 2006;76A(3):456–62.

    CAS  Google Scholar 

  65. Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications. J Biomed Mater Res B Appl Biomater. 2009;88(2):597–610.

    PubMed  Google Scholar 

  66. Turner TM, Urban RM, et al. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):8–18.

    CAS  PubMed  Google Scholar 

  67. Kelly CM, et al. The use of surgical grade calcium sulphate as a bone graft substitute. Clin Ortho Relat Res. 2001;382:42–50.

    Google Scholar 

  68. Gitelis S, et al. Use of calcium sulphate based bone graft substitute for benign bone lesions. Orthopaedics. 2001;4:162–6.

    Google Scholar 

  69. Mirzayan R, et al. The use of calcium sulphate in the treatment of benign bone lesions: a preliminary report. J Bone Joint Surg Am. 2001;83:355–8.

    CAS  PubMed  Google Scholar 

  70. Peltier L. The use of plaster of Paris to fill large defects in bone. Am J Surg. 1959;97:311–5.

    CAS  PubMed  Google Scholar 

  71. Borreli J, et al. Treatment of nonunions and osseous defects with bone graft and calcium sulphate. Clin Orthop Relat Res. 2003;411:245–54.

    Google Scholar 

  72. Evaniew N, Tan V, Parasu N, Jurriaans E, Finlay K, Deheshi B, Ghert M. Use of a calcium sulfate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumours. Orthopedics. 2013;36(2):e216–22.

    PubMed  Google Scholar 

  73. Lulu GA, Karunanidhi A, Mohamad Yusof L, et al. In vivo efficacy of tobramycin-loaded synthetic calcium phosphate beads in a rabbit model of staphylococcal osteomyelitis. Ann Clin Microbiol Antimicrob. 2018;17:46. https://doi.org/10.1186/s12941-018-0296-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferrando A, Part J, Baeza J. Treatment of Cavitary bone defects in chronic osteomyelitis: bioactive glass S53P4 vs. calcium Sulphate antibiotic beads. J Bone Jt Infect. 2017;2(4):194–201.

    PubMed  PubMed Central  Google Scholar 

  75. McKee MD, Li-Bland EA, Wild LM, Schemitsch EH. A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma. 2010;24(8):483–90.

    PubMed  Google Scholar 

  76. Lee GH, Khoury JG, Bell JE, Buckwalter JA. Adverse reactions to OsteoSet bone graft substitute, the incidence in a consecutive series. Iowa Orthop J. 2002;22:35–8.

    PubMed  PubMed Central  Google Scholar 

  77. Robinson D, Alk D, Sandbank J, Farber R, Halperin N. Inflammatory reactions associated with a calcium sulfate bone substitute. Ann Transplant. 1999;4(3–4):91–7.

    CAS  PubMed  Google Scholar 

  78. Flierl MA, Culp BM, Okroj KT, Springer BD, Levine BR, Della Valle CJ. Poor outcomes of irrigation and debridement in acute Periprosthetic joint infection with antibiotic-impregnated calcium sulfate beads. J Arthroplasty. 2017;32(8):2505–7.

    PubMed  Google Scholar 

  79. Kallala R, Harris WE, Ibrahim M, Dipane M, McPherson E. Use of Stimulan absorbable calcium sulphate beads in revision lower limb arthroplasty: safety profile and complication rates. Bone Joint Res. 2018;7(10):570–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gramlich Y, Walter G, Klug A, Harbering J, Kemmerer M, Hoffmann R. Procedure for single-stage implant retention for chronic periprosthetic infection using topical degradable calcium-based antibiotics. Int Orthop. 2019;43(7):1559–66.

    PubMed  Google Scholar 

  81. Calanna F, Chen F, Risitano S, et al. Debridement, antibiotic pearls, and retention of the implant (DAPRI): a modified technique for implant retention in total knee arthroplasty PJI treatment. J Orthop Surg (Hong Kong). 2019;27(3):2309499019874413.

    Google Scholar 

  82. McPherson E, Dipane M, Sherif S. Dissolvable antibiotic beads in treatment of Periprosthetic joint infection and revision arthroplasty—the use of synthetic pure calcium sulfate (Stimulan®) impregnated with Vancomycin & Tobramycin. Reconstr Rev. 2013;3:32–43.

    Google Scholar 

  83. Marczak D, Synder M, Sibiński M, Okoń T, Kowalczewski J. The use of calcium carbonate beads containing gentamicin in the second stage septic revision of total knee arthroplasty reduces reinfection rate. Knee. 2016;23(2):322–6.

    PubMed  Google Scholar 

  84. Lum ZC, Pereira GC. Local bio-absorbable antibiotic delivery in calcium sulfate beads in hip and knee arthroplasty. J Orthop. 2018;15(2):676–8.

    PubMed  PubMed Central  Google Scholar 

  85. Baeza J, Cury MB, Fleischman A, et al. General assembly, prevention, local antimicrobials: proceedings of international consensus on orthopedic infections. J Arthroplasty. 2019;34(2S):S75–84.

    PubMed  Google Scholar 

  86. Kallala R, Haddad FS. Hypercalcaemia following the use of antibiotic-eluting absorbable calcium sulphate beads in revision arthroplasty for infection. Bone Joint J. 2015;97-B(9):1237–41.

    CAS  PubMed  Google Scholar 

  87. Romanò Morelli I, Battaglia AG, Drago L. Antibacterial coating of implants: are we missing something? Bone Joint Res. 2019;8(5):199–206.

    PubMed  Google Scholar 

  88. Fromm KM. Silver coordination compounds with antimicrobial properties. Appl Organomet Chem. 2013;27:683–7.

    CAS  Google Scholar 

  89. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angem Chem Int Ed Engl. 2013;52:1636–53.

    CAS  Google Scholar 

  90. Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces. 2012;4(3):1341–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012;8(8):3144–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bosetti M, Masse A, Tobin E, Cannas M. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials. 2002;23(3):887–92.

    CAS  PubMed  Google Scholar 

  93. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91(1):470–80.

    PubMed  Google Scholar 

  94. DeVasConCellos P, Bose S, Beyenal H, Bandyopadhyay A, Zirkle LG. Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Mater Sci Eng C. 2012;32(5):1112–20.

    CAS  Google Scholar 

  95. Hardes J, Von Eiff C, Streitbuerger A, et al. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101(5):389–95.

    PubMed  Google Scholar 

  96. Hardes J, Henrichs MP, Hauschild G, Nottrott M, Guder W, Streitbuerger A. Silver-coated megaprosthesis of the proximal tibia in patients with sarcoma. J Arthroplasty. 2017;32(7):2208–13.

    PubMed  Google Scholar 

  97. Zajonz D, Birke U, Ghanem M, et al. Silver-coated modular megaendoprostheses in salvage revision arthroplasty after periimplant infection with extensive bone loss—a pilot study of 34 patients. BMC Musculoskelet Disord. 2017;18(1):383.

    PubMed  PubMed Central  Google Scholar 

  98. Wafa H, Grimer RJ, Reddy K, et al. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J. 2015;97-B(2):252–7.

    CAS  PubMed  Google Scholar 

  99. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013;26(4):609–21.

    CAS  PubMed  Google Scholar 

  100. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2002;52:662–8.

    Google Scholar 

  101. Gordon O, Vig Slenters T, Brunetto PS, Villarus AE, Sturdevant DE, Otto M, et al. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother. 2010;54:4208–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013;39:373–83.

    CAS  PubMed  Google Scholar 

  103. Randall CP, Gupta A, Jackson N, Busse D, O’Neil AJ. Silver resistance in gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother. 2015;70:1037–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Trentinaglia MT, Van Der Straeten C, Morelli I, Logoluso N, Drago L, Romanò CL. Economic evaluation of antibacterial coatings on healthcare costs in first year following total joint arthroplasty. J Arthroplasty. 2018;33(6):1656–62.

    PubMed  Google Scholar 

  105. Shirai T, Shimizu T, Ohtani K, Zen Y, Takaya M, Tsuchiya H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011;7(4):1928–33.

    CAS  PubMed  Google Scholar 

  106. Inoue D, Kabata T, Ohtani K, Kajino Y, Shirai T, Tsuchiya H. Inhibition of biofilm formation on iodine-supported titanium implants. Int Orthop. 2017;41(6):1093–9.

    PubMed  Google Scholar 

  107. Tsuchiya H, Shirai T, Nishida H, et al. Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci. 2012;17(5):595–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shirai T, Tsuchiya H, Nishida H, et al. Antimicrobial megaprostheses supported with iodine. J Biomater Appl. 2014;29(4):617–23.

    PubMed  Google Scholar 

  109. Kabata T, Maeda T, Kajino Y, et al. Iodine-supported hip implants: short term clinical results. Biomed Res Int. 2015;2015:368124.

    PubMed  PubMed Central  Google Scholar 

  110. Pitarresi G, Palumbo FS, Calascibetta F, Fiorica C, Di Stefano M, Giammona G. Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. Int J Pharm. 2013;449(1–2):84–94.

    CAS  PubMed  Google Scholar 

  111. Junter GA, Thébault P, Lebrun L. Polysaccharide-based antibiofilm surfaces. Acta Biomater. 2016;30:13–25.

    CAS  PubMed  Google Scholar 

  112. Ardizzoni A, Neglia RG, Baschieri MC, et al. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med. 2011;22(10):2329–38.

    CAS  PubMed  Google Scholar 

  113. Drago L, Boot W, Dimas K, et al. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin Orthop Relat Res. 2014;472(11):3311–23.

    PubMed  PubMed Central  Google Scholar 

  114. Romanò CL, De Vecchi E, Bortolin M, Morelli I, Drago L. Hyaluronic acid and its composites as a local antimicrobial/antiadhesive barrier. J Bone Jt Infect. 2017;2(1):63–72.

    PubMed  PubMed Central  Google Scholar 

  115. Romanò CL, Malizos K, Capuano N, et al. Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty? J Bone Jt Infect. 2016;1:34–41.

    PubMed  PubMed Central  Google Scholar 

  116. Malizos K, Blauth M, Danita A, et al. Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial. J Orthop Traumatol. 2017;18(2):159–69.

    PubMed  PubMed Central  Google Scholar 

  117. Capuano N, Logoluso N, Gallazzi E, Drago L, Romanò CL. One-stage exchange with antibacterial hydrogel coated implants provides similar results to two-stage revision, without the coating, for the treatment of peri-prosthetic infection. Knee Surg Sports Traumatol Arthrosc. 2018;26(11):3362–7.

    PubMed  Google Scholar 

  118. Zagra L, Gallazzi E, Romanò D, Scarponi S, Romanò C. Two-stage cementless hip revision for peri-prosthetic infection with an antibacterial hydrogel coating: results of a comparative series. Int Orthop. 2019;43(1):111–5.

    PubMed  Google Scholar 

  119. Parvizi J, Pawasarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KJ. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplasty. 2010;25(6 Suppl):103–7.

    PubMed  Google Scholar 

  120. Berend KR, Lombardi AV Jr, Morris MJ, Bergeson AG, Adams JB, Sneller MA. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res. 2013;471(2):510–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan De Martino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Martino, I., Mancino, F., Cacciola, G., Di Matteo, V., Maccauro, G. (2022). Local Delivery of Antibiotic and Antiseptic. In: Longo, U.G., Budhiparama, N.C., Lustig, S., Becker, R., Espregueira-Mendes, J. (eds) Infection in Knee Replacement. Springer, Cham. https://doi.org/10.1007/978-3-030-81553-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81553-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81552-3

  • Online ISBN: 978-3-030-81553-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics