Skip to main content

Optimization of Mixing-Crushing Device Design Using CAE-Analysis

  • Conference paper
  • First Online:
Digital Technologies in Construction Engineering

Abstract

The design of modern equipment is not limited to its solid-state modeling. Design options should provide static strength and structural rigidity, durability, stability while minimizing weight, which determine the competitiveness of new equipment. The purpose of this paper is to optimize the structural elements of the mixing-grinding device while minimizing the weight, for this purpose it is necessary to determine the strength and stiffness of the main elements. The designed device is used to produce a wide range of fine powders and construction mixtures. For this purpose, the main values of stresses on the elements of the frame structure are calculated. To calculate the frame assembly for strength, a finite element mesh was created for all parts of the frame. The strength characteristics of the most stressed elements of the frame assembly were evaluated. As a result, to reduce the stress on the part in the frame design have been changed, specifically bracket between the working chamber and the bottom plate, which will support the chamber and significantly reduce the load on the other elements of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lozovaya S, Lozovoy N, Uvarov V (2019) Computer simulating of strength characteristics for deformable chambers and most loaded mixer elements with a vertical shaft. In: IOP conference series: materials science and engineering, vol 560, pp 1–6

    Google Scholar 

  2. Samsonova P, Lozovaya S, Bogdanov N, Lozovoi N (2020) Mixing process simulation of the initial building materials components using the dem solution edem system. In: IOP conference series: materials science and engineering, vol 945, p 012028

    Google Scholar 

  3. Bogdanov V (2019) Intensification of the grinding process in vibration mills. J Phys Conf Ser 1353:012041

    Google Scholar 

  4. Bogdanov, N. E., Bogdanov, V. S., Lozovaya, S. Yu., Fadin, Yu. M.: Usage of discrete element method in the research of vibrating mills with circular vibrations of the grinding chamber. IOP Conf. Ser: Mater Sci Eng. 786, 012019 (2020).

    Google Scholar 

  5. Bukin SL, Bukina AS (2013) Dynamic possibilities of the inertia biharmonic vibratory mill of new type. Adv Technol Syst Mech Eng 1–2:61–71

    Google Scholar 

  6. Otsokov KA (2020) Innovative technologies in construction and their use in organizational and technological events. Constr Mater Prod 3(1):7–13

    Google Scholar 

  7. Furukawa R, Shiosaka Y, Kadota K, Takagaki K, Noguchi T, Shimosaka A, Shirakawa Y (2016) Size-induced segregation during pharmaceutical particle die filling assessed by response surface methodology using discrete element method. J Drug Deliv Sci Technol 35:284–293

    Google Scholar 

  8. Krenzer K, Mechtcherine V, Palzer U (2019) Simulating mixing processes of fresh concrete using the discrete elementmethod (DEM) under consideration of water addition and changes in moisture distribution. Cem Concr Res 115:274–282

    Article  Google Scholar 

  9. Golshan S, Zarghami R, Norouzi N, Mostoufi N (2017) Granular mixing in Nauta blenders. Powder Technol 305:279–288

    Article  Google Scholar 

  10. Michalczyk J, Cieplok G, Sidor J (2010) Numerical simulation model of the rotary-vibration mill working process. Arch Metall Mater 55(3):321–331

    Google Scholar 

Download references

Acknowledgements

This work was realized in the framework of the Program of flagship university development on the base of the Belgorod State Technological University named after V. G. Shukhov. The work was realized using equipment of High Technology Center at BSTU named after V. G. Shukhov.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lozovaya, S.Y., Bogdanov, N.E., Lozovoy, N.M., Kravchenko, V.M. (2022). Optimization of Mixing-Crushing Device Design Using CAE-Analysis. In: Klyuev, S.V. (eds) Digital Technologies in Construction Engineering. Lecture Notes in Civil Engineering, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-030-81289-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81289-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81288-1

  • Online ISBN: 978-3-030-81289-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics