Skip to main content

The Search for Immunological Biomarkers in Type 1 Diabetes Mellitus (T1DM) and Multiple Sclerosis (MS): Th40 Cells Provide a Common Autoimmune Link

  • Living reference work entry
  • First Online:
Book cover Biomarkers in Diabetes
  • 44 Accesses

Abstract

Biomarkers to predict autoimmune disease onset or predict progression are sorely lacking. A specific T cell subset present in peripheral blood of human subjects and mouse models called Th40, CD4+ helper T cells that express the CD40 receptor, are emerging as diagnostic in type 1 diabetes mellitus (T1DM) and multiple sclerosis (MS). Th40 cell number expansions predate symptoms in both T1DM and MS in human subjects. Th40 cells prove pathogenicity by transferring T1DM in the diabetes preclinical mouse model and transferring severe symptoms in the MS mouse model. Th40 cells undergo a process called TCR revision, altering TCR expression in the periphery, constituting a mechanism that increases immune diversity to invaders like viruses, but also may increase the existence of self-antigen reactive T cells. Th40 cells are indicative of systemic inflammation and in combination with other markers, HLA and chemokine receptor expressions, can be diagnostic for specific autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAb:

Autoantibody

APC:

Antigen presenting cell

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DC:

Dendritic cell

DKA:

Diabetic ketoacidosis

GAD:

Glutamic acid decarboxylase

GWAS:

Genome-wide association studies

HLA:

Human leukocyte antigen

IAP:

Islet-associated peptide

IFNγ:

Interferon gamma

IL:

Interleukin

INS:

Insulin

LADA:

Latent autoimmune diabetes in adults

MHC:

Major histocompatibility complex

MS:

Multiple sclerosis

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

TCR:

T cell receptor

Th:

T helper

TNFα:

Tumor necrosis factor alpha

TREC:

T cell receptor excision circle

References

  • Ali M, Weinreich M, Balcaitis S, Cooper CJ, Fink PJ. Differential regulation of peripheral CD4+ T cell tolerance induced by deletion and TCR revision. J Immunol. 2003;171(11):6290–6.

    Article  CAS  PubMed  Google Scholar 

  • Alturaihi H, Hassan GS, Al-Zoobi L, Salti S, Darif Y, Yacoub D, El Akoum S, Oudghiri M, Merhi Y, Mourad W. Interaction of CD154 with different receptors and its role in bidirectional signals. Eur J Immunol. 2015;45(2):592–602.

    Article  CAS  PubMed  Google Scholar 

  • Amit C, Payal C, Baghel US, Aakash D. Synthesis, cytotoxic evaluation, docking and QSAR study of N-(4-oxo-2-(4-((5-aryl-1,3,4-thiadiazol-2-yl)amino)phenyl)thiazolidin-3-yl) benzamides as antitubulin agents. Curr Top Med Chem. 2016;16(22):2509–20.

    Article  CAS  PubMed  Google Scholar 

  • Anaya JM, Gomez L, Castiblanco J. Is there a common genetic basis for autoimmune diseases? Clin Dev Immunol. 2006;13(2–4):185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A. 1999;96(12):6873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzan M. Low incidence and mortality from SARS-CoV-2 in Southern Europe. Proposal of a hypothesis for Arthropod borne Herd immunity. Med Hypotheses. 2020;143:110121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao YK, Ma J, Ganesan VC, McGill JB. Mistaken identity: missed diagnosis of type 1 diabetes in an older adult. Med Res Arch. 2019;7(8):1962.

    PubMed  PubMed Central  Google Scholar 

  • Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia M, Nigi L, Dotta F. Towards an earlier and timely diagnosis of type 1 diabetes: is it time to change criteria to define disease onset? Curr Diab Rep. 2015;15(12):115.

    Article  PubMed  Google Scholar 

  • Bending D, De La Pena H, Veldhoen M, Phillips JM, Uyttenhove C, Stockinger B, Cooke A. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest. 2009;119:565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleich D, Wagner DH. Challenges to reshape the future of type 1 diabetes research. J Clin Endocrinol Metab. 2018;103(8):2838–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bretscher P. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci U S A. 1999;96:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter J, Vaitaitis GM, Waid DM, Wagner DH Jr. CD40 engagement of CD4+ CD40+ T cells in a neo-self antigen disease model ablates CTLA-4 expression and indirectly impacts tolerance. Eur J Immunol. 2012;42(2):424–35.

    Article  CAS  PubMed  Google Scholar 

  • Chu PY, Walder K, Horlock D, Williams D, Nelson E, Byrne M, Jandeleit-Dahm K, Zimmet P, Kaye DM. CXCR4 antagonism attenuates the development of diabetic cardiac fibrosis. PLoS One. 2015;10(7):e0133616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu T, Shields LBE, Zhang YP, Feng SQ, Shields CB, Cai J. CXCL12/CXCR4/CXCR7 chemokine axis in the central nervous system: therapeutic targets for remyelination in demyelinating diseases. Neuroscientist. 2017;23(6):627–48.

    Article  CAS  PubMed  Google Scholar 

  • Cooke A. Th17 cells in inflammatory conditions. Rev Diabet Stud. 2006;3(2):72–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper CJ, Orr MT, McMahan CJ, Fink PJ. T cell receptor revision does not solely target recent thymic emigrants. J Immunol. 2003;171(1):226–33.

    Article  CAS  PubMed  Google Scholar 

  • Cunill V, Massot M, Clemente A, Calles C, Andreu V, Nunez V, Lopez-Gomez A, Diaz RM, Jimenez MLR, Pons J, et al. Relapsing-remitting multiple sclerosis is characterized by a T follicular cell pro-inflammatory shift, reverted by dimethyl fumarate treatment. Front Immunol. 2018;9:1097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalakas MC. Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. Acta Myol. 2020;39(4):289–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng G, Carter J, Traystman RJ, Wagner DH, Herson PS. Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. J Neuroimmunol. 2014;274(1–2):132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20:102792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Fakhry Y, Alturaihi H, Yacoub D, Liu L, Guo W, Leveille C, Jung D, Khzam LB, Merhi Y, Wilkins JA, et al. Functional interaction of CD154 protein with alpha5beta1 integrin is totally independent from its binding to alphaIIbbeta3 integrin and CD40 molecules. J Biol Chem. 2012;287(22):18055–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foy TM, Page DM, Waldschmidt TJ, Schoneveld A, Laman JD, Masters SR, Tygrett L, Ledbetter JA, Aruffo A, Claassen E, et al. An essential role for gp39, the ligand for CD40, in thymic selection. J Exp Med. 1995;182:1377–88.

    Article  CAS  PubMed  Google Scholar 

  • Foy T, Aruffo A, Bajorath J, Buhlmann J, Noelle R. Immune regulation by CD40 and its ligand gp39. Annu Rev Immunol. 1996;14:591–617.

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni G. Cerebrospinal fluid analysis. Handb Clin Neurol. 2014;122:681–702.

    Article  PubMed  Google Scholar 

  • Grabbe S, Beissert S, Enk A. Systemic immunosuppression in times of COVID-19: do we need to rethink our standards? J Dtsch Dermatol Ges. 2020;18(8):810–3.

    PubMed  PubMed Central  Google Scholar 

  • Halter JB, Beard JC, Porte D Jr. Islet function and stress hyperglycemia: plasma glucose and epinephrine interaction. Am J Phys. 1984;247(1 Pt 1):E47–52.

    CAS  Google Scholar 

  • Hartung HP, Graf J, Aktas O, Mares J, Barnett MH. Diagnosis of multiple sclerosis: revisions of the McDonald criteria 2017 – continuity and change. Curr Opin Neurol. 2019;32(3):327–37.

    Article  PubMed  Google Scholar 

  • Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol. 2009;30(4):165–72.

    Article  CAS  PubMed  Google Scholar 

  • Haubitz M. Exploring new territory: the move towards individualised treatment. Lupus. 2007;16(3):227–31.

    Article  CAS  PubMed  Google Scholar 

  • Hertzenberg D, Lehmann-Horn K, Kinzel S, Husterer V, Cravens PD, Kieseier BC, Hemmer B, Bruck W, Zamvil SS, Stuve O, et al. Developmental maturation of innate immune cell function correlates with susceptibility to central nervous system autoimmunity. Eur J Immunol. 2013;43(8):2078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbaugh D, Grosmaire LS, Kullas CD, Chalupny NJ, Braesch-Andersen S, Noelle RJ, Stamenkovic I, Ledbetter JA, Aruffo A. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 1992;11(12):4313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard LM, Miga AJ, Vanderlugt CL, Dal Canto MC, Laman JD, Noelle RJ, Miller SD. Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J Clin Invest. 1999;103(2):281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard LM, Dal Canto MC, Miller SD. Transient anti-CD154-mediated immunotherapy of ongoing relapsing experimental autoimmune encephalomyelitis induces long-term inhibition of disease relapses. J Neuroimmunol. 2002a;129(1–2):58–65.

    Article  CAS  PubMed  Google Scholar 

  • Howard LM, Ostrovidov S, Smith CE, Dal Canto MC, Miller SD. Normal Th1 development following long-term therapeutic blockade of CD154-CD40 in experimental autoimmune encephalomyelitis. J Clin Invest. 2002b;109(2):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber AK, Irani DN. Targeting CXCL13 during neuroinflammation. Adv Neuroimmune Biol. 2015;6(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain RZ, Hayardeny L, Cravens PC, Yarovinsky F, Eagar TN, Arellano B, Deason K, Castro-Rojas C, Stuve O. Immune surveillance of the central nervous system in multiple sclerosis – relevance for therapy and experimental models. J Neuroimmunol. 2014;276(1–2):9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins SJ, Perona-Wright G, MacDonald AS. Full development of Th2 immunity requires both innate and adaptive sources of CD154. J Immunol. 2008;180(12):8083–92.

    Article  CAS  PubMed  Google Scholar 

  • Kalman B, Lublin FD. The genetics of multiple sclerosis. A review. Biomed Pharmacother. 1999;53(8):358–70.

    Article  CAS  PubMed  Google Scholar 

  • Khamsi R. Rogue antibodies could be driving severe COVID-19. Nature. 2021;590(7844):29–31.

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–5.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto H, Sprent J. A defect in central tolerance in NOD mice. Nat Immunol. 2001;2(11):1025–31.

    Article  CAS  PubMed  Google Scholar 

  • Kooy AJ, Prens EP, Van Heukelum A, Vuzevski VD, Van Joost T, Tank B. Interferon-gamma-induced ICAM-1 and CD40 expression, complete lack of HLA-DR and CD80 (B7.1), and inconsistent HLA-ABC expression in basal cell carcinoma: a possible role for interleukin-10? J Pathol. 1999;187(3):351–7.

    Article  CAS  PubMed  Google Scholar 

  • Krischer JP, Liu X, Lernmark A, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Akolkar B, Group TS. Characteristics of children diagnosed with type 1 diabetes before vs after 6 years of age in the TEDDY cohort study. Diabetologia. 2021;64:2247–57.

    Article  CAS  PubMed  Google Scholar 

  • Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, Hofbauer M, Farina C, Derfuss T, Hartle C, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006;129(Pt 1):200–11.

    Article  PubMed  Google Scholar 

  • Kuklina EM. Revision of the antigen receptor of T-lymphocytes. Biochemistry (Mosc). 2006;71(8):827–37.

    Article  CAS  Google Scholar 

  • Lampasona V, Liberati D. Islet Autoantibodies. Curr Diab Rep. 2016;16(6):53.

    Article  PubMed  Google Scholar 

  • Link H, Huang YM. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol. 2006;180(1–2):17–28.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Meuwissen TH, Sorensen AC, Berg P. Upweighting rare favourable alleles increases long-term genetic gain in genomic selection programs. Genet Sel Evol. 2015;47:19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Liu X, Xiong H, Wang W, Liu Y, Yin L, Tu C, Wang H, Xiang X, Xu J, et al. CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice. Brain Behav Immun. 2019;80:711–24.

    Article  CAS  PubMed  Google Scholar 

  • Logstrup BB, Ellingsen T, Pedersen AB, Darvalics B, Olesen KKW, Botker HE, Maeng M. Cardiovascular risk and mortality in rheumatoid arthritis compared with diabetes mellitus and the general population. Rheumatology (Oxford). 2020;60:1400–9.

    Article  Google Scholar 

  • Magliozzi R, Cross AH. Can CSF biomarkers predict future MS disease activity and severity? Mult Scler. 2020. https://doi.org/10.1177/1352458519871818.

  • Magyari M, Sorensen PS. Comorbidity in multiple sclerosis. Front Neurol. 2020;11:851.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangada J, Pearson T, Brehm MA, Wicker LS, Peterson LB, Shultz LD, Serreze DV, Rossini AA, Greiner DL. Idd loci synergize to prolong islet allograft survival induced by costimulation blockade in NOD mice. Diabetes. 2009;58(1):165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrosu MG, Motzo C, Murru R, Lampis R, Costa G, Zavattari P, Contu D, Fadda E, Cocco E, Cucca F. The coinheritance of type 1 diabetes and multiple sclerosis in Sardinia cannot be explained by genotype variation in the HLA region alone. Hum Mol Genet. 2004;13(23):2919–24.

    Article  CAS  PubMed  Google Scholar 

  • McMahan C, Fink P. Receptor revision in peripheral T cells creates a diverse V beta repertoire. J Immunol. 2000;165:690206907.

    Article  Google Scholar 

  • Michels A, Zhang L, Khadra A, Kushner JA, Redondo MJ, Pietropaolo M. Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes. 2015;16(7):465–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz C, Floreen A, Garey C, Karlya T, Jelley D, Alonso GT, McAuliffe-Fogarty A. Misdiagnosis and diabetic ketoacidosis at diagnosis of type 1 diabetes: patient and caregiver perspectives. Clin Diabetes. 2019;37(3):276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nersesjan V, Amiri M, Lebech AM, Roed C, Mens H, Russell L, Fonsmark L, Berntsen M, Sigurdsson ST, Carlsen J, et al. Central and peripheral nervous system complications of COVID-19: a prospective tertiary center cohort with 3-month follow-up. J Neurol. 2021;268:3086–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Yuan J, Chiavaroli V, Dong G, Huang K, Wu W, Ullah R, Jin B, Lin H, Derraik JGB, et al. 10-year incidence of diabetic ketoacidosis at type 1 diabetes diagnosis in children aged less than 16 years from a large regional center (Hangzhou, China). Front Endocrinol (Lausanne). 2021;12:653519.

    Article  Google Scholar 

  • Pugliese A, Boulware D, Yu L, Babu S, Steck AK, Becker D, Rodriguez H, DiMeglio L, Evans-Molina C, Harrison LC, et al. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype protects autoantibody-positive relatives from type 1 diabetes throughout the stages of disease progression. Diabetes. 2016;65(4):1109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi M, Pathak D, Freedman JE, Chakrabarti S. CD40-CD40 ligand interactions in oxidative stress, inflammation and vascular disease. Trends Mol Med. 2008;14(12):530–8.

    Article  CAS  PubMed  Google Scholar 

  • Roep BO, Hiemstra HS, Schloot NC, De Vries RR, Chaudhuri A, Behan PO, Drijfhout JW. Molecular mimicry in type 1 diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not coxsackie virus. Ann N Y Acad Sci. 2002;958:163–5.

    Article  CAS  PubMed  Google Scholar 

  • Romagnani S. Regulation of the T cell response. Clin Exp Allergy. 2006;36(11):1357–66.

    Article  CAS  PubMed  Google Scholar 

  • Rubin RL, Kretz-Rommel A. A nondeletional mechanism for central T-cell tolerance. Crit Rev Immunol. 2001;21(1–3):29–40.

    CAS  PubMed  Google Scholar 

  • Santori FR, Arsov I, Lilic M, Vukmanovic S, Lili M. Editing autoreactive TCR enables efficient positive selection. J Immunol. 2002;169(4):1729–34.

    Article  CAS  PubMed  Google Scholar 

  • Sato W, Tomita A, Ichikawa D, Lin Y, Kishida H, Miyake S, Ogawa M, Okamoto T, Murata M, Kuroiwa Y, et al. CCR2(+)CCR5(+) T cells produce matrix metalloproteinase-9 and osteopontin in the pathogenesis of multiple sclerosis. J Immunol. 2012;189(10):5057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schofield J, Ho J, Soran H. Cardiovascular risk in type 1 diabetes mellitus. Diabetes Ther. 2019;10(3):773–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholzen A, Mittag D, Rogerson SJ, Cooke BM, Plebanski M. Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta. PLoS Pathog. 2009;5(8):e1000543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sella T, Shoshan A, Goren I, Shalev V, Blumenfeld O, Laron Z, Chodick G. A retrospective study of the incidence of diagnosed type 1 diabetes among children and adolescents in a large health organization in Israel, 2000–2008. Diabet Med. 2011;28(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  • Semb AG, Rollefstad S, Ikdahl E, Wibetoe G, Sexton J, Crowson C, van Riel P, Kitas G, Graham I, Rantapaa-Dahlqvist S, et al. Diabetes mellitus and cardiovascular risk management in patients with rheumatoid arthritis: an international audit. RMD Open. 2021;7(2):e001724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siebert JC, Inokuma M, Waid DM, Pennock ND, Vaitaitis GM, Disis ML, Dunne JF, Wagner DH Jr, Maecker HT. An analytical workflow for investigating cytokine profiles. Cytometry A. 2008;73(4):289–98.

    Article  PubMed  Google Scholar 

  • Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225–39.

    Article  CAS  PubMed  Google Scholar 

  • Tariq S, Van Eeden C, Tervaert JWC, Osman MS. COVID-19, rheumatic diseases and immune dysregulation-a perspective. Clin Rheumatol. 2021;40(2):433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tettey P, Simpson S Jr, Taylor BV, van der Mei IA. The co-occurrence of multiple sclerosis and type 1 diabetes: shared aetiologic features and clinical implication for MS aetiology. J Neurol Sci. 2015;348(1–2):126–31.

    Article  PubMed  Google Scholar 

  • Torres AJ, Dorsey CL, Hudnall TW. Preparation and use of carbonyl-decorated carbenes in the activation of white phosphorus. J Vis Exp. 2014;92:e52149.

    Google Scholar 

  • Tselis A. Epstein-Barr virus cause of multiple sclerosis. Curr Opin Rheumatol. 2012;24(4):424–8.

    Article  PubMed  Google Scholar 

  • Vaitaitis GM, Wagner DH Jr. High distribution of CD40 and TRAF2 in Th40 T cell rafts leads to preferential survival of this auto-aggressive population in autoimmunity. PLoS One. 2008;3(4):e2076.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Wagner DH Jr. CD40 glycoforms and TNF-receptors 1 and 2 in the formation of CD40 receptor(s) in autoimmunity. Mol Immunol. 2010;47(14):2303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Wagner DH Jr. Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity. PLoS One. 2012;7(6):e38708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Wagner DH Jr. CD40 interacts directly with RAG1 and RAG2 in autoaggressive T cells and Fas prevents CD40-induced RAG expression. Cell Mol Immunol. 2013;10(6):483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Poulin M, Sanderson RJ, Haskins K, Wagner DH Jr. Cutting edge: CD40-induced expression of recombination activating gene (RAG) 1 and RAG2: a mechanism for the generation of autoaggressive T cells in the periphery. J Immunol. 2003;170(7):3455–9.

    Article  CAS  PubMed  Google Scholar 

  • Vaitaitis G, Waid DM, Wagner DH Jr. The expanding role of TNF-receptor super family member CD40 (tnfrsf5) in autoimmune disease: focus on Th40 cells. Curr Immunol Rev. 2010;6(2):130–6.

    Article  CAS  Google Scholar 

  • Vaitaitis GM, Carter JR, Waid DM, Olmstead MH, Wagner DH Jr. An alternative role for Foxp3 as an effector T cell regulator controlled through CD40. J Immunol. 2013;191(2):717–25.

    Article  CAS  PubMed  Google Scholar 

  • Vaitaitis GM, Olmstead MH, Waid DM, Carter JR, Wagner DH Jr. A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia. 2014;57(11):2366–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Waid DM, Yussman MG, Wagner DH Jr. CD40-mediated signalling influences trafficking, T-cell receptor expression, and T-cell pathogenesis, in the NOD model of type 1 diabetes. Immunology. 2017a;152(2):243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Yussman MG, Waid DM, Wagner DH Jr. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of experimental autoimmune encephalomyelitis than conventional CD4 T cells. PLoS One. 2017b;12(2):e0172037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Yussman MG, Wagner DH Jr. A CD40 targeting peptide prevents severe symptoms in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2019a;332:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaitaitis GM, Rihanek M, Alkanani AK, Waid DM, Gottlieb PA, Wagner DH, Type 1 Diabetes TrialNet Study G. Biomarker discovery in pre-type 1 diabetes; Th40 cells as a predictive risk factor. J Clin Endocrinol Metab. 2019b;104:4127–42.

    Article  PubMed Central  Google Scholar 

  • Valdes AM, Wapelhorst B, Concannon P, Erlich HA, Thomson G, Noble JA. Extended DR3-D6S273-HLA-B haplotypes are associated with increased susceptibility to type 1 diabetes in US Caucasians. Tissue Antigens. 2005;65(1):115–9.

    Article  CAS  PubMed  Google Scholar 

  • Van Eenennaam H, Vogelzangs JH, Lugtenberg D, Van Den Hoogen FH, Van Venrooij WJ, Pruijn GJ. Identity of the RNase MRP- and RNase P-associated Th/to autoantigen. Arthritis Rheum. 2002;46(12):3266–72.

    Article  PubMed  Google Scholar 

  • Visser L, Jan de Heer H, Boven LA, van Riel D, van Meurs M, Melief MJ, Zahringer U, van Strijp J, Lambrecht BN, Nieuwenhuis EE, et al. Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J Immunol. 2005;174(2):808–16.

    Article  CAS  PubMed  Google Scholar 

  • Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol. 2016;185(3):271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner J, D.H. Reshaping the T cell repertoire: TCR editing and TCR revision for good and for bad. Clin Immunol. 2007;I123:1–6.

    Article  Google Scholar 

  • Wagner DH Jr. Re-shaping the T cell repertoire: TCR editing and TCR revision for good and for bad. Clin Immunol. 2007;123(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  • Wagner DH Jr. Overlooked mechanisms in type 1 diabetes etiology: how unique costimulatory molecules contribute to diabetogenesis. Front Endocrinol (Lausanne). 2017;8:208.

    Article  Google Scholar 

  • Wagner DH Jr, Newell E, Sanderson RJ, Freed JH, Newell MK. Increased expression of CD40 on thymocytes and peripheral T cells in autoimmunity: a mechanism for acquiring changes in the peripheral T cell receptor repertoire. Int J Mol Med. 1999;4(3):231–42.

    CAS  PubMed  Google Scholar 

  • Wagner DH Jr, Vaitaitis G, Sanderson R, Poulin M, Dobbs C, Haskins K. Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proc Natl Acad Sci U S A. 2002;99(6):3782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner AH, Guldenzoph B, Lienenluke B, Hecker M. CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell-monocyte interaction. Arterioscler Thromb Vasc Biol. 2004;24(4):715–20.

    Article  CAS  PubMed  Google Scholar 

  • Waid DM, Vaitaitis GM, Wagner DH Jr. Peripheral CD4loCD40+ auto-aggressive T cell expansion during insulindependent diabetes mellitus. Eur J Immunol. 2004;34(5):1488–97.

    Article  CAS  PubMed  Google Scholar 

  • Waid DM, Wagner RJ, Putnam A, Vaitaitis GM, Pennock ND, Calverley DC, Gottlieb P, Wagner DH Jr. A unique T cell subset described as CD4loCD40+ T cells (TCD40) in human type 1 diabetes. Clin Immunol. 2007;124(2):138–48.

    Article  CAS  PubMed  Google Scholar 

  • Waid DM, Vaitaitis GM, Pennock ND, Wagner DH Jr. Disruption of the homeostatic balance between autoaggressive (CD4+CD40+) and regulatory (CD4+CD25+FoxP3+) T cells promotes diabetes. J Leukoc Biol. 2008;84(2):431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waid DM, Schreiner T, Vaitaitis G, Carter JR, Corboy JR, Wagner DH Jr. Defining a new biomarker for the autoimmune component of multiple sclerosis: Th40 cells. J Neuroimmunol. 2014;270(1–2):75–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 2006;24(6):677–88.

    Article  CAS  PubMed  Google Scholar 

  • Weber P, Ambrosova P, Canov P, Weberova D, Kuklinek P, Meluzinova H, Matejovska-Kubesova H, Cejkova P, Bielakova K, Cerna M. GAD antibodies in T1D and LADA – relations to age, BMI, c-peptide, IA-2 and HLA-DRB1*03 and DRB1*04 alleles. Adv Gerontol. 2011;24(2):312–8.

    CAS  PubMed  Google Scholar 

  • Wilczynski JR. Immunological analogy between allograft rejection, recurrent abortion and pre-eclampsia – the same basic mechanism? Hum Immunol. 2006;67(7):492–511.

    Article  CAS  PubMed  Google Scholar 

  • Winer S, Tsui H, Lau A, Song A, Li X, Cheung RK, Sampson A, Afifiyan F, Elford A, Jackowski G, et al. Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med. 2003;9(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  • Yannoutsos N, Wilson P, Yu W, Chen HT, Nussenzweig A, Petrie H, Nussenzweig MC. The role of recombination activating gene (RAG) reinduction in thymocyte development in vivo. J Exp Med. 2001;194(4):471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiro K, Matsumoto Y, Ihara H, Suzuki Y, Kondo K, Urano T, Umemura K. Involvement of platelet activation by P2Y12 receptor in the development of transplant arteriosclerosis in mice. Transplantation. 2009;87(5):660–7.

    Article  CAS  PubMed  Google Scholar 

  • Zamani B, Moeini Taba SM, Shayestehpour M. Systemic lupus erythematosus manifestation following COVID-19: a case report. J Med Case Rep. 2021;15(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou HY, Ma L, Meng MJ, Yao XS, Lin Y, Wu ZQ, He XW, Wang JF, Wang XN. Expression of recombination-activating genes and T cell receptor gene recombination in the human T cell leukemia cell line. Chin Med J. 2007;120(5):410–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wagner, D.H. (2022). The Search for Immunological Biomarkers in Type 1 Diabetes Mellitus (T1DM) and Multiple Sclerosis (MS): Th40 Cells Provide a Common Autoimmune Link. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81303-1_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81303-1_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81303-1

  • Online ISBN: 978-3-030-81303-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics