Skip to main content

Permafrost Climate Feedbacks

  • Chapter
  • First Online:
Global Arctic

Abstract

Permafrost ecosystems have accumulated vast pools of organic carbon, together amounting to three times more carbon than the atmosphere and five times more than all living things. The high elevations and high latitudes where permafrost occurs are experiencing some of the most extreme climate change on Earth. Consequently, the ecological reaction of the permafrost zone could influence the trajectory of the climate system for thousands of years to come. As permafrost regions warm, more carbon and nitrogen will be exposed to decomposition, combustion, and hydrological export, increasing greenhouse gas production and release. At the same time, plants may take advantage of the extended growing season and nutrient release to take up more atmospheric carbon dioxide. In this chapter, I lay out recent advances in understanding of permafrost climate feedbacks, focusing primarily on the production, uptake, and release of carbon dioxide, methane, and nitrous oxide. I attempt to answer why permafrost regions contain so much organic matter, how sensitive this organic matter is to climatic perturbations, and how important are permafrost feedbacks compared to anthropogenic greenhouse gas production. Current estimates of the permafrost climate feedback vary in magnitude and sign, representing an important unknown risk for local communities and ecosystems. However, compared to direct human emissions, potential greenhouse gas uptake or release from the permafrost zone is quite small. This emphasizes the importance of continued permafrost research and the imperative for rapid decarbonization of the global economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, B. W., & Jones, J. B. (2015). Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology, 21(12), 4570–4587. https://doi.org/10.1111/gcb.13069.

    Article  Google Scholar 

  • Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., & Bowden, W. B. (2015). Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences, 12(12), 3725–3740. https://doi.org/10.5194/bg-12-3725-2015.

    Article  Google Scholar 

  • Abbott, B. W., Baranov, V., Mendoza-Lera, C., Nikolakopoulou, M., Harjung, A., Kolbe, T., Balasubramanian, M. N., Vaessen, T. N., Ciocca, F., Campeau, A., Wallin, M. B., Romeijn, P., Antonelli, M., Gonçalves, J., Datry, T., Laverman, A. M., de Dreuzy, J.-R., Hannah, D. M., Krause, S., … Pinay, G. (2016a). Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews, 160(Suppl C), 19–42. https://doi.org/10.1016/j.earscirev.2016.06.014.

    Article  Google Scholar 

  • Abbott, B. W., Jones, J. B., Schuur, E. A. G., Chapin, F. S., III, Bowden, W. B., Bret-Harte, M. S., Epstein, H. E., Flannigan, M. D., Harms, T. K., Hollingsworth, T. N., Mack, M. C., McGuire, A. D., Natali, S. M., Rocha, A. V., Tank, S. E., Turetsky, M. R., Vonk, J. E., Wickland, K. P., Aiken, G. R., … Zimov, S. (2016b). Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environmental Research Letters, 11(3), 034014. https://doi.org/10.1088/1748-9326/11/3/034014.

    Article  Google Scholar 

  • Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S., Krause, S., Hannah, D. M., Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., Hampton, T., Gu, S., Buhman, M., Sara Sayedi, S., … Pinay, G. (2019). Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, 12(7), 533–540. https://doi.org/10.1038/s41561-019-0374-y.

    Article  Google Scholar 

  • Abbott, B. W., Rocha, A. V., Shogren, A., Zarnetske, J. P., Iannucci, F., Bowden, W. B., Bratsman, S. P., Patch, L., Watts, R., Fulweber, R., Frei, R. J., Huebner, A. M., Ludwig, S. M., Carling, G. T., & O’Donnell, J. A. (2021). Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic. Global Change Biology, 27(7), 1408–1430. https://doi.org/10.1111/gcb.15507.

    Article  Google Scholar 

  • Alcaraz-Segura, D., Chuvieco, E., Epstein, H. E., Kasischke, E. S., & Trishchenko, A. (2010). Debating the greening vs. browning of the north American boreal forest: Differences between satellite datasets. Global Change Biology, 16(2), 760–770. https://doi.org/10.1111/j.1365-2486.2009.01956.x.

    Article  Google Scholar 

  • AMAP. (2017). Snow, water, ice and permafrost. Summary for policy-makers (p. 20).

    Google Scholar 

  • Anthony, K. M. W., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P. M., Iii, F. S. C., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P., & Frolking, S. (2014). A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511(7510), 452–456. https://doi.org/10.1038/nature13560.

    Article  Google Scholar 

  • Atwood, T. B., Witt, A., Mayorga, J., Hammill, E., & Sala, E. (2020). Global patterns in marine sediment carbon stocks. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00165.

  • Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., & Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53–60. https://doi.org/10.1890/100014.

    Article  Google Scholar 

  • Avis, C. A., Weaver, A. J., & Meissner, K. J. (2011). Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geoscience, 4(7), 444–448. https://doi.org/10.1038/ngeo1160.

    Article  Google Scholar 

  • Balshi, M. S., McGuire, A. D., Zhuang, Q., Melillo, J., Kicklighter, D. W., Kasischke, E., Wirth, C., Flannigan, M., Harden, J., Clein, J. S., Burnside, T. J., McAllister, J., Kurz, W. A., Apps, M., & Shvidenko, A. (2007). The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. Journal of Geophysical Research, 112(G2). https://doi.org/10.1029/2006JG000380.

  • Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on earth. Proceedings of the National Academy of Sciences, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115.

    Article  Google Scholar 

  • Bauer, I. E., & Vitt, D. H. (2011). Peatland dynamics in a complex landscape: Development of a fen-bog complex in the sporadic discontinuous permafrost zone of northern Alberta, Canada: Development of peatland in the sporadic discontinuous permafrost zone, Canada. Boreas, 40(4), 714–726. https://doi.org/10.1111/j.1502-3885.2011.00210.x.

    Article  Google Scholar 

  • Bhatt, U. S., Walker, D. A., Raynolds, M. K., Comiso, J. C., Epstein, H. E., Jia, G., Gens, R., Pinzon, J. E., Tucker, C. J., Tweedie, C. E., & Webber, P. J. (2010). Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions, 14(8), 1–20. https://doi.org/10.1175/2010EI315.1.

    Article  Google Scholar 

  • Bintanja, R., & Selten, F. M. (2014). Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509(7501), 479–482. https://doi.org/10.1038/nature13259.

    Article  Google Scholar 

  • Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., … Lantuit, H. (2019). Permafrost is warming at a global scale. Nature Communications, 10(1), 264. https://doi.org/10.1038/s41467-018-08240-4.

    Article  Google Scholar 

  • Bockheim, J. G. (2007). Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils. Soil Science Society of America Journal, 71(4), 1335. https://doi.org/10.2136/sssaj2006.0414N.

    Article  Google Scholar 

  • Bockheim, J. G., & Munroe, J. S. (2014). Organic carbon pools and genesis of alpine soils with permafrost: A review. Arctic, Antarctic, and Alpine Research, 46(4), 987–1006. https://doi.org/10.1657/1938-4246-46.4.987.

    Article  Google Scholar 

  • Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., De Souza Noel Simas Barbosa, L., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 120467. https://doi.org/10.1016/j.energy.2021.120467.

  • Brown, T. W., Bischof-Niemz, T., Blok, K., Breyer, C., Lund, H., & Mathiesen, B. V. (2018). Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable and Sustainable Energy Reviews, 92, 834–847. https://doi.org/10.1016/j.rser.2018.04.113.

    Article  Google Scholar 

  • Burke, E. J., Hartley, I. P., & Jones, C. D. (2012). Uncertainties in the global temperature change caused by carbon release from permafrost thawing. The Cryosphere, 6(5), 1063–1076. https://doi.org/10.5194/tc-6-1063-2012.

    Article  Google Scholar 

  • Burke, E. J., Chadburn, S. E., Huntingford, C., & Jones, C. D. (2018). CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters, 13(2), 024024. https://doi.org/10.1088/1748-9326/aaa138.

    Article  Google Scholar 

  • Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., … Schulze, E.-D. (2006). Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7.

    Article  Google Scholar 

  • Chapin, F. S., McGuire, A. D., Ruess, R. W., Hollingsworth, T. N., Mack, M. C., Johnstone, J. F., Kasischke, E. S., Euskirchen, E. S., Jones, J. B., Jorgenson, M. T., Kielland, K., Kofinas, G. P., Turetsky, M. R., Yarie, J., Lloyd, A. H., & Taylor, D. L. (2010). Resilience of Alaska’s boreal forest to climatic change. Canadian Journal of Forest Research, 40(7), 1360–1370. https://doi.org/10.1139/X10-074.

    Article  Google Scholar 

  • Chapin, F. S., Matson, P. A., & Vitousek, P. M. (2012). Principles of terrestrial ecosystem ecology. New York: Springer. https://doi.org/10.1007/978-1-4419-9504-9.

    Book  Google Scholar 

  • Chen, L., Fang, K., Wei, B., Qin, S., Feng, X., Hu, T., Ji, C., & Yang, Y. (2021). Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24(5), 1018–1028. https://doi.org/10.1111/ele.13723.

    Article  Google Scholar 

  • Connolly, C. T., Cardenas, M. B., Burkart, G. A., Spencer, R. G. M., & McClelland, J. W. (2020). Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nature Communications, 11(1), 1479. https://doi.org/10.1038/s41467-020-15250-8.

    Article  Google Scholar 

  • Euskirchen, E. S., McGuire, A. D., Kicklighter, D. W., Zhuang, Q., Clein, J. S., Dargaville, R. J., Dye, D. G., Kimball, J. S., McDonald, K. C., Melillo, J. M., Romanovsky, V. E., & Smith, N. V. (2006). Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biology, 12(4), 731–750. https://doi.org/10.1111/j.1365-2486.2006.01113.x.

    Article  Google Scholar 

  • Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj, S., & Nicolsky, D. (2019). Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophysical Research Letters, 2019GL082187. https://doi.org/10.1029/2019GL082187.

  • Flannigan, M., Stocks, B., Turetsky, M., & Wotton, M. (2009). Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15(3), 549–560. https://doi.org/10.1111/j.1365-2486.2008.01660.x.

    Article  Google Scholar 

  • Frey, K. E., & McClelland, J. W. (2009). Impacts of permafrost degradation on arctic river biogeochemistry. Hydrological Processes, 23(1), 169–182. https://doi.org/10.1002/hyp.7196.

    Article  Google Scholar 

  • Fuchs, M., Grosse, G., Jones, B. M., Strauss, J., Baughman, C. A., & Walker, D. A. (2018). Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. Arktos, 4(1), 20. https://doi.org/10.1007/s41063-018-0056-9.

    Article  Google Scholar 

  • Harden, J. W., Koven, C. D., Ping, C.-L., Hugelius, G., David McGuire, A., Camill, P., Jorgenson, T., Kuhry, P., Michaelson, G. J., O’Donnell, J. A., Schuur, E. A. G., Tarnocai, C., Johnson, K., & Grosse, G. (2012). Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 39(15), n/a-n/a. https://doi.org/10.1029/2012GL051958.

    Article  Google Scholar 

  • Hartley, I. P., Hopkins, D. W., Sommerkorn, M., & Wookey, P. A. (2010). The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biology and Biochemistry, 42(1), 92–100. https://doi.org/10.1016/j.soilbio.2009.10.004.

    Article  Google Scholar 

  • Hausfather, Z., & Peters, G. P. (2020). Emissions – The ‘business as usual’ story is misleading. Nature, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3.

    Article  Google Scholar 

  • Heginbottom, J., Brown, J., Ferrians, O., & Melnikov, E. S. (2002). Circum-Arctic map of permafrost and ground-ice conditions, version 2 (Data set). NSIDC. https://doi.org/10.7265/SKBG-KF16.

    Book  Google Scholar 

  • Hewitt, R. E., Bennett, A. P., Breen, A. L., Hollingsworth, T. N., Taylor, D. L., Chapin, F. S., & Rupp, T. S. (2015). Getting to the root of the matter: Landscape implications of plant-fungal interactions for tree migration in Alaska. Landscape Ecology. https://doi.org/10.1007/s10980-015-0306-1.

  • Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., & Zimov, S. A. (2012). Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries and Coasts, 35(2), 369–382. https://doi.org/10.1007/s12237-011-9386-6.

    Article  Google Scholar 

  • Holmes, R. M., Coe, T., Fiske, G. J., Gurtovaya, T., McClelland, J. W., Shiklomanov, A. I., Spencer, R. G., Tank, S. E., & Zhulidov, A. V. (2013). Climate change impacts on the hydrology and biogeochemistry of Arctic rivers. Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, 3–26.

    Google Scholar 

  • Huang, J., Zhang, J., Wang, L., Hao, M., Zhang, Q., Nie, S., Zhang, X., Chen, X., Lin, Y., Yao, Y., Xu, Y., Yin, Y., Luo, Y., & Zhao, Z. (2017). Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7(12), 875. https://doi.org/10.1038/s41558-017-0009-5.

    Article  Google Scholar 

  • Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O’Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., & Kuhry, P. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014.

    Article  Google Scholar 

  • Jafarov, E. E., Coon, E. T., Harp, D. R., Wilson, C. J., Painter, S. L., Atchley, A. L., & Romanovsky, V. E. (2018). Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environmental Research Letters, 13(10), 105006. https://doi.org/10.1088/1748-9326/aadd30.

    Article  Google Scholar 

  • Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., & Flint, P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 36(3). https://doi.org/10.1029/2008GL036205.

  • Jorgenson, M. T., & Osterkamp, T. E. (2005). Response of boreal ecosystems to varying modes of permafrost degradation. Canadian Journal of Forest Research, 35(9), 2100–2111. https://doi.org/10.1139/x05-153.

    Article  Google Scholar 

  • Kaiser, C., Meyer, H., Biasi, C., Rusalimova, O., Barsukov, P., & Richter, A. (2007). Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. Journal of Geophysical Research, 112(G2). https://doi.org/10.1029/2006JG000258.

  • Kasischke, E. S., & Turetsky, M. R. (2006). Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33(9). https://doi.org/10.1029/2006GL025677.

  • Kimmerer, R. W. (2002). Weaving traditional ecological knowledge into biological education: A call to action. Bioscience, 52(5), 432–438. https://doi.org/10.1641/0006-3568(2002)052[0432:WTEKIB]2.0.CO;2.

    Article  Google Scholar 

  • Kling, G. (2010). Land water interactions. In Alaska’s changing arctic: Ecological consequences for tundra, streams, and lakes.

    Google Scholar 

  • Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., & Pfeiffer, E.-M. (2013). Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19(4), 1160–1172. https://doi.org/10.1111/gcb.12116.

    Article  Google Scholar 

  • Kokelj, S. V., & Jorgenson, M. T. (2013). Advances in Thermokarst research: Recent advances in research investigating Thermokarst processes. Permafrost and Periglacial Processes, 24(2), 108–119. https://doi.org/10.1002/ppp.1779.

    Article  Google Scholar 

  • Kolbe, T., de Dreuzy, J.-R., Abbott, B. W., Aquilina, L., Babey, T., Green, C. T., Fleckenstein, J. H., Labasque, T., Laverman, A. M., Marçais, J., Peiffer, S., Thomas, Z., & Pinay, G. (2019). Stratification of reactivity determines nitrate removal in groundwater. Proceedings of the National Academy of Sciences, 201816892. https://doi.org/10.1073/pnas.1816892116.

  • Koven, C. D. (2013). Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 6(6), 452–456. https://doi.org/10.1038/ngeo1801.

    Article  Google Scholar 

  • Koven, C. D., Lawrence, D. M., & Riley, W. J. (2015a). Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences, 112(12), 3752–3757. https://doi.org/10.1073/pnas.1415123112.

    Article  Google Scholar 

  • Koven, C. D., Schuur, E. A. G., Schädel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., … Turetsky, M. (2015b). A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society A, 373(2054), 20140423. https://doi.org/10.1098/rsta.2014.0423.

    Article  Google Scholar 

  • Lecher, A. L. (2017). Groundwater discharge in the Arctic: A review of studies and implications for biogeochemistry. Hydrology, 4(3), 41. https://doi.org/10.3390/hydrology4030041.

    Article  Google Scholar 

  • Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., & Schellnhuber, H. J. (2019). Climate tipping points—Too risky to bet against. Nature, 575(7784), 592–595. https://doi.org/10.1038/d41586-019-03595-0.

    Article  Google Scholar 

  • Levin, K., Cashore, B., Bernstein, S., & Auld, G. (2012). Overcoming the tragedy of super wicked problems: Constraining our future selves to ameliorate global climate change. Policy Sciences, 45(2), 123–152. https://doi.org/10.1007/s11077-012-9151-0.

    Article  Google Scholar 

  • Lindgren, A., Hugelius, G., Kuhry, P., Christensen, T. R., & Vandenberghe, J. (2016). GIS-based maps and area estimates of northern hemisphere permafrost extent during the last glacial maximum: LGM permafrost. Permafrost and Periglacial Processes, 27(1), 6–16. https://doi.org/10.1002/ppp.1851.

    Article  Google Scholar 

  • Lindgren, A., Hugelius, G., & Kuhry, P. (2018). Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature, 560(7717), 219. https://doi.org/10.1038/s41586-018-0371-0.

    Article  Google Scholar 

  • Loranty, M. M., Abbott, B. W., Blok, D., Douglas, T. A., Epstein, H. E., Forbes, B. C., Jones, B. M., Kholodov, A. L., Kropp, H., Malhotra, A., Mamet, S. D., Myers-Smith, I. H., Natali, S. M., O’Donnell, J. A., Phoenix, G. K., Rocha, A. V., Sonnentag, O., Tape, K. D., & Walker, D. A. (2018). Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences, 15(17), 5287–5313. https://doi.org/10.5194/bg-15-5287-2018.

    Article  Google Scholar 

  • Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R., & Chapin, F. S. (2004). Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431(7007), 440–443. https://doi.org/10.1038/nature02887.

    Article  Google Scholar 

  • Mack, M. C., Bret-Harte, M. S., Hollingsworth, T. N., Jandt, R. R., Schuur, E. A. G., Shaver, G. R., & Verbyla, D. L. (2011). Carbon loss from an unprecedented Arctic tundra wildfire. Nature, 475(7357), 489–492. https://doi.org/10.1038/nature10283.

    Article  Google Scholar 

  • Mack, M. C., Walker, X. J., Johnstone, J. F., Alexander, H. D., Melvin, A. M., Jean, M., & Miller, S. N. (2021). Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science, 372(6539), 280–283. https://doi.org/10.1126/science.abf3903.

    Article  Google Scholar 

  • Malone, E. T., Abbott, B. W., Klaar, M. J., Kidd, C., Sebilo, M., Milner, A. M., & Pinay, G. (2018). Decline in ecosystem δ13C and mid-successional nitrogen loss in a two-century postglacial chronosequence. Ecosystems, 21(8), 1659–1675. https://doi.org/10.1007/s10021-018-0245-1.

    Article  Google Scholar 

  • McClelland, J. W., Holmes, R. M., Dunton, K. H., & Macdonald, R. W. (2012). The Arctic Ocean Estuary. Estuaries and Coasts, 35(2), 353–368. https://doi.org/10.1007/s12237-010-9357-3.

    Article  Google Scholar 

  • McGuire, A. D., Melillo, J. M., Kicklighter, D. W., & Joyce, L. A. (1995). Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. Journal of Biogeography, 22(4/5), 785. https://doi.org/10.2307/2845980.

    Article  Google Scholar 

  • McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., & Roulet, N. (2009). Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79(4), 523–555.

    Article  Google Scholar 

  • McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore, J. C., Romanovsky, V., … Zhuang, Q. (2018). Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences, 115(15), 3882–3887. https://doi.org/10.1073/pnas.1719903115.

    Article  Google Scholar 

  • Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., & Schuur, E. A. G. (2019). Polar regions (IPCC special report on the ocean and cryosphere in a changing climate). IPCC. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/07_SROCC_Ch03_FINAL.pdf.

    Google Scholar 

  • Metcalfe, D. B., Hermans, T. D. G., Ahlstrand, J., Becker, M., Berggren, M., Björk, R. G., Björkman, M. P., Blok, D., Chaudhary, N., Chisholm, C., Classen, A. T., Hasselquist, N. J., Jonsson, M., Kristensen, J. A., Kumordzi, B. B., Lee, H., Mayor, J. R., Prevéy, J., Pantazatou, K., … Abdi, A. M. (2018). Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution, 1. https://doi.org/10.1038/s41559-018-0612-5.

  • Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., Harden, J. W., Jastrow, J. D., Ping, C.-L., Riley, W. J., Schuur, E. A. G., Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag, J., Kuhry, P., Treat, C. C., … Orr, A. (2021). Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Science Advances, 7(9), eaaz5236. https://doi.org/10.1126/sciadv.aaz5236.

    Article  Google Scholar 

  • Monteux, S., Keuper, F., Fontaine, S., Gavazov, K., Hallin, S., Juhanson, J., Krab, E. J., Revaillot, S., Verbruggen, E., Walz, J., Weedon, J. T., & Dorrepaal, E. (2020). Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations. Nature Geoscience, 13(12), 794–798. https://doi.org/10.1038/s41561-020-00662-4.

    Article  Google Scholar 

  • Montzka, S. A., Dlugokencky, E. J., & Butler, J. H. (2011). Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43–50. https://doi.org/10.1038/nature10322.

    Article  Google Scholar 

  • Mu, C., Abbott, B. W., Norris, A. J., Mu, M., Fan, C., Chen, X., Jia, L., Yang, R., Zhang, T., Wang, K., Peng, X., Wu, Q., Guggenberger, G., & Wu, X. (2020). The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 211, 103433. https://doi.org/10.1016/j.earscirev.2020.103433.

    Article  Google Scholar 

  • Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P. S. A., Berner, L. T., Bhatt, U. S., Bjorkman, A. D., Blok, D., Bryn, A., Christiansen, C. T., Cornelissen, J. H. C., Cunliffe, A. M., Elmendorf, S. C., … Wipf, S. (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change, 10(2), 106–117. https://doi.org/10.1038/s41558-019-0688-1.

    Article  Google Scholar 

  • Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M., Selbmann, A.-K., Sullivan, P. F., Abbott, B. W., Arndt, K. A., Birch, L., Björkman, M. P., Bloom, A. A., Celis, G., Christensen, T. R., Christiansen, C. T., Commane, R., Cooper, E. J., Crill, P., Czimczik, C., … Zona, D. (2019). Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 9(11), 852–857. https://doi.org/10.1038/s41558-019-0592-8.

    Article  Google Scholar 

  • Neubauer, S. C., & Megonigal, J. P. (2015). Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems, 18(6), 1000–1013. https://doi.org/10.1007/s10021-015-9879-4.

    Article  Google Scholar 

  • Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., … Zou, D. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews, 193, 299–316. https://doi.org/10.1016/j.earscirev.2019.04.023.

    Article  Google Scholar 

  • Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., & Turetsky, M. R. (2016). Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043. https://doi.org/10.1038/ncomms13043.

    Article  Google Scholar 

  • Overduin, P. P., von Deimling, T. S., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., & Westermann, S. (2018). Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP). Journal of Geophysical Research: Oceans, 0(0). https://doi.org/10.1029/2018JC014675.

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609.

    Article  Google Scholar 

  • Parkinson, A. J., & Berner, J. (2009). Climate change and impacts on human health in the Arctic: An international workshop on emerging threats and the response of Arctic communities to climate change. International Journal of Circumpolar Health, 68(1), 84–91. https://doi.org/10.3402/ijch.v68i1.18295.

    Article  Google Scholar 

  • Pearce, T. D., Ford, J. D., Laidler, G. J., Smit, B., Duerden, F., Allarut, M., Andrachuk, M., Baryluk, S., Dialla, A., Elee, P., Goose, A., Ikummaq, T., Joamie, E., Kataoyak, F., Loring, E., Meakin, S., Nickels, S., Shappa, K., Shirley, J., & Wandel, J. (2009). Community collaboration and climate change research in the Canadian Arctic. Polar Research, 28(1), 10–27. https://doi.org/10.1111/j.1751-8369.2008.00094.x.

    Article  Google Scholar 

  • Peterson, B. J. (2006). Trajectory shifts in the Arctic and subarctic freshwater cycle. Science, 313(5790), 1061–1066. https://doi.org/10.1126/science.1122593.

    Article  Google Scholar 

  • Polvani, L. M., Previdi, M., England, M. R., Chiodo, G., & Smith, K. L. (2020). Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nature Climate Change, 1–4. https://doi.org/10.1038/s41558-019-0677-4.

  • Rastetter, E. B., Kling, G. W., Shaver, G. R., Crump, B. C., Gough, L., & Griffin, K. L. (2020). Ecosystem recovery from disturbance is constrained by N cycle openness, vegetation-soil N distribution, form of N losses, and the balance between vegetation and soil-microbial processes. Ecosystems. https://doi.org/10.1007/s10021-020-00542-3.

  • Raupach, M. R., & Canadell, J. G. (2010). Carbon and the anthropocene. Current Opinion in Environmental Sustainability, 2(4), 210–218. https://doi.org/10.1016/j.cosust.2010.04.003.

    Article  Google Scholar 

  • Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E., Francis, J. A., Groisman, P. Y., Hinzman, L. D., Huntington, T. G., Kane, D. L., Kimball, J. S., Kwok, R., Lammers, R. B., Lee, C. M., Lettenmaier, D. P., McDonald, K. C., Podest, E., Pundsack, J. W., Rudels, B., … Zhang, T. (2010). Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations. Journal of Climate, 23(21), 5715–5737. https://doi.org/10.1175/2010JCLI3421.1.

    Article  Google Scholar 

  • Rawlins, M. A., Cai, L., Stuefer, S. L., & Nicolsky, D. (2019). Changing characteristics of runoff and freshwater export from watersheds draining northern Alaska. The Cryosphere, 13(12), 3337–3352. https://doi.org/10.5194/tc-13-3337-2019.

    Article  Google Scholar 

  • Riedlinger, D., & Berkes, F. (2001). Contributions of traditional knowledge to understanding climate change in the Canadian Arctic. Polar Record, 37(203), 315–328. https://doi.org/10.1017/S0032247400017058.

    Article  Google Scholar 

  • Roy Chowdhury, T., Herndon, E. M., Phelps, T. J., Elias, D. A., Gu, B., Liang, L., Wullschleger, S. D., & Graham, D. E. (2015). Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Global Change Biology, 21(2), 722–737. https://doi.org/10.1111/gcb.12762.

    Article  Google Scholar 

  • Saito, K., Walsh, J. E., Bring, A., Brown, R., Shiklomanov, A., & Yang, D. (2021). Future trajectory of Arctic system evolution. In D. Yang & D. L. Kane (Eds.), Arctic hydrology, permafrost and ecosystems (pp. 893–914). Springer. https://doi.org/10.1007/978-3-030-50930-9_30.

    Chapter  Google Scholar 

  • Sapart, C. J., Shakhova, N., Semiletov, I., Jansen, J., Szidat, S., Kosmach, D., Dudarev, O., van der Veen, C., Egger, M., Sergienko, V., Salyuk, A., Tumskoy, V., Tison, J.-L., & Röckmann, T. (2017). The origin of methane in the east Siberian Arctic shelf unraveled with triple isotope analysis. Biogeosciences, 14(9), 2283–2292. https://doi.org/10.5194/bg-14-2283-2017.

    Article  Google Scholar 

  • Sayedi, S. S., Abbott, B. W., Thornton, B. F., Frederick, J. M., Vonk, J. E., Overduin, P., Schädel, C., Schuur, E. A. G., Bourbonnais, A., Demidov, N., Gavrilov, A., He, S., Hugelius, G., Jakobsson, M., Jones, M. C., Joung, D., Kraev, G., Macdonald, R. W., McGuire, A. D., … Frei, R. J. (2020). Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environmental Research Letters, 15(12), 124075. https://doi.org/10.1088/1748-9326/abcc29.

    Article  Google Scholar 

  • Schädel, C., Bader, M. K.-F., Schuur, E. A. G., Biasi, C., Bracho, R., ÄŒapek, P., De Baets, S., Diáková, K., Ernakovich, J., Estop-Aragones, C., Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E., Knoblauch, C., Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J., … Wickland, K. P. (2016). Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change. https://doi.org/10.1038/nclimate3054.

  • Schlesinger, W. H., & Bernhardt, E. S. (2012). Biogeochemistry: An analysis of global change. Academic.

    Google Scholar 

  • Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386.

    Article  Google Scholar 

  • Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171–179. https://doi.org/10.1038/nature14338.

    Article  Google Scholar 

  • Shaver, G. R., Billings, W. D., Chapin, F. S., Giblin, A. E., Nadelhoffer, K. J., Oechel, W. C., & Rastetter, E. B. (1992). Global change and the carbon balance of Arctic ecosystems. Bioscience, 42(6), 433–441. https://doi.org/10.2307/1311862.

    Article  Google Scholar 

  • Shogren, A. J., Zarnetske, J. P., Abbott, B. W., Iannucci, F., Frei, R. J., Griffin, N. A., & Bowden, W. B. (2019). Revealing biogeochemical signatures of Arctic landscapes with river chemistry. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-49296-6.

    Article  Google Scholar 

  • Shogren, A. J., Zarnetske, J. P., Abbott, B. W., Iannucci, F., & Bowden, W. B. (2020). We cannot shrug off the shoulder seasons: Addressing knowledge and data gaps in an Arctic headwater. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab9d3c.

  • Shur, Y. L., & Jorgenson, M. T. (2007). Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost and Periglacial Processes, 18(1), 7–19. https://doi.org/10.1002/ppp.582.

    Article  Google Scholar 

  • Slater, A. G., & Lawrence, D. M. (2013). Diagnosing present and future permafrost from climate models. Journal of Climate, 26(15), 5608–5623. https://doi.org/10.1175/JCLI-D-12-00341.1.

    Article  Google Scholar 

  • Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://doi.org/10.1126/science.1259855.

    Article  Google Scholar 

  • Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T., Schuur, E. A. G., Shmelev, D., Ulrich, M., & Veremeeva, A. (2017). Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Science Reviews, 172, 75–86. https://doi.org/10.1016/j.earscirev.2017.07.007.

    Article  Google Scholar 

  • Sulla-Menashe, D., Woodcock, C. E., & Friedl, M. A. (2018). Canadian boreal forest greening and browning trends: An analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environmental Research Letters, 13(1), 014007. https://doi.org/10.1088/1748-9326/aa9b88.

    Article  Google Scholar 

  • Tank, S. E., Striegl, R. G., McClelland, J. W., & Kokelj, S. V. (2016). Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environmental Research Letters, 11(5), 054015. https://doi.org/10.1088/1748-9326/11/5/054015.

    Article  Google Scholar 

  • Tank, S. E., Vonk, J. E., Walvoord, M. A., McClelland, J. W., Laurion, I., & Abbott, B. W. (2020). Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafrost and Periglacial Processes. https://doi.org/10.1002/ppp.2057.

  • Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N., Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L., Goddéris, Y., Huber, B. T., Ivany, L. C., Turner, S. K., … Zhang, Y. G. (2020). Past climates inform our future. Science, 370(6517). https://doi.org/10.1126/science.aay3701.

  • Trumbore, S. (2009). Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences, 37(1), 47–66. https://doi.org/10.1146/annurev.earth.36.031207.124300.

    Article  Google Scholar 

  • Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., & McGuire, A. D. (2020). Carbon release through abrupt permafrost thaw. Nature Geoscience, 13(2), 138–143. https://doi.org/10.1038/s41561-019-0526-0.

    Article  Google Scholar 

  • Voigt, C., Lamprecht, R. E., Marushchak, M. E., Lind, S. E., Novakovskiy, A., Aurela, M., Martikainen, P. J., & Biasi, C. (2016). Warming of subarctic tundra increases emissions of all three important greenhouse gases – Carbon dioxide, methane, and nitrous oxide. Global Change Biology, n/a-n/a. https://doi.org/10.1111/gcb.13563.

  • Voigt, C., van Delden, L., Marushchak, M. E., Biasi, C., Abbott, B. W., Elberling, B., Siciliano, S. D., Sonnentag, O., Stewart, K. J., Yang, Y., & Martikainen, P. J. (2020). Nitrous oxide fluxes from permafrost regions (Data set). PANGAEA. https://doi.pangaea.de/10.1594/PANGAEA.919217.

    Google Scholar 

  • Vonk, J. E., Sánchez-García, L., van Dongen, B. E., Alling, V., Kosmach, D., Charkin, A., Semiletov, I. P., Dudarev, O. V., Shakhova, N., Roos, P., Eglinton, T. I., Andersson, A., & Gustafsson, Ö. (2012). Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489(7414), 137–140. https://doi.org/10.1038/nature11392.

    Article  Google Scholar 

  • Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., & Wickland, K. P. (2015). Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12(23), 7129–7167. https://doi.org/10.5194/bg-12-7129-2015.

    Article  Google Scholar 

  • Wologo, E., Shakil, S., Zolkos, S., Textor, S., Ewing, S., Klassen, J., Spencer, R. G. M., Podgorski, D. C., Tank, S. E., Baker, M. A., O’Donnell, J. A., Wickland, K. P., Foks, S. S. W., Zarnetske, J. P., Lee-Cullin, J., Liu, F., Yang, Y., Kortelainen, P., Kolehmainen, J., … Abbott, B. W. (2021). Stream dissolved organic matter in permafrost regions shows surprising compositional similarities but negative priming and nutrient effects. Global Biogeochemical Cycles, 35(1), e2020GB006719. https://doi.org/10.1029/2020GB006719.

    Article  Google Scholar 

  • Zarnetske, J. P., Bouda, M., Abbott, B. W., Saiers, J., & Raymond, P. A. (2018). Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States. Geophysical Research Letters, 45(21), 11,702–11,711. https://doi.org/10.1029/2018GL080005.

    Article  Google Scholar 

  • Zhang, T., Heginbottom, J. A., Barry, R. G., & Brown, J. (2000). Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere 1. Polar Geography, 24(2), 126–131. https://doi.org/10.1080/10889370009377692.

    Article  Google Scholar 

  • Zhang, Q., Yang, G., Song, Y., Kou, D., Wang, G., Zhang, D., Qin, S., Mao, C., Feng, X., & Yang, Y. (2019). Magnitude and drivers of potential methane oxidation and production across the Tibetan alpine permafrost region. Environmental Science & Technology, 53(24), 14243–14252. https://doi.org/10.1021/acs.est.9b03490.

    Article  Google Scholar 

  • Zimov, S. A., Davydov, S. P., Zimova, G. M., Davydova, A. I., Schuur, E. A. G., Dutta, K., & Chapin, F. S. (2006). Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophysical Research Letters, 33(20). https://doi.org/10.1029/2006GL027484.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbott, B.W. (2022). Permafrost Climate Feedbacks. In: Finger, M., Rekvig, G. (eds) Global Arctic. Springer, Cham. https://doi.org/10.1007/978-3-030-81253-9_10

Download citation

Publish with us

Policies and ethics