Skip to main content

An Improved Algorithm for High-Precision Frequency Estimation

  • Conference paper
  • First Online:
Advances in Intelligent Automation and Soft Computing (IASC 2021)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 80))

Included in the following conference series:

  • 2112 Accesses

Abstract

Wide ranges of signal-to-noise ratios would cause frequency estimation algorithm to perform unstable anti-noise characteristics, low estimation accuracy, and poor realizability in engineering experiments. To resolve such impacts, this paper proposes an improved algorithm for a two-step frequency estimation of a complex sinusoidal signal submerged in Gaussian white noise - the fixed Quinn algorithm integrates with the Aboutanios and Mulgrew algorithm to compose a hybrid high-precision and robust frequency estimation algorithm. Through simulations, the results proved that the estimator is asymptotically unbiased with its root mean square error (RMSE) and is further closed to the Cramer–Rao lower bound (CRLB). In addition, the improved algorithm possesses anti-noise characteristics, stronger algorithm robustness, and can be easily applied in various signal processing contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanping, L.: Dissertation, Harbin University of Science and Technology (2012)

    Google Scholar 

  2. Rife, D., Boorstyn, R.: Single tone parameter estimation from discrete-time observations. IEEE Trans. Inf. Theory 20, 591–598 (1974). https://doi.org/10.1109/tit.1974.1055282

    Article  MATH  Google Scholar 

  3. Fan, L., Qi, G.: Frequency estimator of sinusoid based on interpolation of three DFT spectral lines. Sig. Process. 144, 52–60 (2018). https://doi.org/10.1016/j.sigpro.2017.09.028

    Article  Google Scholar 

  4. Xia, Y., He, Y., Wang, K., Pei, W., Blazic, Z., Mandic, D.P.: A complex least squares enhanced smart DFT technique for power system frequency estimation. IEEE Trans. Power Deliv. 32, 1270–1278 (2015). https://doi.org/10.1109/tpwrd.2015.2418778

    Article  Google Scholar 

  5. Seo, W.-S., Kang, S.-H.: A novel frequency estimation algorithm based on DFT and second derivative. J. Int. Counc. Electr. Eng. 7, 69–75 (2017). https://doi.org/10.1080/22348972.2017.1325079

    Article  Google Scholar 

  6. Kang, S.H., Yoon, Y.D., Seo, W.S.: 13th International Conference on Development in Power System Protection 2016 (DPSP), pp. 1–5. Institution of Engineering and Technology, Edinburgh (2016)

    Google Scholar 

  7. Kay, S.: A fast and accurate single frequency estimator. IEEE Trans. Acoust. Speech Sig. Process. 37, 1987–1990 (1989). https://doi.org/10.1109/29.45547

    Article  Google Scholar 

  8. Quinn, B.G.: Estimating frequency by interpolation using Fourier coefficients. IEEE Trans. Sig. Process. 42, 1264–1268 (1994). https://doi.org/10.1109/78.295186

    Article  Google Scholar 

  9. Quinn, B.G.: Estimation of frequency, amplitude, and phase from the DFT of a time series. IEEE Trans. Sig, Process. 45, 814–817 (1997). https://doi.org/10.1109/78.558515

    Article  Google Scholar 

  10. Liao, J.R., Chen, C.M.: Phase correction of discrete Fourier transform coefficients to reduce frequency estimation bias of single tone complex sinusoid. Sig. Process. 94, 108–117 (2014). https://doi.org/10.1016/j.sigpro.2013.05.021

    Article  Google Scholar 

  11. Aboutanios, E., Mulgrew, B.: Iterative frequency estimation by interpolation on Fourier coefficients. IEEE Trans. Sig. Process. 53, 1237–1242 (2005). https://doi.org/10.1109/tsp.2005.843719

    Article  MathSciNet  MATH  Google Scholar 

  12. Candan, Ç.: A method for fine resolution frequency estimation from three DFT samples. IEEE Sig. Process. Lett. 18, 351–354 (2011). https://doi.org/10.1109/lsp.2011.2136378

    Article  Google Scholar 

  13. Fang, L., Duan, D., Yang, L.: MILCOM 2012: Proceedings of the 2012 IEEE Military Communications Conference, pp. 1–6. IEEE, Piscataway (2012)

    Google Scholar 

  14. Lei, F., Guoqing, Q.: High accuracy frequency estimation algorithm of sinusoidal signals based on fast Fourier transform. J. Comput. Appl. 35, 3280–3283 (2015). https://doi.org/10.11772/j.issn.1001-9081.2015.11.3280

    Article  Google Scholar 

  15. Jing, Y., Shengwen, Z., et al.: Improved Quinn algorithm for frequency estimation of sinusoid wave. J. Telem. Track. Command 38, 7–12 (2017). https://doi.org/10.13435/j.cnki.ttc.002830

    Article  Google Scholar 

  16. Zhou, S., Shancong, Z.: Improved frequency estimation algorithm by least squares phase unwrapping. Circ. Syst. Sig. Process. 37(12), 5680–5687 (2018). https://doi.org/10.1007/s00034-018-0838-0

    Article  MathSciNet  Google Scholar 

  17. Qian, C., Huang, L., So, H.C., Sidiropoulos, N.D., Xie, J.: Unitary PUMA algorithm for estimating the frequency of a complex sinusoid. IEEE Trans. Sig. Process. 63, 5358–5368 (2015). https://doi.org/10.1109/tsp.2015.2454471

    Article  MathSciNet  MATH  Google Scholar 

  18. So, H.C., Chan, F.K.W., Lau, W.H., Chan, C.F.: An efficient approach for two-dimensional parameter estimation of a single-tone. IEEE Trans. Sig. Process. 58, 1999–2009 (2010). https://doi.org/10.1109/tsp.2009.2038962

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, Z., Lu, T., Huang, B.: Fast frequency estimation algorithm by least squares phase unwrapping. IEEE Sig. Process. Lett. 23, 776–779 (2016). https://doi.org/10.1109/lsp.2016.2555933

    Article  Google Scholar 

  20. Lei, Z.: Dissertation, Harbin Engineering University (2016)

    Google Scholar 

  21. Yang, C., Wei, G.: A noniterative frequency estimator with rational combination of three spectrum lines. IEEE Trans. Sig. Process. 59, 5065–5070 (2011). https://doi.org/10.1109/tsp.2011.2160257

    Article  MathSciNet  MATH  Google Scholar 

  22. Serbes, A.: Fast and efficient sinusoidal frequency estimation by using the DFT coefficients. IEEE Trans. Comm. 67, 2333–2342 (2019). https://doi.org/10.1109/TCOMM.2018.2886355

    Article  Google Scholar 

  23. Candan, C.: Analysis and further improvement of fine resolution frequency estimation method from three DFT samples. IEEE Sig. Process. Lett. 20, 913–916 (2013). https://doi.org/10.1109/lsp.2013.2273616

    Article  Google Scholar 

  24. Oppenheim, A.V., Schafer, R.W.: Digital Signal Processing. Prentice Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  25. Liu, Y., Nie, Z., Zhao, Z., Liu, Q.H.: Generalization of iterative Fourier interpolation algorithms for single frequency estimation. Digit. Sig. Process. 21, 141–149 (2011). https://doi.org/10.1016/j.dsp.2010.06.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Pan, M., Wang, X. (2022). An Improved Algorithm for High-Precision Frequency Estimation. In: Li, X. (eds) Advances in Intelligent Automation and Soft Computing. IASC 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-81007-8_22

Download citation

Publish with us

Policies and ethics