Skip to main content

Tumor Microenvironment and Tumor-Targeted Therapy

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology
  • 58 Accesses

Abstract

Cancer tissue or cancer cells do not exist in isolation, but start life within the microenvironment called tumor microenvironment (TME). The surrounding TME consists of an extracellular matrix (ECM), endothelial cells, cancer-associated fibroblasts (CAFs), and other components and is characterized by hypoxia, low pH, pathological pressure gradients, dysregulated extracellular enzymes, and more. The existence of the TME is a major reason underlying cancer occurrence, development, invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, regulating the TME might be regarded as a rational choice beyond only killing cancer cells. However, there is difficulty in targeting cancers using free TME-modulating and/or anticancer drugs as a result of low bioavailability and high toxicity. Accordingly, it is necessary to develop delivery systems that can carry the corresponding therapeutic drugs to the therapeutic site. In recent years, a series of drug delivery systems (DDSs) integrating TME modulation and cancer cell targeting have been developed. Here, we summarize recent advances in their development, some considerations about the composition of the TME, and the factors necessary for TME- and tumor-targeted therapy, including the selection of homing functionalities, therapeutic targets, and typical DDSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arneth B (2019) Tumor microenvironment. Medicina (Kaunas) 56(1):15

    Article  PubMed  Google Scholar 

  • Bahrami A, Hassanian SM, Khazaei M, Hasanzadeh M, Shahidsales S, Maftouh M, Ferns GA, Avan A (2018) The therapeutic potential of targeting tumor microenvironment in breast cancer: rational strategies and recent Progress. J Cell Biochem 119(1):111–122

    Article  CAS  PubMed  Google Scholar 

  • Bei Q, Zhao Q, Ye X (2020) Ultrasound and magnetic responsive drug delivery Systems for Cardiovascular Application. J Cardiovasc Pharmacol 76(4):414–426

    Article  Google Scholar 

  • Birbrair A (ed) (2020) Tumor microenvironment, Advances in experimental medicine and biology 1234. Springer Nature Switzerland AG

    Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Huang L, Hu K (2020) Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharm Sin B 10(11):2140–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow EK-H, Ho D (2013) Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med 5(216):216rv4

    Article  PubMed  Google Scholar 

  • Cun X, Chen J, Li M, He X, Tang X, Guo R, Deng M, Li M, Zhang Z, He Q (2019) Tumor-associated fibroblast-targeted regulation and deep tumor delivery of chemotherapeutic drugs with a multifunctional size-switchable nanoparticle. ACS Appl Mater Interfaces 11(43):39545–39559

    Article  CAS  PubMed  Google Scholar 

  • David A (2017) Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev 119:120–142

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Liu Y, Gao Z, Huang W (2021) Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 11(1):55–70

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Liu C, Hou Y, Liu Y, Zhang Z, Zhao H, Xin X, Liu W, Zhang X, Chen L, Jin M, Gao Z, Huang W (2022) Sequential delivery of quercetin and paclitaxel for the fibrotic tumor microenvironment remodeling and chemotherapy potentiation via a dual-targeting hybrid micelle-in-liposome system. ACS Appl Mater Interfaces 14(8):10102–10116

    Article  CAS  PubMed  Google Scholar 

  • Fadeel B (2012) Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly 142:w13609

    PubMed  Google Scholar 

  • Fan Y, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft- molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756

    Google Scholar 

  • Fan B, Kang L, Chen L, Sun P, Jin M, Wang Q, Bae YH, Huang W, Gao Z (2017) Systemic siRNA delivery with a dual pH-responsive and tumor-targeted nanovector for inhibiting tumor growth and spontaneous metastasis in orthotopic murine model of breast carcinoma. Theranostics 7(2):357–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Islam W, Maeda H (2020) Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 157:142–160

    Article  CAS  PubMed  Google Scholar 

  • Fatih Z, Selek FN, Orlando G, Williams DF (2019) Biocompatibility in regenerative nanomedicine. Nanomedicine 14(20):2763–2775

    Article  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  PubMed  Google Scholar 

  • Fouladi F, Steffen KJ, Mallik S (2017) Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjug Chem 28(4):857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H (2017) Perspectives on dual targeting delivery systems for brain tumors. J Neuroimmune Pharmacol 12(1):6–16

    Article  PubMed  Google Scholar 

  • Garcia-Mazas C, Csaba N, Garcia-Fuentes M (2017) Biomaterials to suppress cancer stem cells and disrupt their tumoral niche. Int J Pharm 523(2):490–505

    Article  CAS  PubMed  Google Scholar 

  • Gou J, Liang Y, Miao L, Guo W, Chao Y, He H, Zhang Y, Yang J, Wu C, Yin T, Wang Y, Tang X (2017) Improved tumor tissue penetration and tumor cell uptake achieved by delayed charge reversal nanoparticles. Acta Biomater 62:157–166

    Article  CAS  PubMed  Google Scholar 

  • He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z (2020) Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 15(4):416–448

    Article  PubMed  Google Scholar 

  • Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Huo M, Wang H, Zhang Y, Cai H, Zhang P, Li L, Zhou J, Yin T (2020) Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J Control Release 321:198–210

    Article  CAS  PubMed  Google Scholar 

  • Ji T, Ding Y, Zhao Y, Wang J, Qin H, Liu X, Lang J, Zhao R, Zhang Y, Shi J, Tao N, Qin Z, Nie G (2015) Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery. Adv Mater 27(11):1865–1873

    Article  CAS  PubMed  Google Scholar 

  • Ji T, Li S, Zhang Y, Lang J, Ding Y, Zhao X, Zhao R, Li Y, Shi J, Hao J, Zhao Y, Nie G (2016) An MMP-2 responsive liposome integrating antifibrosis and chemotherapeutic drugs for enhanced drug perfusion and efficacy in pancreatic cancer. ACS Appl Mater Interfaces 8(5):3438–3445

    Article  CAS  PubMed  Google Scholar 

  • Jiao M, Zhang P, Meng J, Li Y, Liu C, Luo X, Gao M (2018) Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci 6(4):726–745

    Article  CAS  PubMed  Google Scholar 

  • Kalhapure RS, Renukuntla J (2018) Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact 295:20–37

    Article  CAS  PubMed  Google Scholar 

  • Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK (2019) Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl 98:1252–1276

    Article  CAS  PubMed  Google Scholar 

  • Kaps L, Schuppan D (2020) Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers. Cell 9(9):2027

    Article  CAS  Google Scholar 

  • Kim WT, Ryu CJ (2017) Cancer stem cell surface markers on normal stem cells. BMB Rep 50(6):285–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang T, Liu Y, Zheng Z, Ran W, Zhai Y, Yin Q, Zhang P, Li Y (2019) Cocktail strategy based on spatio-temporally controlled nano device improves therapy of breast cancer. Adv Mater 31(5):e1806202

    Article  PubMed  Google Scholar 

  • Li J, Burgess DJ (2020) Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B 10(11):2110–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, Ding Y, Zhao X, Zhao R, Li F, Yang X, Liu S, Liu Z, Lai J, Whittaker AK, Anderson GJ, Wei J, Nie G (2017) Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nat Biomed Eng 1(8):667–679

    Article  CAS  PubMed  Google Scholar 

  • Li K, Liu CJ, Zhang XZ (2020) Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 160:36–51

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Dai Y, Xia F, Zhang X (2021) Advances in non-covalent crosslinked polymer micelles for biomedical applications. Mater Sci Eng C Mater Biol Appl 119:111626

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li RT, Qian HQ, Wei J, Xie L, Shen J, Yang M, Qian XP, Yu LX, Jiang XQ, Liu BR (2013) Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials 34(29):7191–7203

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Liu T, Yu X, Gu Y (2017a) A preliminary study on the interaction between Asn-Gly-Arg (NGR)-modified multifunctional nanoparticles and vascular epithelial cells. Acta Pharm Sin B 7(3):361–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Li X, Xiao W, Lam KS (2017b) Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 110-111:13–37

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Song W, Huang L (2019) Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy. Cancer Lett 448:31–39

    Article  CAS  PubMed  Google Scholar 

  • Maeda H (2017) Polymer therapeutics and the EPR effect. J Drug Target 25(9–10):781–785

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy– mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6

    Google Scholar 

  • Mohanty C, Das M, Kanwar JR, Sahoo SK (2011) Receptor mediated tumor targeting: an emerging approach for cancer therapy. Curr Drug Deliv 8:45–58

    Article  CAS  PubMed  Google Scholar 

  • Musetti S, Huang L (2018) Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano 12(12):11740–11755

    Article  CAS  PubMed  Google Scholar 

  • Ngambenjawong C, Gustafson HH, Pun SH (2017) Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 114:206–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 190:451–464

    Article  CAS  PubMed  Google Scholar 

  • Overchuk M, Zheng G (2018) Overcoming obstacles in the tumor microenvironment: recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 156:217–237

    Article  CAS  PubMed  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8:3

    Google Scholar 

  • Peng H, Chen B, Huang W, Tang Y, Jiang Y, Zhang W, Huang Y (2017) Reprogramming tumor-associated macrophages to reverse EGFR(T790M) resistance by dual-targeting codelivery of gefitinib/vorinostat. Nano Lett 17(12):7684–7690

    Article  CAS  PubMed  Google Scholar 

  • Ping Y, Hu Q, Tang G, Li J (2013) FGFR-targeted gene delivery mediated by supramolecular assembly between beta-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials 34(27):6482–6494

    Article  CAS  PubMed  Google Scholar 

  • Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Ruttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859

    Article  CAS  PubMed  Google Scholar 

  • Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20(4):840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sau S, Tatiparti K, Alsaab HO, Kashaw SK, Iyer AK (2018) A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discov Today 23(7):1344–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M (2020) “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 8(21):5787–5803

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, van der Meel R, Chen X, Lammers T (2020) The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 10(17):7921–7924

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Zhou Z, Qiu N, Shen Y (2017) Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater 29(14):1606628

    Article  Google Scholar 

  • Sun Y, Yang J, Yang T, Li Y, Zhu R, Hou Y, Liu Y (2021) Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater 128:447–461

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhang J, Zhao X, Yang C, Shi M, Zhang B, Hu H, Qiao M, Chen D, Zhao X (2022) Binary regulation of the tumor microenvironment by a pH-responsive reversible shielding nanoplatform for improved tumor chemo-immunotherapy. Acta Biomater 138:505–517

    Article  CAS  PubMed  Google Scholar 

  • Thakkar S, Sharma D, Kalia K, Tekade RK (2020) Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: a review. Acta Biomater 101:43–68

    Article  CAS  PubMed  Google Scholar 

  • Truffi M, Mazzucchelli S, Bonizzi A, Sorrentino L, Allevi R, Vanna R, Morasso C, Corsi F (2019) Nano-strategies to target breast cancer-associated fibroblasts: rearranging the tumor microenvironment to achieve antitumor efficacy. Int J Mol Sci 20(6):1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai PH, Wang ML, Chang JH, Yarmishyn AA, Nhi Nguyen PN, Chen W, Chien Y, Huo TI, Mou CY, Chiou SH (2019) Dual delivery of HNF4alpha and cisplatin by mesoporous silica nanoparticles inhibits cancer pluripotency and Tumorigenicity in hepatoma-derived CD133-expressing stem cells. ACS Appl Mater Interfaces 11(22):19808–19818

    Article  CAS  PubMed  Google Scholar 

  • van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV (2013) Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev 65(10):1284–1298

    Article  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Zhong H, Chang Y, Li D, Jin H, Zhang M, Wang H, Jiang C, Shen Y, Huang Y (2018) Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites. Biomaterials 158:56–73

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Gao H (2017) Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 126:97–108

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Li J, Gu P, Fan X (2021) The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact Mater 6(7):1973–1987

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Guo X, Zhou H, Ren J, Li Y, Duan S, Gong X, Du B (2020) Mild acid-responsive “Nanoenzyme capsule” remodeling of the tumor microenvironment to increase tumor penetration. ACS Appl Mater Interfaces 12(18):20214–20227

    Article  CAS  PubMed  Google Scholar 

  • Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D (2020) Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 62:166–181

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZT, Huang-Fu MY, Xu WH, Han M (2019) Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur J Pharm Biopharm 137:122–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Liu R, Liu C, Pan L, Qi Y, Cheng J, Guo J, Jia Y, Ding J, Zhang J, Hu H (2020a) A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials 230:119605

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zang X, Qiao M, Zhao X, Hu H, Chen D (2020b) Targeted delivery of Dasatinib to deplete tumor-associated macrophages by Mannosylated mixed micelles for tumor immunotherapy. ACS Biomater Sci Eng 6(10):5675–5684

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ho SH, Li B, Nie G, Li S (2020c) Modulating the tumor microenvironment with new therapeutic nanoparticles: a promising paradigm for tumor treatment. Med Res Rev 40(3):1084–1102

    Article  PubMed  Google Scholar 

  • Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu Z, Hao Z, Li Z, Liu L, Xie J (2017) Protein nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett 17(2):862–869

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Duan, H., Huang, W. (2023). Tumor Microenvironment and Tumor-Targeted Therapy. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_114-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_114-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics