Skip to main content

Introduction to Image Segmentation and Clustering

  • Chapter
  • First Online:
Clustering Techniques for Image Segmentation

Abstract

Image segmentation’s role in image processing represents and describes an image’s different information into a simpler and understandable format. Usually, image segmentation is the initial step of a higher level operation in an image-processing system. Labeling and tracking of objects are examples of the higher level operation that is usually performed after image segmentation. Image segmentation step can segment a data with one (a.k.a., 8 bits gray scale data) or three dimensions (a.k.a., 24 bits color data). The use of two different types of data for image segmentation has its benefits and limitations. For instance, the 8 bits data is less prone to noise, while 24 bits data has additional information. Image segmentation is much more complex than an image classification to classify data or tracking object in practice. Thus, this chapter begins by explaining the concept of image segmentation and then compares its working and benefits with image classification. Of segmentation techniques, the clustering needs very little prior information of an image to segment it. Few other segmentation techniques are widely used for image segmentation, and comparison between the well-known segmentation techniques is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad, F., Garcia-Consuegra, J., & Cisneros, G. (2000). Merging regions based on the VDM distance. In IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120) (Vol. 2, pp. 615–617). IEEE.

    Google Scholar 

  • Almeida, J., Barbosa, L., Pais, A., & Formosinho, S. (2007). Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering. Chemometrics and Intelligent Laboratory Systems, 87(2), 208–217.

    Article  Google Scholar 

  • Anil, P. N., & Natarajan, S. (2010). Automatic road extraction from high resolution imagery based on statistical region merging and skeletonization. International Journal of Engineering Science and Technology, 2(3), 165–171.

    Google Scholar 

  • Bernsen, J. (1986). Dynamic thresholding of gray-level images. Paper presented at the Proc. Eighth Int’l conf. Pattern Recognition, Paris, 1986.

    Google Scholar 

  • Bezdek, J. C. (1980). A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(1), 1–8.

    Article  MATH  Google Scholar 

  • Bins, L. S. A., Fonseca, L. G., Erthal, G. J., & Ii, F. M. (1996). Satellite imagery segmentation: a region growing approach. Simpósio Brasileiro de Sensoriamento Remoto, 8(1996), 677–680.

    Google Scholar 

  • Boukharouba, S., Rebordao, J. M., & Wendel, P. L. (1985). An amplitude segmentation method based on the distribution function of an image. Computer vision, graphics, and image processing, 29(1), 47–59. https://doi.org/10.1016/s0734-189x(85)90150-1

    Article  Google Scholar 

  • Chih-Cheng, H., Kulkarni, S., & Bor-Chen, K. (2011). A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification. IEEE Journal of Selected Topics in Signal Processing, 5(3), 543–553. https://doi.org/10.1109/jstsp.2010.2096797

    Article  Google Scholar 

  • Cho, S., Haralick, R., & Yi, S. (1989). Improvement of Kittler and Illingworth’s minimum error thresholding. Pattern recognition, 22(5), 609–617.

    Article  Google Scholar 

  • Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., & Chen, T.-J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30(1), 9–15. https://doi.org/10.1016/j.compmedimag.2005.10.001

    Article  Google Scholar 

  • Cui, S., Yan, Q., & Reinartz, P. (2012). Complex building description and extraction based on Hough transformation and cycle detection. Remote Sensing Letters, 3(2), 151–159.

    Article  Google Scholar 

  • Dare, P. M. (2005). Shadow analysis in high-resolution satellite imagery of urban areas. Photogrammetric Engineering & Remote Sensing, 71(2), 169–177.

    Google Scholar 

  • Derrien, M., & Le Gléau, H. (2007). Temporal-differencing and region-growing techniques to improve twilight low cloud detection from SEVIRI data. In Proceedings of the Joint 2007 EUMETSAT Meteorological Satellite Conference and the 15th Satellite Meteorology and Oceanography Conference of the American Meteorological Society (Vol. 2428, p. 2428), Amsterdam: The Netherlands.

    Google Scholar 

  • Devereux, B. J., Amable, G. S., & Posada, C. C. (2004). An efficient image segmentation algorithm for landscape analysis. International Journal of Applied Earth Observation and Geoinformation 6(1) 47-61. https://doi.org/10.1016/j.jag.2004.07.007.

  • Dixon, S. J., Heinrich, N., Holmboe, M., Schaefer, M. L., Reed, R. R., Trevejo, J., & Brereton, R. G. (2009). Use of cluster separation indices and the influence of outliers: Application of two new separation indices, the modified silhouette index and the overlap coefficient to simulated data and mouse urine metabolomic profiles. Journal of Chemometrics, 23(1), 19–31.

    Article  Google Scholar 

  • Doyle, W. (1962). Operations useful for similarity-invariant pattern recognition. Journal of the ACM (JACM), 9(2), 259–267.

    Article  MATH  Google Scholar 

  • Du, Q., & Gunzburger, M. (2002). Grid generation and optimization based on centroidal Voronoi tessellations. Applied Mathematics and Computation, 133(2), 591–607.

    Article  MathSciNet  MATH  Google Scholar 

  • Faruquzzaman, A. B. M., Paiker, N. R., Arafat, J., & Ali, M. A. (2008). A survey report on image segmentation based on split and merge algorithm. IETECH Journal of Advanced Computations, 2(2), 86–101.

    Google Scholar 

  • Faruquzzaman, A. B. M., Paiker, N. R., Arafat, J., Ali, M. A., & Sorwar, G. (2009). Robust Object Segmentation using Split-and-Merge. International Journal of Signal and Imaging Systems Engineering, 2(1/2), 70. https://doi.org/10.1504/IJSISE.2009.029332

  • Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2003). Digital Image Processing Using MATLAB.

    Google Scholar 

  • Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: A robust clustering algorithm for categorical attributes. Information Systems, 25(5), 345–366.

    Article  Google Scholar 

  • Guha, S., Rastogi, R., & Shim, K. (2001). Cure: An efficient clustering algorithm for large databases. Information Systems, 26(1), 35–58.

    Article  MATH  Google Scholar 

  • Hamerly, G., & Elkan, C. (2002). Alternatives to the k-means algorithm that find better clusterings. Paper presented at the Proceedings of the Eleventh International Conference on Information and Knowledge Management, McLean, Virginia, USA.

    Google Scholar 

  • Hathaway, R. J., Bezdek, J. C., & Hu, Y. (2000). Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Transactions on Fuzzy Systems, 8(5), 576–582.

    Article  Google Scholar 

  • Hemachander, S., Verma, A., Arora, S., & Panigrahi, P. K. (2007). Locally adaptive block thresholding method with continuity constraint. Pattern Recognition Letters, 28(1), 119–124.

    Article  Google Scholar 

  • Horowitz, S. L., & Pavlidis, T. (1976). Picture Segmentation by a Tree Traversal Algorithm. Journal of the ACM, 23(2), 368–388. https://doi.org/10.1145/321941.321956

  • Huang, L. K., & Wang, M. J. J. (1995). Image thresholding by minimizing the measures of fuzziness. Pattern recognition, 28(1), 41–51.

    Article  Google Scholar 

  • Hung, W. L., Yang, M. S., & Chen, D. H. (2008). Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Letters, 29(9), 1317–1325.

    Article  Google Scholar 

  • Huynh Van, L., & Jong-Myon, K. (2009, August 20–24). A generalized spatial fuzzy c-means algorithm for medical image segmentation. Paper presented at the Fuzzy Systems, 2009. IEEE International Conference on FUZZ-IEEE 2009.

    Google Scholar 

  • Isa, N. A. M., Salamah, S. A., & Ngah, U. K. (2009). Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 55(4), 2145–2153.

    Article  Google Scholar 

  • Ismail, S. M., Abdullah, S. N. H. S., & Fauzi, F. (2018). Statistical binarization techniques for document image analysis. Journal of Computer Science, 14(1), 23–36.

    Article  Google Scholar 

  • Jawahar, C., Biswas, P., & Ray, A. (1997). Investigations on fuzzy thresholding based on fuzzy clustering. Pattern Recognition, 30(10), 1605–1613.

    Article  MATH  Google Scholar 

  • Jianzhuang, L., Wenqing, L., & Yupeng, T. (1991). Automatic thresholding of gray-level pictures using two-dimension Otsu method. Paper presented at the Circuits and Systems, 1991. 1991 International Conference on Conference Proceedings, China.

    Google Scholar 

  • Jin, Z., Lou, Z., Yang, J., & Sun, Q. (2007). Face detection using template matching and skin-color information. Neurocomputing, 70(4–6), 794–800. https//doi.org/10.1016/j.neucom.2006.10.043

    Google Scholar 

  • Jinhai, C., & Zhi-Qiang, L. (1998, August 16–20). A new thresholding algorithm based on all-pole model. Paper presented at the Pattern Recognition, 1998. Fourteenth International Conference on Proceedings.

    Google Scholar 

  • Kampke, T., & Kober, R. (1998, August 16–20). Nonparametric optimal binarization. Paper presented at the Pattern Recognition, 1998. Fourteenth International Conference on Proceedings.

    Google Scholar 

  • Karypis, G., Han, E. H., & Kumar, V. (1999). Chameleon: Hierarchical clustering using dynamic modeling. Computer, 32(8), 68–75.

    Article  Google Scholar 

  • Kersten, P. R. (1999). Fuzzy order statistics and their application to fuzzy clustering. IEEE Transactions on Fuzzy Systems, 7(6), 708–712.

    Article  Google Scholar 

  • Khoshelham, K., Li, Z., & King, B. (2005). A Split-and-Merge Technique for Automated Reconstruction of Roof Planes. Photogrammetric Engineering & Remote Sensing, 71(7), 855–862. https://doi.org/10.14358/PERS.71.7.855

  • Khotanzad, A., & Bouarfa, A. (1990). Image segmentation by a parallel, non-parametric histogram based clustering algorithm. Pattern Recognition, 23(9), 961–973.

    Article  Google Scholar 

  • Kittler, J., & Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition, 19(1), 41–47.

    Article  Google Scholar 

  • Lang, X., Zhu, F., Hao, Y., & Ou, J. (2008). Integral image based fast algorithm for two-dimensional Otsu thresholding. Paper presented at the Image and Signal Processing, 2008. Congress on CISP’08.

    Google Scholar 

  • Lloyd, D. (1985). Automatic target classification using moment invariant of image shapes. IDN AW126, RAE, Farnborough, Reino Unido.

    Google Scholar 

  • Lucieer, A., & Stein, A. (2002). Existential uncertainty of spatial objects segmented from satellite sensor imagery. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2518–2521. https://doi.org/10.1109/TGRS.2002.805072

  • Manousakas, I. N., Undrill, P. E., Cameron, G. G., & Redpath, T. W. (1998). Split-and-Merge Segmentation of Magnetic Resonance Medical Images: Performance Evaluation and Extension to Three Dimensions. Computers and Biomedical Research, 31(6), 393–412. https://doi.org/10.1006/cbmr.1998.1489

  • Mashor, M. Y. (2000). Hybrid training algorithm for RBF network. International Journal of The Computer, The Internet and Management, 8(2), 50–65.

    Google Scholar 

  • Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., Gourtsoyiannis, N. (2001). Image segmentation in treatment planning for prostate cancer using the region growing technique. The British Journal of Radiology, 74(879), 243–249. https/doi.org/10.1259/bjr.74.879.740243

    Google Scholar 

  • Meethongjan, K., Dzulkifli, M., Rehman, A., & Saba, T. (2010). Face recognition based on fusion of Voronoi diagram automatic facial and wavelet moment invariants. International Journal Video Process Image Process Netw Secur, 10(4), 1–8.

    Google Scholar 

  • Murthy, C. A., & Pal, S. K. (1990). Fuzzy thresholding: Mathematical framework, bound functions and weighted moving average technique. Pattern Recognition Letters, 11(3), 197–206.

    Article  MATH  Google Scholar 

  • Nedzved, A., Ablameyko, S., & Pitas, I. (2000). Morphological segmentation of histology cell images. In, 2000. Published by the IEEE Computer Society.

    Google Scholar 

  • Olivo, J. C. (1994). Automatic threshold selection using the wavelet transform. CVGIP: Graphical Models and Image Processing, 56(3), 205–218.

    Google Scholar 

  • Olson, C. F. (1995). Parallel algorithms for hierarchical clustering. Parallel Computing, 21(8), 1313–1325.

    Article  MathSciNet  MATH  Google Scholar 

  • Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11(285-296), 23–27.

    Google Scholar 

  • Pal, S. K., & Rosenfeld, A. (1988). Image enhancement and thresholding by optimization of fuzzy compactness. Pattern Recognition Letters, 7(2), 77–86.

    Article  MATH  Google Scholar 

  • Pavlidis, T., & Horowitz, S. L. (1974) Segmentation of Plane Curves. IEEE Transactions on Computers C-23(8), 860–870. https//doi.org/10.1109/T-C.1974.224041

    Google Scholar 

  • Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation 1. Annual Review of Biomedical Engineering, 2(1), 315–337.

    Article  Google Scholar 

  • Pohle, R., & Toennies, K. D. (2001). A new approach for model-based adaptive region growing in medical image analysis. In International conference on computer analysis of images and patterns (pp. 238–246). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Pun, T. (1981). Entropic thresholding, a new approach. Computer Graphics and Image Processing, 16(3), 210–239.

    Article  Google Scholar 

  • Ramesh, N., Yoo, J. H., & Sethi, I. K. (1995). Thresholding based on histogram approximation. IEE Proceedings - Vision, Image and Signal Processing, 142(5), 271–279. https://doi.org/10.1049/ip-vis:19952007

    Article  Google Scholar 

  • Rau, J.-Y., & Chen, L.-C. (2003). Robust Reconstruction of Building Models from Three-Dimensional Line Segments. Photogrammetric Engineering & Remote Sensing, 69(2), 181–188. https://doi.org/10.14358/PERS.69.2.181

  • Ridler, T., & Calvard, S. (1978). Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics, 8(8), 630–632.

    Article  Google Scholar 

  • Rosenfeld, A., & De La Torre, P. (1983). Histogram concavity analysis as an aid in threshold selection. IEEE Transactions on Systems, Man and Cybernetics, SMC-13(2), 231–235. https://doi.org/10.1109/tsmc.1983.6313118

    Article  Google Scholar 

  • Sahoo, P. K., Soltani, S., & Wong, A. K. (1988). A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing, 41(2), 233–260.

    Article  Google Scholar 

  • Samopa, F., & Asano, A. (2009). Hybrid image thresholding method using edge detection. International Journal of Computer Science and Network Security, 9(4), 292–299.

    Google Scholar 

  • Sengupta, K., Shiqin, W., Ko, C. C., & Burman, P. (2000). Automatic face modeling from monocular image sequences using modified non parametric regression and an affine camera model. In Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580) (pp. 524–529).

    Google Scholar 

  • Sezgin, M. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–168.

    Article  Google Scholar 

  • Shih, F. Y. (2010). Image processing and pattern recognition: Fundamentals and techniques. Wiley.

    Google Scholar 

  • Siddiqui, F. U. (2012). Enhanced clustering algorithms for gray-scale image segmentation. Master dissertation, Universiti Sains Malaysia.

    Google Scholar 

  • Siddiqui, F. U., & Mat Isa, N. A. (2011). Enhanced moving K-means (EMKM) algorithm for image segmentation. IEEE Transactions on Consumer Electronics, 57(2), 833–841. https://doi.org/10.1109/tce.2011.5955230

    Article  Google Scholar 

  • Sun, Y., & Bhanu, B. (2009). Symmetry integrated region-based image segmentation. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 826–831.

    Google Scholar 

  • Taghizadeh, M., & Hajipoor, M. (2011). A hybrid algorithm for segmentation of MRI images based on edge detection. Paper presented at the Soft Computing and Pattern Recognition (SoCPaR), 2011 international conference of.

    Google Scholar 

  • Tizhoosh, H. R. (2005). Image thresholding using type II fuzzy sets. Pattern Recognition, 38(12), 2363–2372.

    Article  MATH  Google Scholar 

  • Trussell, H. (1979). Comments on. IEEE Transactions on Systems, Man and Cybernetics, 9(5), 311–311.

    Article  Google Scholar 

  • Tsai, D. M. (1995). A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recognition Letters, 16(6), 653–666.

    Article  Google Scholar 

  • Vantaram, S. R., & Saber, E. (2012). Survey of contemporary trends in color image segmentation. Journal of Electronic Imaging, 040901-040901-040901-040928.

    Google Scholar 

  • Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.

    Article  Google Scholar 

  • Wang, X., Wang, Y., & Wang, L. (2004). Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters, 25(10), 1123–1132.

    Article  Google Scholar 

  • Whatmough, R. (1991). Automatic threshold selection from a histogram using the “exponential hull”. CVGIP: Graphical Models and Image Processing, 53(6), 592–600.

    Google Scholar 

  • Xiao, Y., Cao, Z., & Zhuo, W. (2011). Type-2 fuzzy thresholding using GLSC histogram of human visual nonlinearity characteristics. Optics Express, 19(11), 10656–10672.

    Article  Google Scholar 

  • Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.

    Article  Google Scholar 

  • Yang, M. S., Hwang, P. Y., & Chen, D. H. (2004). Fuzzy clustering algorithms for mixed feature variables. Fuzzy Sets and Systems, 141(2), 301–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Yanni, M., & Horne, E. (1994). A new approach to dynamic thresholding. Paper presented at the EUSIPCO’94: 9th European Conf. Sig. Process.

    Google Scholar 

  • Yong, Y., Chongxun, Z., & Pan, L. (2004, September 14–16). Image thresholding based on spatially weighted fuzzy c-means clustering. Paper presented at the Computer and Information Technology, 2004. The fourth international conference on CIT ‘04.

    Google Scholar 

  • Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1(2), 141–182.

    Article  Google Scholar 

  • Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical clustering algorithms for document datasets. Data Mining and Knowledge Discovery, 10(2), 141–168.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, F.U., Yahya, A. (2022). Introduction to Image Segmentation and Clustering. In: Clustering Techniques for Image Segmentation. Springer, Cham. https://doi.org/10.1007/978-3-030-81230-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81230-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81229-4

  • Online ISBN: 978-3-030-81230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics