Skip to main content

NAD+ as a Target for Cancer Treatment

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology
  • 79 Accesses

Abstract

Nicotinamide adenine dinucleotide (NAD+) is an important cofactor involved in many redox reactions. NAD+ serves as an important substrate for several redox reactions necessary to produce adenosine triphosphate (ATP). NAD+ also serves as an essential electron carrier, shifting between oxidized NAD+ to its reduced form NADH to modulate oxidative stress. NAD+ also serves as an important substrate for poly-ADP-ribose polymerases (PARPs), CD38/157 ectoenzymes, and histone deacetylases known as sirtuins, which are associated with DNA repair, apoptosis, calcium signaling and transcriptional regulation. These processes are fundamental for maintaining and promoting tumor growth and survival. Overexpression of several enzymes in the NAD+ biosynthesis pathway has been reported in several tumor types. There is increasing evidence of the impact of the overexpression of the de novo kynurenine pathway (KP) and several NAD+ salvage pathway enzymes, including nicotinamide phosphoribosyltransferase (NAMPT), nicotinic acid phosphoribosyltransferase (NAPRT), and nicotinamide N-methyltransferase (NNMT) on several tumorigenic processes including DNA repair, transcriptional regulation, secondary messenger and calcium signaling, cell proliferation, metastasization and angiogenesis, invasion, immunosurveillance, and drug resistance. Collectively, targeting NAD+ biosynthesis has emerged as a promising therapeutic strategy to lower NAD+ levels and impair cellular processes implicated in cancer biology for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aimaitijiang A et al (2022) Glioma cells remotely promote erythropoiesis as a self-expanding strategy of cancer stem cells. Genes Cells 27(1):25–42

    Article  CAS  PubMed  Google Scholar 

  • Aksoy S et al (1995) Human nicotinamide N-methyltransferase gene: molecular cloning, structural characterization and chromosomal localization. Genomics 29(3):555–561

    Article  CAS  PubMed  Google Scholar 

  • Ala M (2021) The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 896:173921

    Article  CAS  PubMed  Google Scholar 

  • Ala M et al (2022) Sodium selenite modulates IDO1/kynurenine, TLR4, NF-kappaB and Bcl2/Bax pathway and mitigates acetic acid-induced colitis in rat. Cell Physiol Biochem 56(S1):24–35

    Article  PubMed  Google Scholar 

  • Almulla AF et al (2022) The tryptophan catabolite or kynurenine pathway in schizophrenia: meta-analysis reveals dissociations between central, serum, and plasma compartments. Mol Psychiatry 27:3679

    Article  CAS  PubMed  Google Scholar 

  • Argolo DS et al (2022) Activation of the kynurenine pathway and production of inflammatory cytokines by astrocytes and microglia infected with Neospora caninum. Int J Tryptophan Res 15:11786469211069946

    Article  PubMed  PubMed Central  Google Scholar 

  • Asghar K et al (2019) Association between cyclooxygenase-2 and indoleamine 2,3-dioxygenase expression in breast cancer patients from Pakistan. Asian Pac J Cancer Prev 20(11):3521–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audrito V, Messana VG, Deaglio S (2020) NAMPT and NAPRT: two metabolic enzymes with key roles in inflammation. Front Oncol 10:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Badawy AA (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 10:1178646917691938

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball HJ et al (2009) Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 41(3):467–471

    Article  CAS  PubMed  Google Scholar 

  • Baryawno N et al (2008) Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro-Oncology 10(5):661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger F et al (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280(43):36334–36341

    Article  CAS  PubMed  Google Scholar 

  • Bishnupuri KS et al (2019) IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res 79(6):1138–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottino-Rojas V et al (2022) Beyond the eye: kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes. Insect Biochem Mol Biol 142:103720

    Article  CAS  PubMed  Google Scholar 

  • Braidy N et al (2019) Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal 30(2):251–294

    Article  CAS  PubMed  Google Scholar 

  • Brincks EL et al (2020) Indoximod opposes the immunosuppressive effects mediated by IDO and TDO via modulation of AhR function and activation of mTORC1. Oncotarget 11(25):2438–2461

    Article  PubMed  PubMed Central  Google Scholar 

  • Bringman-Rodenbarger LR et al (2018) Emerging roles for SIRT5 in metabolism and cancer. Antioxid Redox Signal 28(8):677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SJ et al (2022) Alterations in the kynurenine pathway and excitatory amino acid transporter-2 in depression with and without psychosis: evidence of a potential astrocyte pathology. J Psychiatr Res 147:203–211

    Google Scholar 

  • Burgler S (2015) Role of CD38 expression in diagnosis and pathogenesis of chronic lymphocytic leukemia and its potential as therapeutic target. Crit Rev Immunol 35(5):417–432

    Article  PubMed  Google Scholar 

  • Butler MI et al (2022) The immune-kynurenine pathway in social anxiety disorder. Brain Behav Immun 99:317–326

    Article  CAS  PubMed  Google Scholar 

  • Canto C, Auwerx J (2012) Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol Rev 64(1):166–187

    Article  CAS  PubMed  Google Scholar 

  • Canto C et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita B et al (2022) Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr:1–40

    Google Scholar 

  • Cespedes M et al (2022) Systemic perturbations of the kynurenine pathway precede progression to dementia independently of amyloid-beta. Neurobiol Dis 171:105783

    Article  CAS  PubMed  Google Scholar 

  • Challa S et al (2021) Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers. Cell 184(17):4531–4546 e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee D, Chakrabarti O (2022) Role of stress granules in modulating senescence and promoting cancer progression: special emphasis on glioma. Int J Cancer 150(4):551–561

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Huang P, Hu C (2020) The role of SIRT2 in cancer: a novel therapeutic target. Int J Cancer 147(12):3297–3304

    Article  CAS  PubMed  Google Scholar 

  • Cheong JE, Sun L (2018) Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy - challenges and opportunities. Trends Pharmacol Sci 39(3):307–325

    Article  CAS  PubMed  Google Scholar 

  • Chini CC et al (2014) Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 20(1):120–130

    Article  CAS  PubMed  Google Scholar 

  • Chretien S et al (2019) Beyond PD-1/PD-L1 inhibition: what the future holds for breast cancer immunotherapy. Cancers (Basel) 11(5):628

    Article  CAS  PubMed  Google Scholar 

  • Cihan M et al (2022) Kynurenine pathway in coronavirus disease (COVID-19): potential role in prognosis. J Clin Lab Anal 36(3):e24257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppens V, Verkerk R, Morrens M (2022) Tracking TRYCAT: a critical appraisal of kynurenine pathway quantifications in blood. Front Pharmacol 13:825948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covarrubias AJ et al (2021) NAD(+) metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22(2):119–141

    Article  CAS  PubMed  Google Scholar 

  • Dehhaghi M et al (2022) The role of kynurenine pathway and NAD(+) metabolism in myalgic encephalomyelitis/chronic fatigue syndrome. Aging Dis 13(3):698–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Del’Arco AE et al (2021) Neurological infection, kynurenine pathway, and parasitic infection by Neospora caninum. Front Immunol 12:714248

    Article  PubMed  Google Scholar 

  • Deng CX (2009) SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 5(2):147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X et al (2020) Pyruvate dehydrogenase kinase 1 interferes with glucose metabolism reprogramming and mitochondrial quality control to aggravate stress damage in cancer. J Cancer 11(4):962–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J et al (2022) Interferon-gamma enhances the immunosuppressive ability of canine bone marrow-derived mesenchymal stem cells by activating the TLR3-dependent IDO/kynurenine pathway. Mol Biol Rep 49:8337

    Article  CAS  PubMed  Google Scholar 

  • Dorsam B et al (2018) PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc Natl Acad Sci U S A 115(17):E4061–E4070

    Article  PubMed  PubMed Central  Google Scholar 

  • Du L et al (2020) Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway. Signal Transduct Target Ther 5(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte-Pereira S et al (2016) Extensive regulation of nicotinate phosphoribosyltransferase (NAPRT) expression in human tissues and tumors. Oncotarget 7(2):1973–1983

    Article  PubMed  Google Scholar 

  • Duarte-Pereira S et al (2021) NAPRT expression regulation mechanisms: novel functions predicted by a bioinformatics approach. Genes (Basel) 12(12):2022

    Article  CAS  PubMed  Google Scholar 

  • Dugue PA et al (2022) Association of markers of inflammation, the kynurenine pathway and B vitamins with age and mortality, and a signature of inflammaging. J Gerontol A Biol Sci Med Sci 77(4):826–836

    Article  CAS  PubMed  Google Scholar 

  • Eryavuz Onmaz D et al (2022) Elevated serum levels of kynurenine pathway metabolites in patients with Behcet disease. Amino Acids 54:877

    Article  CAS  PubMed  Google Scholar 

  • Farouk A et al (2022) Measuring the systemic inflammatory response to on- and off-pump coronary artery bypass graft (CABG) surgeries using the tryptophan/kynurenine pathway. J Investig Surg 35:1–5

    Article  Google Scholar 

  • Fatokun AA, Hunt NH, Ball HJ (2013) Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids 45(6):1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Fellendorf FT et al (2022) Is poor lithium response in individuals with bipolar disorder associated with increased degradation of tryptophan along the kynurenine pathway? Results of an exploratory study. J Clin Med 11(9):2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Pol JA (1976) Transition metal ions induce cell growth in NRK cells synchronized in G1 by picolinic acid. Biochem Biophys Res Commun 76(2):413–419

    Article  CAS  PubMed  Google Scholar 

  • Fiorentino F et al (2021) The two-faced role of SIRT6 in cancer. Cancers (Basel) 13(5):1156

    Article  CAS  PubMed  Google Scholar 

  • Fiskus W et al (2016) SIRT2 deacetylates and inhibits the peroxidase activity of peroxiredoxin-1 to sensitize breast cancer cells to oxidant stress-inducing agents. Cancer Res 76(18):5467–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortunato C, Mazzola F, Raffaelli N (2022) The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life 74(7):562

    Article  CAS  PubMed  Google Scholar 

  • Franceschini N et al (2021) Targeting the NAD salvage synthesis pathway as a novel therapeutic strategy for osteosarcomas with low NAPRT expression. Int J Mol Sci 22(12):6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franchetti P, Grifantini M (1999) Nucleoside and non-nucleoside IMP dehydrogenase inhibitors as antitumor and antiviral agents. Curr Med Chem 6(7):599–614

    Article  CAS  PubMed  Google Scholar 

  • Gaspar R et al (2021) Kynurenine pathway metabolites as potential clinical biomarkers in coronary artery disease. Front Immunol 12:768560

    Article  CAS  PubMed  Google Scholar 

  • Gelpi M et al (2022) Association of the kynurenine pathway of tryptophan metabolism with human immunodeficiency virus-related gut microbiota alterations and visceral adipose tissue accumulation. J Infect Dis 225(11):1948–1954

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari-Nasab A et al (2022) Young plasma induces antidepressant-like effects in aged rats subjected to chronic mild stress by suppressing Indoleamine 2,3-dioxygenase enzyme and kynurenine pathway in the prefrontal cortex. Neurochem Res 47(2):358–371

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32(19–20):1267–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottert R et al (2022) Lithium inhibits tryptophan catabolism via the inflammation-induced kynurenine pathway in human microglia. Glia 70(3):558–571

    Article  CAS  PubMed  Google Scholar 

  • Gouasmi R et al (2022) The kynurenine pathway and cancer: why keep it simple when you can make it complicated. Cancers (Basel) 14(11):2793

    Article  CAS  PubMed  Google Scholar 

  • Granchi C et al (2011) Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. J Med Chem 54(6):1599–1612

    Article  CAS  PubMed  Google Scholar 

  • Grant RS et al (1999) Evidence for increased de novo synthesis of NAD in immune-activated RAW264.7 macrophages: a self-protective mechanism? Arch Biochem Biophys 372(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Gu D, Schlotman KE, Xie J (2016) Deciphering the role of hedgehog signaling in pancreatic cancer. J Biomed Res 30(5):353–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Vazquez C, Quintana FJ (2018) Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y et al (2022) Pan-cancer analysis reveals NUP37 as a prognostic biomarker correlated with the immunosuppressive microenvironment in glioma. Aging (Albany NY) 14(2):1033–1047

    Article  CAS  PubMed  Google Scholar 

  • Heng B et al (2016) Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget 7(6):6506–6520

    Article  PubMed  Google Scholar 

  • Heo YJ et al (2019) Visfatin induces inflammation and insulin resistance via the NF-kappaB and STAT3 signaling pathways in hepatocytes. J Diabetes Res 2019:4021623

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong S et al (2015) Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat Med 21(8):887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honore PM et al (2022) Letter to the editor: “activation of the kynurenine pathway predicts mortality and neurological outcome in cardiac arrest patients: a validation study”. J Crit Care 69:154005

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Zhu G (2018) Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. Onco Targets Ther 11:3395–3400

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang D et al (2008) Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res 68(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Hughes TD et al (2022) The kynurenine pathway and kynurenine 3-monooxygenase inhibitors. Molecules 27(1):273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo Q et al (2020) SIRT7 is a prognostic biomarker associated with immune infiltration in luminal breast cancer. Front Oncol 10:621

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussien R, Brooks GA (2011) Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 43(5):255–264

    Article  CAS  PubMed  Google Scholar 

  • Jamshed L et al (2022) An emerging cross-species marker for organismal health: tryptophan-kynurenine pathway. Int J Mol Sci 23(11):6300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JH et al (2022) The kynurenine pathway and mediating role of stress in addictive disorders: a focus on alcohol use disorder and internet gaming disorder. Front Pharmacol 13:865576

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Du W, Wu M (2014) Regulation of the pentose phosphate pathway in cancer. Protein Cell 5(8):592–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao X et al (2022) Erythrocyte-cancer hybrid membrane-camouflaged mesoporous silica nanoparticles loaded with Gboxin for glioma-targeting therapy. Curr Pharm Biotechnol 23(6):835–846

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Zhou Y (2019) Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 17(5):4213–4221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H et al (2015) Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma. Sci Rep 5:10466

    Article  PubMed  PubMed Central  Google Scholar 

  • Jovanovic F, Sudhakar A, Knezevic NN (2022) The kynurenine pathway and polycystic ovary syndrome: inflammation as a common denominator. Int J Tryptophan Res 15:11786469221099214

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung J et al (2017) Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight 2(10):e90019

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SR et al (2008) Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim Biophys Acta 1783(5):886–895

    Article  CAS  PubMed  Google Scholar 

  • Komiya T, Huang CH (2018) Updates in the clinical development of epacadostat and other indoleamine 2,3-dioxygenase 1 inhibitors (IDO1) for human cancers. Front Oncol 8:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Komrower GM et al (1964) Hydroxykynureninuria: a case of abnormal tryptophan metabolism probably due to a deficiency of kynureninase. Arch Dis Child 39:250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Q et al (2022) Bifidobacterium longum CCFM1077 ameliorated neurotransmitter disorder and Neuroinflammation closely linked to regulation in the kynurenine pathway of autistic-like rats. Nutrients 14(8):1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger I, Statter M (1987) Tryptophan deficiency and picolinic acid: effect on zinc metabolism and clinical manifestations of pellagra. Am J Clin Nutr 46(3):511–517

    Article  CAS  PubMed  Google Scholar 

  • Kumari A et al (2015) Regulation of E2F1-induced apoptosis by poly(ADP-ribosyl)ation. Cell Death Differ 22(2):311–322

    Article  CAS  PubMed  Google Scholar 

  • Kusumanchi P et al (2013) Nicotinamide mononucleotide adenylyltransferase2 overexpression enhances colorectal cancer cell-kill by Tiazofurin. Cancer Gene Ther 20(7):403–412

    Article  CAS  PubMed  Google Scholar 

  • Lai MH et al (2021) Surface expression of kynurenine 3-monooxygenase promotes proliferation and metastasis in triple-negative breast cancers. Cancer Control 28:10732748211009245

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J et al (2018) Selective cytotoxicity of the NAMPT inhibitor FK866 toward gastric cancer cells with markers of the epithelial-mesenchymal transition, due to loss of NAPRT. Gastroenterology 155(3):799–814 e13

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li Y (2022) Network pharmacology analysis of molecular mechanism of Curcuma longa L. extracts regulating glioma immune inflammatory factors: implications for precise cancer treatment. Curr Top Med Chem 22(4):259–267

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2008) Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. J Biol Chem 283(50):34833–34843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2017) Role of Nampt and visceral adiposity in esophagogastric junction adenocarcinoma. J Immunol Res 2017:3970605

    Article  PubMed  PubMed Central  Google Scholar 

  • Li A et al (2018) Indoleamine 2,3-dioxygenase 1 inhibition targets anti-PD1-resistant lung tumors by blocking myeloid-derived suppressor cells. Cancer Lett 431:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XQ et al (2019) NAMPT and NAPRT, key enzymes in NAD salvage synthesis pathway, are of negative prognostic value in colorectal cancer. Front Oncol 9:736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YP et al (2022) Induction of cancer cell stemness in glioma through glycolysis and the long noncoding RNA HULC-activated FOXM1/AGR2/HIF-1alpha axis. Lab Investig 102:691

    Article  CAS  PubMed  Google Scholar 

  • Liang Y et al (2022) Kynurenine pathway metabolites as biomarkers in Alzheimer’s disease. Dis Markers 2022:9484217

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin TC (2022) Updated functional roles of NAMPT in carcinogenesis and therapeutic niches. Cancers (Basel) 14(9):2059

    Article  CAS  PubMed  Google Scholar 

  • Liu TF, McCall CE (2013) Deacetylation by SIRT1 reprograms inflammation and cancer. Genes Cancer 4(3–4):135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L et al (2018a) Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab 27(5):1067–1080 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M et al (2018b) Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol 11(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  • Loretz N et al (2022) Activation of the kynurenine pathway predicts mortality and neurological outcome in cardiac arrest patients: a validation study. J Crit Care 67:57–65

    Article  CAS  PubMed  Google Scholar 

  • Lucena-Cacace A et al (2017) NAMPT overexpression induces cancer stemness and defines a novel tumor signature for glioma prognosis. Oncotarget 8(59):99514–99530

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv X et al (2015) Regulative effect of Nampt on tumor progression and cell viability in human colorectal cancer. J Cancer 6(9):849–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandi Y et al (2022) Editorial: multiple implications of the kynurenine pathway in inflammatory diseases: diagnostic and therapeutic applications. Front Immunol 13:860867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield AS et al (2009) Simultaneous Foxp3 and IDO expression is associated with sentinel lymph node metastases in breast cancer. BMC Cancer 9:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao C et al (2022) Pan-cancer analysis of GALNTs expression identifies a prognostic of GALNTs feature in low grade glioma. J Leukoc Biol 112:887

    Article  CAS  PubMed  Google Scholar 

  • Massudi H et al (2012) NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep 17(1):28–46

    Article  CAS  PubMed  Google Scholar 

  • Matysik-Wozniak A et al (2022) Evidence against involvement of kynurenate branch of kynurenine pathway in pathophysiology of Fuchs’ dystrophy and keratoconus. Exp Eye Res 216:108959

    Article  CAS  PubMed  Google Scholar 

  • Mehler AH (1956) Formation of picolinic and quinolinic acids following enzymatic oxidation of 3-hydroxyanthranilic acid. J Biol Chem 218(1):241–254

    Article  CAS  PubMed  Google Scholar 

  • Meier TB, Savitz J (2022) The kynurenine pathway in traumatic brain injury: implications for psychiatric outcomes. Biol Psychiatry 91(5):449–458

    Article  PubMed  Google Scholar 

  • Meireson A, Devos M, Brochez L (2020) IDO expression in cancer: different compartment, different functionality? Front Immunol 11:531491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menssen A et al (2012) The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A 109(4):E187–E196

    Article  CAS  PubMed  Google Scholar 

  • Metz R et al (2012) IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. Onco Targets Ther 1(9):1460–1468

    Google Scholar 

  • Mi R et al (2022) Establishment of the glioma polyploid giant cancer cell model by a modified PHA-DMSO-PEG fusion method following dual drug-fluorescence screening in vitro. J Neurosci Methods 368:109462

    Article  CAS  PubMed  Google Scholar 

  • Moravcova S et al (2022) Circadian control of kynurenine pathway enzymes in the rat pineal gland, liver, and heart and tissue- and enzyme-specific responses to lipopolysaccharide. Arch Biochem Biophys 722:109213

    Article  CAS  PubMed  Google Scholar 

  • Muller AJ et al (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11(3):312–319

    Article  CAS  PubMed  Google Scholar 

  • Murphy JP et al (2018) The NAD(+) salvage pathway supports PHGDH-driven serine biosynthesis. Cell Rep 24(9):2381–2391 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navas LE, Carnero A (2021) NAD(+) metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 6(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nematollahi A et al (2016) Kynurenine aminotransferase isozyme inhibitors: a review. Int J Mol Sci 17(6):946

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen DJM et al (2020) Targeting the kynurenine pathway for the treatment of cisplatin-resistant lung cancer. Mol Cancer Res 18(1):105–117

    Article  CAS  PubMed  Google Scholar 

  • Obara-Michlewska M (2022) The tryptophan metabolism, kynurenine pathway and oxidative stress - implications for glioma pathobiology. Neurochem Int 158:105363

    Article  CAS  PubMed  Google Scholar 

  • O’Brien T et al (2013) Supplementation of nicotinic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models. Neoplasia 15(12):1314–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Opitz CA et al (2020) The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer 122(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Osuch B et al (2022) Increased hippocampal afterdischarge threshold in ketogenic diet is accompanied by enhanced kynurenine pathway activity. Neurochem Res 47:2109

    Article  CAS  PubMed  Google Scholar 

  • Palcic MM et al (1985) Stereochemistry of the kynureninase reaction. J Biol Chem 260(9):5248–5251

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Nam JS (2020) Kynurenine pathway enzyme KMO in cancer progression: a tip of the iceberg. EBioMedicine 55:102762

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul ER et al (2022) Peripheral and central kynurenine pathway abnormalities in major depression. Brain Behav Immun 101:136–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng TL et al (2009) Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9. BMC Cell Biol 10:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters JC (1991) Tryptophan nutrition and metabolism: an overview. Adv Exp Med Biol 294:345–358

    Article  CAS  PubMed  Google Scholar 

  • Phillips RS (2014) Structure and mechanism of kynureninase. Arch Biochem Biophys 544:69–74

    Article  CAS  PubMed  Google Scholar 

  • Piacente F et al (2017) Nicotinic acid phosphoribosyltransferase regulates cancer cell metabolism, susceptibility to NAMPT inhibitors, and DNA repair. Cancer Res 77(14):3857–3869

    Article  CAS  PubMed  Google Scholar 

  • Pissios P (2017) Nicotinamide N-methyltransferase: more than a vitamin B3 clearance enzyme. Trends Endocrinol Metab 28(5):340–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter AB et al (2022) Efficacy of treatment with Armodafinil for cancer-related fatigue in patients with high-grade glioma: a phase 3 randomized clinical trial. JAMA Oncol 8(2):259–267

    Article  PubMed  Google Scholar 

  • Qi J et al (2018) Downregulated SIRT6 and upregulated NMNAT2 are associated with the presence, depth and stage of colorectal cancer. Oncol Lett 16(5):5829–5837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramautar A et al (2012) Inhibition of HIV-1 tat-induced transactivation and apoptosis by the divalent metal chelators, fusaric acid and picolinic acid-implications for HIV-1 dementia. Neurosci Res 74(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Razquin C et al (2021) Metabolomics of the tryptophan-kynurenine degradation pathway and risk of atrial fibrillation and heart failure: potential modification effect of Mediterranean diet. Am J Clin Nutr 114:1646–1654. Am J Clin Nutr 2022. 115(1):310

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed MR et al (2021) Inhibition of tryptophan 2,3-dioxygenase impairs DNA damage tolerance and repair in glioma cells. NAR Cancer 3(2):zcab014

    Article  PubMed  PubMed Central  Google Scholar 

  • Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102(13):932–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas MP et al (2020) Hepatoblastomas exhibit marked NNMT downregulation driven by promoter DNA hypermethylation. Tumour Biol 42(12):1010428320977124

    Article  CAS  PubMed  Google Scholar 

  • Roberti A, Fernandez AF, Fraga MF (2021) Nicotinamide N-methyltransferase: at the crossroads between cellular metabolism and epigenetic regulation. Mol Metab 45:101165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostaminejad M et al (2022) The effect of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase gene overexpression in the kynurenine pathway on the expression levels of indoleamine 2,3-dioxygenase 1 and interferon-gamma in inflammatory conditions: an in vitro study. Mol Biol Rep 49(2):1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Rouleau M et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Niiya D, Seiki M (2011) Targeting the Warburg effect that arises in tumor cells expressing membrane type-1 matrix metalloproteinase. J Biol Chem 286(16):14691–14704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A (2022) Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 75:101573

    Article  CAS  PubMed  Google Scholar 

  • Saraste M et al (2022) Association between microglial activation and serum kynurenine pathway metabolites in multiple sclerosis patients. Mult Scler Relat Disord 59:103667

    Article  CAS  PubMed  Google Scholar 

  • Sartini D et al (2013) Upregulation of tissue and urinary nicotinamide N-methyltransferase in bladder cancer: potential for the development of a urine-based diagnostic test. Cell Biochem Biophys 65(3):473–483

    Article  CAS  PubMed  Google Scholar 

  • Savitz J (2022) Blood versus cerebrospinal fluid: kynurenine pathway metabolites in depression. Brain Behav Immun 101:333–334

    Article  CAS  PubMed  Google Scholar 

  • Schiewer MJ, Knudsen KE (2014) Transcriptional roles of PARP1 in cancer. Mol Cancer Res 12(8):1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze A, Downward J (2011) Flicking the Warburg switch-tyrosine phosphorylation of pyruvate dehydrogenase kinase regulates mitochondrial activity in cancer cells. Mol Cell 44(6):846–848

    Article  CAS  PubMed  Google Scholar 

  • Scott DA et al (2011a) Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem 286(49):42626–42634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JG et al (2011b) Production of 2-hydroxyglutarate by isocitrate dehydrogenase 1-mutated gliomas: an evolutionary alternative to the Warburg shift? Neuro-Oncology 13(12):1262–1264

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo M et al (2011) Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One 6(9):e24179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X et al (2021) Nuclear NAD(+) homeostasis governed by NMNAT1 prevents apoptosis of acute myeloid leukemia stem cells. Sci Adv 7(30):eabf3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata K, Fukuwatari T (2014) Large amounts of picolinic acid are lethal but small amounts increase the conversion of tryptophan-nicotinamide in rats. J Nutr Sci Vitaminol (Tokyo) 60(5):334–339

    Article  CAS  PubMed  Google Scholar 

  • Shibata K et al (2014) The urinary ratio of 3-hydroxykynurenine/3-hydroxyanthranilic acid is an index to predicting the adverse effects of D-tryptophan in rats. J Nutr Sci Vitaminol (Tokyo) 60(4):261–268

    Article  CAS  PubMed  Google Scholar 

  • Shin E, Koo JS (2021) Glucose metabolism and glucose transporters in breast cancer. Front Cell Dev Biol 9:728759

    Article  PubMed  PubMed Central  Google Scholar 

  • Shlomi T et al (2011) Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput Biol 7(3):e1002018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer K et al (2011) Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer 128(9):2085–2095

    Article  CAS  PubMed  Google Scholar 

  • Sono M (1989) Enzyme kinetic and spectroscopic studies of inhibitor and effector interactions with indoleamine 2,3-dioxygenase. 2. Evidence for the existence of another binding site in the enzyme for indole derivative effectors. Biochemistry 28(13):5400–5407

    Article  CAS  PubMed  Google Scholar 

  • Sotgia F et al (2011) Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 13(4):213

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugisawa E et al (2022) Nociceptor-derived Reg3gamma prevents endotoxic death by targeting kynurenine pathway in microglia. Cell Rep 38(10):110462

    Article  CAS  PubMed  Google Scholar 

  • Suhane S, Ramanujan VK (2011) Thyroid hormone differentially modulates Warburg phenotype in breast cancer cells. Biochem Biophys Res Commun 414(1):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KM et al (2022a) The kynurenine pathway metabolites in cord blood positively correlate with early childhood adiposity. J Clin Endocrinol Metab 107(6):e2464–e2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan KM et al (2022b) Association of plasma kynurenine pathway metabolite concentrations with metabolic health risk in prepubertal Asian children. Int J Obes 46(6):1128–1137

    Article  CAS  Google Scholar 

  • Tezcan D et al (2022) Kynurenine pathway of tryptophan metabolism in patients with familial Mediterranean fever. Mod Rheumatol

    Google Scholar 

  • Thongon N et al (2018) Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA. Cancer Metab 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomic S et al (2019) Prostaglanin-E2 potentiates the suppressive functions of human mononuclear myeloid-derived suppressor cells and increases their capacity to expand IL-10-producing regulatory T cell subsets. Front Immunol 10:475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrens-Mas M et al (2017) SIRT3: oncogene and tumor suppressor in cancer. Cancers (Basel) 9(7):90

    Article  PubMed  Google Scholar 

  • Trammell SA et al (2016) Nicotinamide riboside is a major NAD+ precursor vitamin in cow Milk. J Nutr 146(5):957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacchelli E et al (2014) Trial watch: IDO inhibitors in cancer therapy. Onco Targets Ther 3(10):e957994

    Google Scholar 

  • Vazquez A, Oltvai ZN (2011) Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology. PLoS One 6(4):e19538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainwright DA et al (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18(22):6110–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walczak K, Turski WA, Rzeski W (2012) Kynurenic acid enhances expression of p21 Waf1/Cip1 in colon cancer HT-29 cells. Pharmacol Rep 64(3):745–750

    Article  CAS  PubMed  Google Scholar 

  • Walczak K, Turski WA, Rajtar G (2014) Kynurenic acid inhibits colon cancer proliferation in vitro: effects on signaling pathways. Amino Acids 46(10):2393–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhang WP (2011) Research progress on nicotinamide phosphoribosyl transferase involved in aging and age-related diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 40(6):680–684

    CAS  PubMed  Google Scholar 

  • Wang L et al (2017) PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs. Int J Mol Sci 18(10):2111

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P et al (2022a) HIF1alpha/HIF2alpha induces glioma cell dedifferentiation into cancer stem cells through Sox2 under hypoxic conditions. J Cancer 13(1):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q et al (2022b) Regulation of the kynurenine/serotonin pathway by berberine and the underlying effect in the hippocampus of the chronic unpredictable mild stress mice. Behav Brain Res 422:113764

    Article  CAS  PubMed  Google Scholar 

  • Wang W et al (2022c) Complex roles of nicotinamide N-methyltransferase in cancer progression. Cell Death Dis 13(3):267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson M et al (2009) The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29(21):5872–5888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weljie AM, Jirik FR (2011) Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int J Biochem Cell Biol 43(7):981–989

    Article  CAS  PubMed  Google Scholar 

  • Wichers MC, Maes M (2004) The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J Psychiatry Neurosci 29(1):11–17

    PubMed  PubMed Central  Google Scholar 

  • Wong JL (2011) From fertilization to cancer: a lifelong pursuit into how cells use oxygen. Otto Heinrich Warburg (October 8, 1883-August 1, 1970). Mol Reprod Dev 78(12):Fm-i

    Article  CAS  PubMed  Google Scholar 

  • Wozniak MB et al (2013) Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PLoS One 8(3):e57886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J et al (2022) Development of a translational inflammation panel for the quantification of cerebrospinal fluid Pterin, tryptophan-kynurenine and nitric oxide pathway metabolites. EBioMedicine 77:103917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Sauve AA (2016) NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 1864(12):1787–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z et al (2022) Loss of FBXW7 correlates with increased IDH1 expression in glioma and enhances IDH1-mutant cancer cell sensitivity to radiation. Cancer Res 82(3):497–509

    Article  CAS  PubMed  Google Scholar 

  • Ye Z et al (2019) Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J Cancer 10(12):2771–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye C et al (2020) Targeting the NAD(+) salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/beta-catenin signaling via increasing Axin level. Cell Commun Signal 18(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung KTD et al (2022) The impact of bariatric surgery on serum tryptophan-kynurenine pathway metabolites. Sci Rep 12(1):294

    Article  PubMed  PubMed Central  Google Scholar 

  • Yis U et al (2011) Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype. Neuromuscul Disord 21(1):20–30

    Article  PubMed  Google Scholar 

  • Zakrocka I, Zaluska W (2022) Kynurenine pathway in kidney diseases. Pharmacol Rep 74(1):27–39

    Article  PubMed  Google Scholar 

  • Zawacka-Pankau J et al (2011) Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem 286(48):41600–41615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al (2011a) Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 108(39):16259–16264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LQ, Heruth DP, Ye SQ (2011b) Nicotinamide phosphoribosyltransferase in human diseases. J Bioanal Biomed 3:13–25

    Article  PubMed  Google Scholar 

  • Zhang J, Pavlova NN, Thompson CB (2017) Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 36(10):1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M et al (2022) Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Investig New Drugs 40(2):370–388

    Article  CAS  Google Scholar 

  • Zhao Y et al (2012) Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol 237(2):489–498

    Article  CAS  PubMed  Google Scholar 

  • Zhao H et al (2017) The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells. Biochem Biophys Res Commun 493(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Zhao E et al (2019) The roles of Sirtuin family proteins in cancer progression. Cancers (Basel) 11(12):1949

    Article  CAS  PubMed  Google Scholar 

  • Zheng J (2012) Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett 4(6):1151–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W et al (2012) Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11(2):554–563

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y et al (2019) Subcellular compartmentalization of NAD(+) and its role in cancer: a sereNADe of metabolic melodies. Pharmacol Ther 200:27–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nady Braidy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Helman, T., Braidy, N. (2023). NAD+ as a Target for Cancer Treatment. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_269-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_269-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics