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Abstract. The problem of scheduling with testing in the framework
of explorable uncertainty models environments where some preliminary
action can influence the duration of a task. In the model, each job has an
unknown processing time that can be revealed by running a test. Alter-
natively, jobs may be run untested for the duration of a given upper limit.
Recently, Dürr et al. [4] have studied the setting where all testing times
are of unit size and have given lower and upper bounds for the objectives
of minimizing the sum of completion times and the makespan on a single
machine. In this paper, we extend the problem to non-uniform testing
times and present the first competitive algorithms. The general setting
is motivated for example by online user surveys for market prediction
or querying centralized databases in distributed computing. Introducing
general testing times gives the problem a new flavor and requires updated
methods with new techniques in the analysis. We present constant com-
petitive ratios for the objective of minimizing the sum of completion
times in the deterministic case, both in the non-preemptive and pre-
emptive setting. For the preemptive setting, we additionally give a first
lower bound. We also present a randomized algorithm with improved
competitive ratio. Furthermore, we give tight competitive ratios for the
objective of minimizing the makespan, both in the deterministic and the
randomized setting.

Keywords: Online scheduling · Explorable uncertainty · Competitive
analysis · Single machine · Sum of completion times · Makespan

1 Introduction

In scheduling environments, uncertainty is a common consideration for optimiza-
tion problems. Commonly, results are either based on worst case considerations
or a random distribution over the input. These approaches are known as robust

Work supported by Deutsche Forschungsgemeinschaft (DFG), GRK 2201 and by the
European Research Council, Grant Agreement No. 691672, project APEG.

c© The Author(s) 2021
C. Kaklamanis and A. Levin (Eds.): WAOA 2020, LNCS 12806, pp. 127–142, 2021.
https://doi.org/10.1007/978-3-030-80879-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80879-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-80879-2_9


128 S. Albers and A. Eckl

optimization and stochastic optimization, respectively. However, it is often the
case that unknown information can be attained through investing some addi-
tional resources, e.g. time, computing power or money. In his seminal paper,
Kahan [11] has first introduced the notion of explorable or queryable uncer-
tainty to model obtaining additional information for a problem at a given cost
during the runtime of an algorithm. Since then, these kind of problems have
been explored in different optimization contexts, for example in the framework
of combinatorial, geometric or function value optimization tasks.

Recently, Dürr et al. [4] have introduced a model for scheduling with testing
on a single machine within the framework of explorable uncertainty. In their
approach, a number of jobs with unknown processing times are given. Testing
takes one unit of time and reveals the processing time. If a job is executed
untested, the time it takes to run the job is given by an upper bound. The
novelty of their approach lies in having tests executed directly on the machine
running the jobs as opposed to considering tests separately.

In view of this model, a natural extension is to consider non-uniform testing
times to allow for a wider range of problems. Dürr et al. state that for certain
applications it is appropriate to consider a broader variation on testing times
and leave this question up for future research.

Situations where a preliminary action, operation or test can be executed
before a job are manifold and include a wide range of real-life applications. In
the following, we discuss a small selection of such problems and emphasize cases
with heterogeneous testing requirements. Consider first a situation where an
online user survey can help predict market demand and production times. The
time needed to produce the necessary amount of goods for the given demand is
only known after conducting the survey. Depending on its scope and size, the
invested costs for the survey may vary significantly.

As a second example, we look at distributed computing in a setting with
many distributed local databases and one centralized master server. At the local
stations, only estimates of some data values are stored; in order to obtain the
true value one must query the master server. It depends on the distance and
connection quality from any localized database to the master how much time
and resources this requires. Olston and Widom [14] have considered this setting
in detail.

Another possible example is the acquisition of a house through an agent giv-
ing us more information about its value, location, condition, etc., but demanding
a price for her services. This payment could vary based on the price of the house,
the amount of work of the agent or the number of competitors.

In their paper, Dürr et al. [4] mention fault diagnosis in maintenance and
medical treatment, file compression for transmissions, and running jobs in an
alternative fast mode whose availability can be determined through a test. Gen-
erally, any situation involving diverse cost and duration estimates, like e.g. in
construction work, manufacturing or insurance, falls into our category of possible
applications.
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In view of all these examples, we investigate non-uniform testing in the scope
of explorable uncertainty on a single machine as introduced by [4]. We study
whether algorithms can be extended to this non-uniform case and if not, how
we can find new methods for it.

1.1 Problem Statement

We consider n jobs to be scheduled on a single machine. Every job j has an
unknown processing time pj and a known upper bound uj . It holds 0 ≤ pj ≤ uj

for all j. Each job also has a testing time tj ≥ 0. A job can either be executed
untested, which takes time uj , or be tested and then executed, which takes a
total time of tj + pj . Note that a tested job does not necessarily have to be
executed right after its test, it may be delayed arbitrarily while the algorithm
tests or executes other jobs.

Since only the upper bounds are initially known to the algorithm, the task
can be viewed as an online problem with an adaptive adversary. The actual
processing times pj are only realized after job j has been tested by the algorithm.
In the randomized case, the adversary knows the distribution of the random
input parameters of an algorithm, but not their outcome.

We denote the completion time of a job j as Cj and primarily consider the
objective of minimizing the total sum of completion times

∑
j Cj . As a secondary

objective, we also investigate the simpler goal of minimizing the makespan
maxj Cj . We use competitive analysis to compare the value produced by an
algorithm with an optimal offline solution.

Clearly, in the offline setting where all processing times are known, an opti-
mal schedule can be determined directly: If tj + pj ≤ uj then job j is tested,
otherwise it is run untested. For the sum of completion times, the jobs are there-
fore scheduled in order of non-decreasing min(tj +pj , uj). Any algorithm for the
online problem not only has to decide whether to test a given job or not, but
also in which order to run all tests and executions of both untested and tested
jobs. For a solution to the makespan objective, the ordering of the jobs does not
matter and an optimal offline algorithm decides the testing by the same principle
as above.

1.2 Related Work

Our setting is directly based on the problem of scheduling uncertain jobs on a
single machine with explorable processing times, introduced by Dürr et al. [4] in
2018. They only consider the special case where tj ≡ 1 for all jobs. For determin-
istic algorithms, they give a lower bound of 1.8546 and an upper bound of 2. In
the randomized case, they give a lower bound of 1.6257 and a 1.7453-competitive
algorithm. For several deterministic special case instances, they provide upper
bounds closer to the best possible ratio of 1.8546. Additionally, tight algorithms
for the objective of minimizing the makespan are given for both the deterministic
and randomized cases.
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Testing and executing jobs on a single machine can be viewed as part of
the research area of queryable uncertainty or explorable uncertainty. The first
seminal paper on dealing with uncertainty by querying parts of the input was
published in 1991 by Kahan [11]. In his paper, Kahan considers a set of elements
with uncertain values that lie in a closed interval. He explores approximation
guarantees for the number of queries necessary to obtain the maximum and
median value of the uncertain elements.

Since then, there has been a large amount of research concerned with the
objective of minimizing the number of queries to obtain a solution. A variety
of numerical, geometric and combinatorial problems have been studied in this
framework, the following is a selection of some of these publications: Next to
Kahan, Feder et al. [8], Khanna and Tan [12], and Gupta et al. [10] have also
considered the objective of determining different function values, in particular
the k-smallest value and the median. Bruce et al. [2] have analysed geometric
tasks, specifically the Maximal Points and Convex Hull problems. They have also
introduced the notion of witness sets as a general concept for queryable uncer-
tainty, which was then generalized by Erlebach et al. [6]. Olston and Widom [14]
researched caching problems while allowing for some inaccuracy in the objective
function. Other studied combinatorial problems include minimum spanning tree
[6,13], shortest path [7], knapsack [9] and boolean trees [3]. See also the survey
by Erlebach and Hoffmann [5] for an overview over research in this area.

A related type of problems within optimization under uncertainty are set-
tings where the cost of the queries is a direct part of the objective function.
Most notably, the paper by Dürr et al. [4] falls into this category. There, the
tests necessary to obtain additional information about the runtime of the jobs
are executed on the same machine as the jobs themselves. Other examples include
Weitzman’s original Pandora’s Box problem [17], where n independent random
variables are probed to maximize the highest revealed value. Every probing
incurs a price directly subtracted from the objective function. Recently, Singla
[16] introduced the ‘price of information’ model to describe receiving informa-
tion in exchange for a probing price. He gives approximation ratios for various
well-known combinatorial problems with stochastic uncertainty.

1.3 Contribution

In this paper, we provide the first algorithms for the more general scheduling
with testing problem where testing times can be non-uniform. Consult Table 1
for an overview of results for both the non-uniform and uniform versions of the
problem. All ratios provided without citation are introduced in this paper. The
remaining results are presented in [4].

For the problem of scheduling uncertain jobs with non-uniform testing times
on a single machine, our results are the following: A deterministic 4-competitive
algorithm for the objective of minimizing the sum of completion times and a
randomized 3.3794-competitive algorithm for the same objective. If we allow
preemption - that is, to cancel the execution of a job at any time and start
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Table 1. Overview of results

Objective type General tests Uniform tests Lower bound
∑

Cj - deterministic 4 2 [4] 1.8546 [4]
∑

Cj - randomized 3.3794 1.7453 [4] 1.6257 [4]
∑

Cj - determ. preemptive 2ϕ ≈ 3.2361 - 1.8546

max Cj - deterministic ϕ ≈ 1.6180 ϕ [4] ϕ [4]

max Cj - randomized 4
3

4
3

[4] 4
3

[4]

working on a different job - then we can improve the deterministic case to be
2ϕ-competitive. Here, ϕ ≈ 1.6180 is the golden ratio.

For the objective of minimizing the makespan, we adopt and extend the ideas
of Dürr et al. [4] to provide a tight ϕ-competitive algorithm in the deterministic
case and a tight 4

3 -competitive algorithm in the randomized case.
Our approaches handle non-uniform testing times in a novel fashion distinct

from the methods of [4]. As we show in the full version of this paper [1], the idea of
scheduling untested jobs with small upper bounds in the beginning of the sched-
ule, which works well in the uniform case, fails to generalize to non-uniform tests.
Additionally, describing parameterized worst-case instances becomes intangible
in the presence of an arbitrary number of different testing times.

In place of these methods, we compute job completion times by cross-exa-
mining contributions of other jobs in the schedule. We determine tests based
on the ratio between the upper bound and the given test time and pay specific
attention to sorting the involved executions and tests in an suitable way.

The paper is structured as follows: Sects. 2 and 3 examine the deterministic
and randomized cases respectively. Various algorithms are presented and their
competitive ratios proven. We extend the optimal results for the objective of
minimizing the makespan from the uniform case to general testing times in
Sect. 4. Finally, we conclude with some open problems.

2 Deterministic Setting

In this section, we introduce our basic algorithm and prove deterministic upper
bounds for the non-preemptive as well as the preemptive case. The basic struc-
ture introduced in Sect. 2.1 works as a framework for other algorithms presented
later. We give a detailed analysis of the deterministic algorithm and prove that
it is 4-competitive if parameters are chosen accordingly. In Sect. 2.2 we prove
that an algorithm for the preemptive case is 3.2361-competitive and that no
preemptive algorithm can have a ratio better than 1.8546.

2.1 Basic Algorithm and Proof of 4-Competitiveness

We now present the elemental framework of our algorithm, which we call (α, β)-
SORT. As input, the algorithm has two real parameters, α ≥ 1 and β ≥ 1.



132 S. Albers and A. Eckl

Algorithm 1: (α, β)-SORT
1 T ← ∅, N ← ∅, σj ≡ 0;
2 foreach j ∈ [m] do
3 if uj ≥ αtj then
4 add j to T ;
5 set σj ← βtj ;

6 else
7 add j to N ;
8 set σj ← uj ;

9 end

10 end
11 while N ∪ T 	= ∅ do
12 choose jmin ∈ argminj∈N∪T σj ;

13 if jmin ∈ N then
14 execute jmin untested;
15 remove jmin from N ;

16 else if jmin ∈ T then
17 if jmin not tested then
18 test jmin;
19 set σjmin ← pjmin ;

20 else
21 execute jmin;
22 remove jmin from T ;

23 end

24 end

The algorithm is divided into two phases. First, we decide for each job
whether we test this job or not based on the ratio uj

tj
. This gives us a parti-

tion of [m] into the disjoint sets T = {j ∈ [m] : ALG tests j} and N = {j ∈
[m] : ALG runs j untested}. In the second phase, we always attend to the job
jmin with the current smallest scaling time σj . The scaling time is the time
needed for the next step of executing j:

• If j is in N , then σj = uj .
• If j is in T and has not been tested, then σj = βtj .
• If j is in T and has already been tested, then σj = pj .

Note that in the second case above, we ‘stretch’ the scaling time by multiply-
ing with β ≥ 1. The intention behind this stretching is that testing a job, unlike
executing it, does not immediately lead to a job being completed. Therefore the
parameter β artificially lowers the relevance of testing in the ordering of our
algorithm. Note that the actual time needed for testing remains tj .

In the following, we show that the above algorithm achieves a provably good
competitive ratio. The parameters are kept general in the proof and are then
optimized in a final step. We present the computations with general parameters
for a clearer picture of the proof structure, which we will reuse in later sections.
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In the final optimization step it will turn out that setting α = β = 1 yields a
best-possible competitive ratio of 4.

Theorem 1. The (1, 1)-SORT algorithm is 4-competitive for the objective of
minimizing the sum of completion times.

Proof. For the purpose of estimating the algorithmic result against the optimum,
let ρj := min(uj , tj + pj) be the optimal running time of job j. Without loss of
generality, we order the jobs s.t. ρ1 ≥ . . . ≥ ρn. Hence the objective value of the
optimum is

OPT =
n∑

j=1

j · ρj (1)

Additionally, let

pA
j :=

{
tj + pj if j ∈ T,

uj if j ∈ N,
(2)

be the algorithmic running time of j, i.e. the time the algorithm spends on
running job j.

We start our analysis by comparing pA
j to the optimal runtime ρj for a single

job, summarized in the following Proposition:

Proposition 1.(a) ∀j ∈ T : tj ≤ ρj, pj ≤ ρj

(b) ∀j ∈ T : pA
j ≤ (

1 + 1
α

)
ρj

(c) ∀j ∈ N : pA
j ≤ αρj

Part (a) directly estimates testing and running times of tested jobs against
the values of the optimum. We will use this extensively when computing the
completion time of the jobs. The proof of parts (b) and (c) is very similar to
the proof of Theorem 14 in [4] for uniform testing times. We refer to the full
version [1] for a complete write-down of the proof. Note that instead of consid-
ering a single bound, we split the upper bound of the algorithmic running time
pA

j into different results for tested (b) and untested jobs (c). This allows us to
differentiate between different cases in the proof of Lemma 1 in more detail. We
will often make use of this Proposition to upper bound the algorithmic running
time in later sections.

To obtain an estimate of the completion time Cj , we consider the contribution
c(k, j) of all jobs k ∈ [n] to Cj . We define c(k, j) to be the amount of time
the algorithm spends scheduling job k before the completion of j. Obviously
it holds that c(k, j) ≤ pA

k . The following central lemma computes an improved
upper bound on the contribution c(k, j), using a rigorous case distinction over
all possible configurations of k and j:

Lemma 1 (Contribution Lemma). Let j ∈ [n] be a given job. The comple-
tion time of j can be written as

Cj =
∑

k∈[n]

c(k, j).
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Additionally, for the contribution of k to j it holds that

c(k, j) ≤ max
((

1 +
1
β

)

α, 1 +
1
α

, 1 + β

)

ρj .

Refer to the full version [1] for the proof. Depending on whether j and k are
tested or not, the lemma computes various upper bounds on the contribution
using estimates from Proposition 1. Finally, the given bound on c(k, j) is achieved
by taking the maximum over the different cases.

Recall that the jobs are ordered by non-increasing optimal execution times
ρj , which by Proposition 1 are directly tied to the algorithmic running times.
Hence, the jobs k with small indices are the ‘bad’ jobs with possibly large running
times. For jobs with k ≤ j we therefore use the independent upper bound from
the Contribution Lemma. Jobs with large indices k > j are handled separately
and we directly estimate them using their running time pA

k .
By Lemma 1 and Proposition 1(b),(c) we have

Cj =
∑

k>j

c(k, j) +
∑

k≤j

c(k, j)

≤
∑

k>j

pA
k +

∑

k≤j

max
((

1 +
1
β

)

α, 1 +
1
α

, 1 + β

)

ρj

=
∑

k>j

max
(

α, 1 +
1
α

)

ρk + max
((

1 +
1
β

)

α, 1 +
1
α

, 1 + β

)

j · ρj .

Finally, we sum over all jobs j:

n∑

j=1

Cj =
n∑

j=1

n∑

k=j+1

max
(

α, 1 +
1
α

)

ρk

+
n∑

j=1

max
((

1 +
1
β

)

α, 1 +
1
α

, 1 + β

)

j · ρj

= max
(

α, 1 +
1
α

) n∑

j=1

(j − 1)ρj

+ max
((

1 +
1
β

)

α, 1 +
1
α

, 1 + β

) n∑

j=1

j · ρj

≤
(

max
(

α, 1 +
1
α

)

+ max
((

1 +
1
β

)

α, 1 +
1
α

, 1 + β

))

︸ ︷︷ ︸
=:f(α,β)

n∑

j=1

j · ρj

= f(α, β) · OPT

Minimizing f(α, β) on the domain α, β ≥ 1 yields optimal parameters α = β = 1
and a value of f(1, 1) = 4. We conclude that (1, 1)-SORT is 4-competitive.
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The parameter selection α = 1, β = 1 is optimal for the closed upper bound
formula we obtained in our proof. It is possible and somewhat likely that a
different parameter choice leads to better overall results for the algorithm. In
the optimal makespan algorithm (see Sect. 4) the value of α is higher, suggesting
that α = 1, which leads to testing all non-trivial jobs, might not be the best
choice. The problem structure and the approach by Dürr et al. [4] also motivate
setting β to some higher value than 1. For our proof, setting parameters like we
did is optimal.

In the full version of the paper [1], we take advantage of this somewhat
unexpected parameter outcome to prove that (1, 1)-SORT cannot be better than
3-competitive. Additionally, we show that for any choice of parameters, (α, β)-
SORT is not better than 2-competitive.

2.2 A Deterministic Algorithm with Preemption

The goal of this section is to show that if we allow jobs to be preempted there
exists a 3.2361-competitive algorithm. In his book on Scheduling, Pinedo [15]
defines preemption as follows: “The scheduler is allowed to interrupt the pro-
cessing of a job (preempt) at any point in time and put a different job on the
machine instead.”

The idea for our algorithm in the preemptive setting is based on the so-called
Round Robin rule, which is used frequently in preemptive machine scheduling
[15, Chapters 3.7, 5.6, 12.4]. The scheduling time frame is divided into very
small equal-sized units. The Round Robin algorithm then cycles through all
jobs, tending to each job for exactly one unit of time before switching to the
next. It ensures that at any time the amount every job has been processed only
differs by at most one time unit [15].

The Round Robin algorithm is typically applied when job processing times
are completely unknown. In our setting, we are actually given some upper bounds
for our processing times and may invest testing time to find out the actual values.
Despite having more information, it turns out that treating all job processing
times as unknown in a Round Robin setting gives a provably good result. The
only way we employ upper bounds and testing times is again to decide which
jobs will be tested and which will not. We again do this at the beginning of
our schedule for all given jobs. The rule to decide testing is exactly the same
as in the first phase of Algorithm 1: If uj/tj ≥ α, then test j, otherwise run j
untested. Again, α is a parameter that is to be determined. It will turn out that
setting α = ϕ gives the best result.

The pseudo-code for the Golden Round Robin algorithm is given in
Algorithm 2.

Essentially, the algorithm first decides for all jobs whether to test them and
then runs a regular Round Robin scheme on the algorithmic testing time pA

j ,
which is defined as in (2).

Theorem 2. The Golden Round Robin algorithm is 3.2361-competitive in the
preemptive setting for the objective of minimizing the sum of completion times.
This analysis is tight.
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Algorithm 2: Golden Round Robin
1 T ← ∅, N ← ∅, σj ≡ 0;
2 foreach j ∈ [m] do
3 if uj ≥ ϕtj then
4 add j to T ;
5 set σj ← tj ;

6 else
7 add j to N ;
8 set σj ← uj ;

9 end

10 end
11 while ∃j ∈ [m] not completely scheduled do
12 run Round Robin on all jobs using σj as their processing time;
13 let jmin be the first job to finish during the current execution;
14 if jmin ∈ T and jmin tested but not executed then
15 set σjmin ← pjmin and keep jmin in the Round Robin rotation;
16 end

17 end

We only provide a sketch of the proof here, the complete proof can be found
in the full version of the paper [1].

Proof (Proof sketch). We set α = ϕ and use Proposition 1(b),(c) to bound the
algorithmic running time pA

j of a job j by its optimal running time ρj .

pA
j ≤ ϕρj .

We then compute the contribution of a job k to a fixed job j by grouping
jobs based on their finishing order in the schedule. This allows us to estimate
the completion time of job j:

Cj ≤
∑

k>j

pA
k + j · pA

j

Finally, we sum over all jobs to receive ALG ≤ 2ϕ · OPT.
To show that the analysis is tight, we provide an example where the algo-

rithmic solution has a value of 2ϕ · OPT if we let the number of jobs approach
infinity.

The following theorem additionally provides a lower bound for the deter-
ministic preemptive setting, giving us a first simple lower bound for this case.
The proof is based on the lower bound provided in [4] for the deterministic
non-preemptive case. We again defer the proof to the full version [1].

Theorem 3. No algorithm in the preemptive deterministic setting can be better
than 1.8546-competitive.
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3 Randomized Setting

In this section we introduce randomness to further improve the competitive ratio
of Algorithm 1. There are two natural places to randomize: when deciding which
jobs to test and the decision about the ordering of the jobs. These decisions
directly correspond to the parameters α and β.

Making α randomized, for instance, could be achieved by defining α as a
random variable with density function fα : [1,∞] → R+

0 and testing j if and
only if rj := uj/tj ≥ α. Then the probability for testing j would be given by
p =

∫ rj

1
fα(x)dx. Using a random variable α like this would make the analysis

unnecessarily complicated, therefore we directly consider the probability p with-
out defining a density, and let p depend on rj . This additionally allows us to
compute the probability of testing independently for each job.

Introducing randomness for β is even harder. The choice of β influences
multiple jobs at the same time, therefore independence is hard to establish.
Additionally, β appears in the denominator of our analysis frequently, hindering
computations using expected values. We therefore forgo using randomness for
the β-parameter and focus on α in this paper. We encourage future research to
try their hand at making β random.

We give a short pseudo-code of our randomized algorithm in Algorithm 3. It
is given a parameter-function p(rj) and a parameter β, both of which are to be
determined later.

Algorithm 3: Randomized-SORT
1 T ← ∅, N ← ∅, σj ≡ 0;
2 foreach j ∈ [m] do
3 add j to T with probability p(rj) and set σj ← βtj ;
4 otherwise add it to N and set σj ← uj ;

5 end
6 while N ∪ T 	= ∅ do
7 choose jmin ∈ argminj∈N∪T σj ;

8 if jmin ∈ N then
9 execute jmin untested;

10 remove jmin from N ;

11 else if jmin ∈ T then
12 if jmin not tested then
13 test jmin;
14 set σjmin ← pjmin ;

15 else
16 execute jmin;
17 remove jmin from T ;

18 end

19 end
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Theorem 4. Randomized-SORT is 3.3794-competitive for the objective of min-
imizing the sum of completion times.

Proof. Again, we let ρ1 ≥ . . . ≥ ρn denote the ordered optimal running time
of jobs 1, . . . , n. The optimal objective value is given by (1). Fix jobs j and k.
For easier readability, we write p instead of p(rj). Since the testing decision is
now done randomly, the algorithmic running time pA

j as well as the contribution
c(k, j) are now random variables. It holds

pA
j =

{
tj + pj with probability p

uj with probability 1 − p

For the values of c(k, j) we consult the case distinctions from the proof of the
Contribution Lemma 1. If j ∈ N , one can easily determine that c(k, j) ≤ (1 +
1/β)uj for all cases. Note that for this we did not need to use the final estimates
with parameter α from the case distinction. Therefore this upper bound holds
deterministically as long as we assume j ∈ N . By extension it also trivially holds
for the expectation of c(k, j):

E[c(k, j) | j untested] ≤ (1 + 1/β)uj .

Doing the same for the case distinction of j ∈ T , we get

E[c(k, j) | j tested] ≤ max
(

(1 + β)tj ,
(

1 +
1
β

)

pj , tj + pj

)

.

For the expected value of the contribution we have by the law of total
expectation:

E[c(k, j)] = E[c(k, j) | j untested] · Pr[j untested]
+ E[c(k, j) | j tested] · Pr[j tested]

≤
(

1 +
1
β

)

uj · (1 − p) + max
(

(1 + β)tj ,
(

1 +
1
β

)

pj , tj + pj

)

· p

Note that this estimation of the expected value is independent of any parameters
of k. That means, for fixed j we estimate the contribution to be the same for all
jobs with small parameter k ≤ j. Of course, as before, for the jobs with large
parameter k > j we may also alternatively directly use the algorithmic runtime
of k:

E[c(k, j)] ≤ E[pA
k ].

Putting the above arguments together, we use the Contribution Lemma and
linearity of expectation to estimate the completion time of j:

E[Cj ] =
n∑

j=1

E[c(k, j)]

≤
∑

k>j

E[pA
k ] +

∑

k≤j

E[c(k, j)].
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For the total objective value of the algorithm we receive again using linearity of
expectation:

E

⎡

⎣
n∑

j=1

Cj

⎤

⎦ ≤
n∑

j=1

(j − 1)E[pA
j ] +

n∑

j=1

j · E[c(k, j)]

≤
n∑

j=1

(j − 1)(uj · (1 − p) + (tj + pj) · p)

+
n∑

j=1

j

( (

1 +
1
β

)

uj · (1 − p)

+ max
(

(1 + β)tj ,
(

1 +
1
β

)

pj , tj + pj

)

· p

)

≤
n∑

j=1

j · λj(β, p),

where we define

λj(β, p) :=
(

uj +
(

1 +
1
β

)

uj

)

· (1 − p)

+
(

tj + pj + max
(

(1 + β)tj ,
(

1 +
1
β

)

pj , tj + pj

))

· p.

Having computed this first estimation for the objective of the algorithm, we
now consider the ratio λj(β, p)/ρj as a standalone. If we can prove an upper
bound for this ratio, the same holds as competitive ratio for our algorithm.

Hence the goal is to choose parameters β and p, where p can depend on j,
s.t. λj(β, p)/ρj is as small as possible. In the best case, we want to compute

min
β≥1,p∈[0,1]

max
j

λj(β, p)
ρj

.

Lemma 2. There exist parameters β̂ ≥ 1 and p̂ ∈ [0, 1] s.t.

max
j

λj(β̂, p̂)
ρj

≤ 3.3794.

The choice of parameters is given in the proof of the lemma, which can be
found in the full version of our paper [1]. During the proof we use computer-
aided computations with Mathematica. The Mathematica code can be found in
the full version.

To conclude the proof of the theorem, we write

E

⎡

⎣
n∑

j=1

Cj

⎤

⎦ ≤
n∑

j=1

j · λj(β̂, p̂) ≤ 3.3794
n∑

j=1

j · ρj = 3.3794 · OPT.



140 S. Albers and A. Eckl

4 Optimal Results for Minimizing the Makespan

In this section, we consider the objective of minimizing the makespan of our
schedule. It turns out that we are able to prove the same tight algorithmic bounds
for this objective function as Dürr et al. in the unit-time testing case, both for
deterministic and randomized algorithms. The decisions of the algorithms only
depend on the ratio rj = uj/tj . Refer to the full version [1] for the proofs.

Theorem 5. The algorithm that tests job j iff rj ≥ ϕ is ϕ-competitive for the
objective of minimizing the makespan. No deterministic algorithm can achieve a
smaller competitive ratio.

Theorem 6. The randomized algorithm that tests job j with probability p =
1−1/(r2j −rj+1) is 4/3-competitive for the objective of minimizing the makespan.
No randomized algorithm can achieve a smaller competitive ratio.

5 Conclusion

In this paper, we introduced the first algorithms for the problem of schedul-
ing with testing on a single machine with general testing times that arises in
the context of settings where a preliminary action can influence cost, duration
or difficulty of a task. For the objective of minimizing the sum of completion
times, we presented a 4-approximation for the deterministic case, and a 3.3794-
approximation for the randomized case. If preemption is allowed, we can improve
the deterministic result to 3.2361. We also considered the objective of minimiz-
ing the makespan, for which we showed tight ratios of 1.618 and 4/3 for the
deterministic and randomized cases, respectively.

Our results open promising avenues for future research, in particular tight-
ening the gaps between our ratios and the lower bounds given by the unit case.
Based on various experiments using different adversarial behaviour and multiple
testing times it seems hard to force the algorithm to make mistakes that lead
to worse ratios than those proven in [4] for the unit case. We conjecture that
in order to achieve better lower bounds, the adversary must make live decisions
based on previous choices of the algorithm, in particular depending on how much
the algorithm has already tested, run or deferred jobs up to a certain point.

Further interesting directions for future work are the extension of the problem
to multiple machines to consider scheduling problems like open shop, flow shop,
or other parallel machine settings.
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