Skip to main content

Partitioning Clustering Techniques

  • Chapter
  • First Online:
Clustering Techniques for Image Segmentation

Abstract

Partitioning clustering segments images without any supervision or human interaction. The partitioning clustering process starts with a guess of a possible solution and updates the solution until there is no change in all cluster centroids. There are two different kinds of partitioning clustering techniques: (a) hard partitioning clustering and (b) fuzzy partitioning clustering. The hard partitioning clustering techniques have a hard membership function that updates the cluster-centroids using a similarity index. Often, the cluster centroid is trapped in the non-active region and becomes a dead center. Unlike the hard partitioning clustering techniques, the fuzzy partitioning clustering techniques have soft membership that is less sensitive to initialization and easily avoids dead center problems. However, the soft membership function is very sensitive to outliers. This chapter discusses the hard and fuzzy partitioning clustering techniques and illustrates the dead center, center trapping, and outlier problems by using examples. The chapter also discusses the essential variant of k-means and fuzzy c-means clustering to give an inside look at major problems related to portioning clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, B. J., Gross, D. S., Musicant, D. R., Ritz, A. M., Smith, T. G., & Steinberg, L. E. (2006). Adapting k-medians to generate normalized cluster centers. Paper presented at the Proceedings of the 2006 SIAM International Conference on Data Mining.

    Google Scholar 

  • Barioni, M. C. N., Razente, H. L., Traina, A. J. M., & Traina, C., Jr. (2008). Accelerating k-medoid-based algorithms through metric access methods. Journal of Systems and Software, 81(3), 343–355. https://doi.org/10.1016/j.jss.2007.06.019

    Article  Google Scholar 

  • Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithms. Plenum Press.

    Book  Google Scholar 

  • Bradley, P. S., & Fayyad, U. M. (1998). Refining initial points for k-means clustering. Paper presented at the ICML.

    Google Scholar 

  • Dixon, S. J., Heinrich, N., Holmboe, M., Schaefer, M. L., Reed, R. R., Trevejo, J., & Brereton, R. G. (2009). Use of cluster separation indices and the influence of outliers: Application of two new separation indices, the modified silhouette index and the overlap coefficient to simulated data and mouse urine metabolomic profiles. Journal of Chemometrics: A Journal of the Chemometrics Society, 23(1), 19–31.

    Article  Google Scholar 

  • Ester, M., Kriegel, H.-P., & Xu, X. (1995). A database interface for clustering in large spatial databases. Inst. für Informatik.

    Google Scholar 

  • Fan, J.-L., Zhen, W.-Z., & Xie, W.-X. (2003). Suppressed fuzzy c-means clustering algorithm. Pattern recognition letters, 24(9-10), 1607–1612.

    Article  Google Scholar 

  • Hathaway, R., Bezdek, J., & Hu, Y. (2002). Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Transactions on Fuzzy Systems, 8(5), 576–582.

    Article  Google Scholar 

  • Isa, N. A. M., Salamah, S. A., & Ngah, U. K. (2009). Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 55(4), 2145–2153.

    Article  Google Scholar 

  • Isa, N., Salamah, S., & Ngah, U. (2010). Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 55(4), 2145–2153.

    Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Partitioning around medoids (program pam). Finding groups in data: an introduction to cluster analysis, 344, 68–125.

    Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster analysis (Vol. 344). Wiley.

    MATH  Google Scholar 

  • Kersten, P. R. (1999). Fuzzy order statistics and their application to fuzzy clustering. IEEE Transactions on Fuzzy Systems, 7(6), 708–712.

    Article  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In L. M. LeCam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.

    Google Scholar 

  • Mashor, M. (2000). Hybrid training algorithm for RBF network. International Journal of The Computer, The Internet and Management, 8(2), 50–65.

    Google Scholar 

  • Siddiqui, F. U., & Isa, N. A. M. (2011). Enhanced moving K-means (EMKM) algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 57(2), 833–841.

    Article  Google Scholar 

  • Siddiqui, F., & Isa, N. M. (2012). Optimized K-means (OKM) clustering algorithm for image segmentation. Opto-Electronics Review, 20(3), 216–225.

    Article  Google Scholar 

  • Siddiqui, F. U., Isa, N. A. M., & Yahya, A. (2013). Outlier rejection fuzzy c-means (ORFCM) algorithm for image segmentation. Turkish Journal of Electrical Engineering & Computer Sciences, 21(6).

    Google Scholar 

  • Sulaiman, S. N., & Isa, N. A. M. (2010). Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 56(4), 2661–2668.

    Article  Google Scholar 

  • Thomas, B., Raju, G., & Sonam, W. (2009). A modified fuzzy c-means algorithm for natural data exploration. World Academy of Science, Engineering and Technology, 49.

    Google Scholar 

  • Wei, L.-m., & Xie, W.-x. (2000). Rival checked fuzzy c-means algorithm. Acta Electronica Sinica, 28(7), 63–66.

    Google Scholar 

  • Weisstein, E. W. (2004). K-Means Clustering Algorithm. MathWorld–A Wolfram Web Resource.

    Google Scholar 

  • Yang, M.-S., Hwang, P.-Y., & Chen, D.-H. (2004). Fuzzy clustering algorithms for mixed feature variables. Fuzzy Sets and Systems, 141(2), 301–317.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, F.U., Yahya, A. (2022). Partitioning Clustering Techniques. In: Clustering Techniques for Image Segmentation. Springer, Cham. https://doi.org/10.1007/978-3-030-81230-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81230-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81229-4

  • Online ISBN: 978-3-030-81230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics