Skip to main content

The Influence of Sequence Dependence and External Solvents on DNA Conformation

  • Conference paper
  • First Online:
Soft Matter Systems for Biomedical Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 266))

  • 575 Accesses

Abstract

DNA sequence has important biological significance, its effect on groove size affects the expression of protein specific and non-specific binding groove. In liquid environments, different solvents interact with DNA differently. In this chapter, we will focus on the microscopic mechanism of internal bases and external solvents on DNA conformation. In the ordinary water solvent, with the increase of G base content, the DNA structure is transformed by B form—(A-B)—A form. In glycol solvents, DNA maintains B-form configuration, while in ethanol solvent and low activity water solvent, DNA exhibits a shorter and denser A-form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EG:

glycol

EA:

ethanol

RDF:

radial distribution function

RMSD:

Mean square root coordinate deviation

References

  1. Hamilton LD (1968) DNA: models and reality. Nature 218:633–637. https://doi.org/10.1038/218633a0

    Article  ADS  Google Scholar 

  2. Mohr SC, Sokolov NV, He CM, Setlow P (1991) Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A, pp 88:77–81. https://doi.org/10.1073/pnas.88.1.77

  3. Forester TR, McDonald IR (1991) Molecular dynamics studies of the behaviour of water molecules and small ions in concentrated solutions of polymeric B-DNA. Mol Phys 72:643–660. https://doi.org/10.1080/00268979100100481

    Article  ADS  Google Scholar 

  4. Okonogi TM, Alley SC, Reese AW, Hopkins PB, Robinson BH (2000) Sequence-dependent dynamics in duplex DNA. Biophys J 78:2560–2571. https://doi.org/10.1016/S0006-3495(00)76800-7

    Article  Google Scholar 

  5. Arauzo-Bravo MJ, Sarai A (2008) Indirect readout in drug-DNA recognition: role of sequence-dependent DNA conformation. Nucleic Acids Res 36:376–386. https://doi.org/10.1093/nar/gkm892

    Article  Google Scholar 

  6. Gorenstein DG (1994) Conformation and dynamics of DNA and protein-DNA complexes by 31P NMR. Chem Rev 94:1315–1338

    Article  Google Scholar 

  7. Moravek Z, Neidle S, Schneider B (2002) Protein and drug interactions in the minor groove of DNA. Nucleic Acids Res 30:1182–1191. https://doi.org/10.1093/nar/30.5.1182

    Article  Google Scholar 

  8. Heddi B, Abi-Ghanem J, Lavigne M, Hartmann B (2010) Sequence-dependent DNA flexibility mediates DNase I cleavage. J Mol Biol 395:123–133. https://doi.org/10.1016/j.jmb.2009.10.023

    Article  Google Scholar 

  9. Svozil D, Kalina J, Omelka M, Schneider B (2008) DNA conformations and their sequence preferences. Nucleic Acids Res 36:3690–3706. https://doi.org/10.1093/nar/gkn260

    Article  Google Scholar 

  10. Heddi B, Foloppe N, Bouchemal N, Hantz E, Hartmann B (2006) Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. J Am Chem Soc 128:9170–9177. https://doi.org/10.1021/ja061686j

    Article  Google Scholar 

  11. Oguey C, Foloppe N, Hartmann B (2010) Understanding the sequence-dependence of DNA groove dimensions: implications for DNA interactions. PLoS One 5:e15931. https://doi.org/10.1371/journal.pone.0015931

    Article  ADS  Google Scholar 

  12. Heddi B, Oguey C, Lavelle C, Foloppe N, Hartmann B (2009) Intrinsic flexibility of B-DNA: the experimental TRX scale. Nucleic Acids Res 38:1034–1047. https://doi.org/10.1093/nar/gkp962

    Article  Google Scholar 

  13. Olson WK, Gorin AA, Lu X-J, Hock LM, Zhurkin VB (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 95:11163–11168. https://doi.org/10.1073/pnas.95.19.11163

    Article  ADS  Google Scholar 

  14. Hui X, Ai-Min G, Song-Shan M (2007) The influence of base pair sequence on electronic structure of DNA molecules. Acta Physica Sinica 56:1208–1213. https://doi.org/10.7498/aps.56.1208

    Article  Google Scholar 

  15. Zhang N, Li MR, Zhang FS (2018) Ethylene glycol solution-induced DNA conformational transitions. Chin Phys B 27:113102–113102. https://doi.org/10.1088/1674-1056/27/11/113102

    Article  ADS  Google Scholar 

  16. Lavery R, Maddocks JH, Pasi M, Zakrzewska K (2014) Analyzing ion distributions around DNA. Nucleic Acids Res 42:8138–8149. https://doi.org/10.1093/nar/gku504

    Article  Google Scholar 

  17. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  Google Scholar 

  18. Macke TJ, Case DA (1997) Molecular modeling of nucleic acids. Am Chem Soc, 379–393. https://doi.org/10.1021/bk-1998-0682.ch024

  19. Perez A, Marcháin I, Svozil D, Sponer J, Cheatham TE, Laughton CA, et al (2007) Refinement of the AMBER force field for nucleic acids: improving the description of \(/\) conformers. Biophys J 92:3817–3829. https://doi.org/10.1529/biophysj.106.097782

  20. Jorgensen WL (1981) Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103:335–340. https://doi.org/10.1021/ja00392a016

    Article  Google Scholar 

  21. York DM, Darden TA, Pedersen LG (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. J Chem Phys 99:8345–8348. https://doi.org/10.1063/1.465608

  22. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Chem Phys 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

  23. Nose S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076. https://doi.org/10.1080/00268978300102851

    Article  ADS  Google Scholar 

  24. Lavery R, Moakher M, Maddocks JH, Petkeviciute D, Zakrzewska K (2009) Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res 37:5917–5929. https://doi.org/10.1093/nar/gkp608

    Article  Google Scholar 

  25. Pasi M, Maddocks JH, Lavery R (2015) Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics. Nucleic Acids Res 43:2412–2423. https://doi.org/10.1093/nar/gkv080

    Article  Google Scholar 

  26. Schweitzer BI, Mikita T, Kellogg GW, Gardner KH, Beardsley GP (1994) Solution structure of a DNA dodecamer containing the anti-neoplastic agent arabinosylcytosine: combined use of NMR, restrained molecular dynamics, and full relaxation matrix refinement. Biochemistry 33:11460–11475. https://doi.org/10.1021/bi00204a008

    Article  Google Scholar 

  27. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738. https://doi.org/10.1038/171737a0

    Article  ADS  Google Scholar 

  28. Ghosh A, Bansal M (2003) A glossary of DNA structures from A to Z. Acta Crystallogr D 59:620–626. https://doi.org/10.1107/S0907444903003251

    Article  Google Scholar 

  29. Dickerson RE, Ng H-L (2001) DNA structure from A to B, pp 98:6986–6988. https://doi.org/10.1073/pnas.141238898

  30. Franklin RE, Gosling RG (2010) The structure of sodium thymonucleate fibres. II. The cylindrically symmetrical Patterson function. Acta Crystallogr 6:678–685. https://doi.org/10.1107/S0365110X53001940

    Article  Google Scholar 

  31. Fuller W, Wilkins WHF, Wilson HR, Hamilton LD (1965) The molecular configuration of deoxyribonucleic acid: IV. X-ray diffraction study of the A form. J Mol Biol 12:60–76. https://doi.org/10.1016/S0022-2836(65)80282-0

    Article  Google Scholar 

  32. Langridge R, Wilson HR, Hooper CW, Wilkins MHF, Hamilton LD (1960) The molecular configuration of deoxyribonucleic acid: I. X-ray diffraction study of a crystalline form of the lithium salt. J Mol Biol 2:19-IN11. https://doi.org/10.1016/S0022-2836(60)80004-6

  33. Waters JT, Lu X-J, Galindo-Murillo R, Gumbart JC, Kim HD, Cheatham TE et al (2016) Transitions of double-stranded DNA between the A- and B-forms. J Phys Chem B 120:8449–8456. https://doi.org/10.1021/acs.jpcb.6b02155

    Article  Google Scholar 

  34. Rai A, Bush ME, Gracic A, Kim J, Lerner MG, Seewald AK et al (2016) Molecular dynamics investigations of Z[WC] DNA and its potential role in the B to Z-DNA transition. Biophys J 110:404a. https://doi.org/10.1016/j.bpj.2015.11.2183

    Article  Google Scholar 

  35. Zhang X, Le S, Chen H, Doyle P, Yan J (2013) Sequence dependence of the “B-to-S’’ DNA overstretching transition. Biophys J 104:262a. https://doi.org/10.1016/j.bpj.2012.11.1471

    Article  Google Scholar 

  36. Hackl EV, Blagoi YP (2005) The effect of temperature on DNA structural transitions under the action of Cu2+ and Ca2+ ions in aqueous solutions. Biopolymers 77:315–324. https://doi.org/10.1002/bip.20225

    Article  Google Scholar 

  37. Kundu S, Mukherjee S, Bhattacharyya D (2012) Effect of temperature on DNA double helix: An insight from molecular dynamics simulation. J Biosci 37:445–455. https://doi.org/10.1007/s12038-012-9215-5

    Article  Google Scholar 

  38. Gu B, Zhang FS, Wang ZP, Zhou HY (2008) Solvent-induced DNA conformational transition. Phys Rev Lett 100: https://doi.org/10.1103/PhysRevLett.100.088104

  39. Marc G, Olivier B, Oliver M, Catherine E, Brigitte H, Franca F (2012) Mg2+ in the major groove modulates B-DNA structure and dynamics. PLoS One 7. https://doi.org/10.1016/S0959-440X(00)00205-0

  40. Cheng Y (2006) Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study. Nucleic Acids Res 34:686–696. https://doi.org/10.1093/nar/gkj434

    Article  Google Scholar 

  41. Noy A, Perez A, Laughton CA, Orozco M (2007) Theoretical study of large conformational transitions in DNA: the B?A conformational change in water and ethanol/water. Nucleic Acids Res 35:3330–3338. https://doi.org/10.1093/nar/gkl1135

    Article  Google Scholar 

  42. Wilkins MHF (1963) Molecular Configuration of Nucleic Acids: From extensive diffraction data and molecular model building a more detailed picture is emerging. Science 140:941–950. https://doi.org/10.1126/science.140.3570.941

    Article  ADS  Google Scholar 

  43. Texter J (1978) Nucleic acid-water interactions. Prog Biophys Mol Biol 33:83–97. https://doi.org/10.1016/0079-6107(79)90026-9

    Article  Google Scholar 

  44. MaB T, Hearst JE (1968) On the hydration of DNA. I. Preferential hydration and stability of DNA in concentrated trifluoroacetate solution. Biopolymers 6:1325–1344. https://doi.org/10.1002/bip.1968.360060908

    Article  Google Scholar 

  45. Saenger W, Hunter WN, Kennard O (1986) DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324:385–388. https://doi.org/10.1038/324385a0

    Article  ADS  Google Scholar 

  46. Santoso Y, Joyce CM, Potapova O, Reste LL, Hohlbein J, Torella JP et al (2010) Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc Natl Acad Sci U S A 107:715–720. https://doi.org/10.1073/pnas.0910909107

    Article  ADS  Google Scholar 

  47. Shen X, Gu B, Che SA, Zhang FS (2011) Solvent effects on the conformation of DNA dodecamer segment: A simulation study. J Chem Phys 135: https://doi.org/10.1063/1.3610549

  48. Mrevlishvili GM, Metreveli NO, Razmadze GZ, Mdzinarashvili TD, Khvedelidze MM (1998) Partial heat capacity change - fundamental characteristic of the process of thermal denaturation of biological macromolecules (proteins and nucleic acids). Thermochim Acta 308:41–48. https://doi.org/10.1016/S0040-6031(97)00328-6

    Article  Google Scholar 

  49. Muller J (2010) Functional metal ions in nucleic acids. Metallomics 2:318–327. https://doi.org/10.1039/c000429d

    Article  Google Scholar 

  50. Wen J, Shen H, Zhai YR, Zhang FS (2016) Simulation of DNA in water/ethanol mixture. Physica A 450:515–522. https://doi.org/10.1016/j.physa.2015.12.091

    Article  ADS  Google Scholar 

  51. Dickerson RE, Drew HR (1981) Structure of a B-DNA dodecamer: II. Influence of base sequence on helix structure. J Mol Biol 149:761–786. https://doi.org/10.1016/0022-2836(81)90357-0

    Article  Google Scholar 

  52. Yonetani Y, Kono H (2009) Sequence dependencies of DNA deformability and hydration in the minor groove. Biophys J 97:1138–1147. https://doi.org/10.1016/j.bpj.2009.05.049

    Article  Google Scholar 

  53. Hays FA, Teegarden A, Jones ZJR, Harms M, Raup D, Watson J et al (2005) How sequence defines structure: a crystallographic map of DNA structure and conformation 102:7157–7162. 10.1073/pnas.0409455102

    Google Scholar 

  54. Dixit SB, Beveridge DL, Case DA, Cheatham TE, Giudice E, Lankas F et al (2005) Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. II: Sequence Context Effects on the Dynamical Structures of the 10 Unique Dinucleotide Steps. Biophys J 89:3721–3740. https://doi.org/10.1529/biophysj.105.067397

  55. Hays FA, Teegarden A, Jones ZJR, Harms M, Raup D, Watson J et al (2005) How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc Natl Acad Sci U S A 102:7157–7162. https://doi.org/10.1073/pnas.0409455102

    Article  ADS  Google Scholar 

  56. Otokiti EO, Sheardy RD (1997) Sequence effects on the relative thermodynamic stabilities of B-Z junction-forming DNA oligomeric duplexes. Biophys J 73:3135–3141. https://doi.org/10.1016/S0006-3495(97)78339-5

    Article  Google Scholar 

  57. Gueron M, M, Demaret JP, Filoche M (2000) A unified theory of the B-Z transition of DNA in high and low concentrations of multivalent ions. Biophys J 78:1070–1083. https://doi.org/10.1016/S0006-3495(00)76665-3

  58. Li MR, Zhang N, Xu HT, Zhang FS (2020) Sequence dependence of the conformational transitions of DNA. Chem Phys Lett 748: https://doi.org/10.1016/j.cplett.2020.137344

  59. Saenger P (2013) Principles of nucleic acid structure. Springer-Verlag, New York

    Google Scholar 

  60. Lu X-J, Shakked Z, Olson WK (2000) A-form conformational motifs in ligand-bound DNA structures. J Mol Biol 300:819–840. https://doi.org/10.1006/jmbi.2000.3690

    Article  Google Scholar 

  61. Dickerson RE, Chiu TK (1997) Helix bending as a factor in protein/DNA recognition. 44:361–403. https://doi.org/10.1002/(SICI)1097-0282(1997)44:4<361::AID-BIP4>3.0.CO;2-X

  62. Yakovchuk P, Protozanova E, Frankkamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34:564–574. https://doi.org/10.1093/nar/gkj454

  63. Tolstorukov MY, Ivanov VI, Malenkov GG, Jernigan RL, Zhurkin VB (2001) Sequence-dependent B-A transition in DNA evaluated with dimeric and trimeric scales. Biophys J 81:3409–3421. https://doi.org/10.1016/S0006-3495(01)75973-5

    Article  Google Scholar 

  64. Il’Icheva IA, Vlasov PK, Esipova NG, Tumanyan VG (2010) The intramolecular impact to the sequence specificity of BA transition: low energy conformational variations in AA/TT and GG/CC steps. J Biomol Struct Dyn 27:677–693. https://doi.org/10.1080/07391102.2010.10508581

  65. Pasi M, Maddocks JH, Lavery R (2015) Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics. Nucleic Acids Res 43:2412–2423. https://doi.org/10.1093/nar/gkv080

  66. Egli M (2002) DNA-cation interactions: quo vadis? Chem Biol 9:277–286. https://doi.org/10.1016/S1074-5521(02)00116-3

    Article  Google Scholar 

  67. Lu XJ, Shakked Z, Olson WK (2000) A-form conformational motifs in ligand-bound DNA structures. J Mol Biol 300:819–840. https://doi.org/10.1006/jmbi.2000.3690

    Article  Google Scholar 

  68. Savelyev A, Papoian G (2006) Electrostatic, steric, and hydration interactions favor Na(+) condensation around DNA compared with K(+). J Am Chem Soc 128:14506–14518. https://doi.org/10.1021/ja0629460

    Article  Google Scholar 

  69. Zhang N, Li M-R, Zhang F-S (2019) Structure and dynamics properties of liquid ethylene glycol from molecular dynamics simulations. Chem Phys Lett 718:12–21. https://doi.org/10.1016/j.cplett.2019.01.025

    Article  ADS  Google Scholar 

  70. Zhang N, Li MR, Xu HT, Zhang FS (2020) Polymorphism and flexibility of DNA in alcohols. Chin Phys Lett 37: https://doi.org/10.1088/0256-307x/37/8/088701

  71. Anagnostopoulos CA, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746. https://doi.org/10.1016/B978-012373944-5.00036-5

    Article  Google Scholar 

  72. Li MR, Zhang N, Zhang FS (2018) Computational investigation of the conformation transitions of DNA in modified water models. J Mol Liq 271:175–181. https://doi.org/10.1016/j.molliq.2018.08.129

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Prof. L. Bulavin, N. Atamas, and K. Cherevko for the fruitful discussions. This work was supported by the National Natural Science Foundation of China under Grants No. 11635003, No.11025524, No. 11161130520, the National Basic Research Program of China under Grant No. 2010CB832903, and the European Commission’s 7th Framework Programme (Fp7-PEOPLE-2010-IRSES) under Grant Agreement Project No. 269131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Shou Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, HT., Zhang, N., Li, MR., Zhang, FS. (2022). The Influence of Sequence Dependence and External Solvents on DNA Conformation. In: Bulavin, L., Lebovka, N. (eds) Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80924-9_7

Download citation

Publish with us

Policies and ethics