Skip to main content

Silicate Minerals Induced by Microorganisms

  • Chapter
  • First Online:
Mineral Formation by Microorganisms

Part of the book series: Microbiology Monographs ((MICROMONO,volume 36))

Abstract

Rocks are made up of minerals and they form the Earth’s crust. Nearly 90% of Earth’s solid material are silicate minerals. Rocks and minerals are the source and sink of most essential elements, without which the living forms cannot survive. This nutrient source has to be mineralized from the parent rock. The biological agents such as bacteria, fungi, algae, cyanobacteria, etc. effectively act on this mineralization process. Bioweathering is the destruction or decomposition of rocks by the ubiquitous microbial source. By this biomineralization, transformation of silicate minerals takes place by varied microbial metabolic activities. Biodissolution mechanism comprises acidolysis, extracellular polysaccharide production, pH fluctuation, chelation, organic acid secretion, and organic ligand production. These mechanisms vary with the variety of bioagents that trigger the silicate mineral formation. Biomineralization of silicate minerals leads to various biogeochemical processes, viz., soil formation, mineral transformation, and nutrient mobilization to plants and microbes itself which are streamlined naturally by this ‘bio-miners’ or biological agents, which balance nutrient cycling and maintain equilibrium. Such natural phenomenon supports the living forms in varied ecosystem. Exploration and bio-intervention of such novel microbes leads to more advantages in mineral formation and its allied processes. In this chapter, the author presents a critical review of mineral formation from silicate minerals, mechanisms, and its application aspects collected from existing literatures. An advancement and extensive research in this field would no doubt nourish the environment in ecofriendly approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Adamo P, Vingiani S, Violante P (2002) Lichen–rock interactions and bioformation of minerals. Dev Soil Sci 28B:377–391

    CAS  Google Scholar 

  • Aleksandrov VG (1958) Organo-mineral fertilizers and silicate bacteria. Dokl Akad-s.kh Nauk 7:43–48

    Google Scholar 

  • Amrhein C, Suarez DL (1988) The use of a surface complexation model to describe the kinetics of ligand promoted dissolution of anorthite. Geochim Cosmochim Acta 52:2785–2793

    Article  CAS  Google Scholar 

  • Arocena JM, Glowa KR, Massicotte HB, Lavkulich L (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (hook.) Nutt.) in the AE horizon of a Luvisol. Can J Soil Sci 79:25–35

    Article  CAS  Google Scholar 

  • Badr MA (2006) Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Badr AM, Shafei MA, Sharaf El-Deen SH (2006) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci U S A 96:3404–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker WW, Banfield JF (1996) Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chem Geol 132:55–69

    Article  CAS  Google Scholar 

  • Barker WW, Banfield JF (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol J 15:223–244

    Article  CAS  Google Scholar 

  • Barker WW et al (1997) Biogeochemical weathering of silicate minerals. In: Geomicrobiology: interactions between microbes and minerals. Mineralogical Society of America, Washington DC, pp 391–428

    Chapter  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols [J]. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010a) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010b) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Bennett PC, Siegel DI, Melcer ME, Hassett JP (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25C. Geochim Cosmochim Acta 52:1521–1530

    Article  CAS  Google Scholar 

  • Bennett PC, Hiebert FK, Choi WJ (1996) Microbial colonization and weathering of silicates in petroleum-contaminated groundwater. Chem Geol 132:45–53

    Article  CAS  Google Scholar 

  • Bennett PC, Rogers JA, Hiebert FK, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  CAS  Google Scholar 

  • Benning LG, Phoenix V, Mountain BW (2005) In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Biosilicification: the role of cyanobacteria in silica sinter deposition 65: micro-organisms and earth systems – advances in Geomicrobiology. SGM symposium. Cambridge University Press, Cambridge

    Google Scholar 

  • Berthelin J, Leyval C (1982) Ability of symbiotic and non-symbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant Soil 68:369–377

    Article  CAS  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1893–1898

    Article  CAS  Google Scholar 

  • Binbin MO, Bin L (2011) Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms. Chin J Geochem 30:187–192

    Article  CAS  Google Scholar 

  • Biswas DR (2011) Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of indo-Gangetic Plains of India. Nutr Cycl Agroecosyst 89:15–30

    Article  Google Scholar 

  • Boyle JR, Voigt GK (1973) Biological weathering of silicate for tree nutrition and soil genesis. Plant Soil 38:191–201

    Article  CAS  Google Scholar 

  • Brady PV, Walther JV (1991) Controls on silicate dissolution rates in neutral and basic solutions at 25°C. Geochim Cosmochim Acta 53:2823–2830

    Article  Google Scholar 

  • Brehm U, Gorbushina A, Mottershead D (2005) The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr Palaeoclimatol Palaeoecol 219:117–129

    Article  Google Scholar 

  • Brown GE, Trainor TP, Chaka AM (2008) Geochemistry of mineral surfaces and factors affecting their chemical reactivity. In: Nilsson A, Pettersson LGM, Norskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam, pp 457–509

    Chapter  Google Scholar 

  • Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116

    Article  CAS  Google Scholar 

  • Cameselle C, Ricart MT, Núez MJ, Lema JM (2003) Iron removal from kaolin. Comparison between “in-situ” and “two-stage” bioleaching processes [J]. Hydrometallurgy 68:97–105

    Article  CAS  Google Scholar 

  • Carson JK et al (2007) Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol Ecol 61:414–423

    Article  CAS  PubMed  Google Scholar 

  • Casarin V, Plassard C, Souche G, Arvieu J-C (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469

    Article  CAS  Google Scholar 

  • Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization – a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Croal LR et al (2004) The genetics of geochemistry. Annu Rev Genet 38:175–202

    Article  CAS  PubMed  Google Scholar 

  • Davis JA (1982) Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim Cosmochim Acta 46:2381–2393

    Article  CAS  Google Scholar 

  • Deer WA, Howie RA, Wise WS, Zussman J (2004) Rock-forming minerals. Volume 4B. Framework silicates: silica minerals. Feldspathoids and the zeolites, 2nd edn. Geological Society of London, London, p 982

    Google Scholar 

  • Ding YHR, Hixson KK, Giometti CS, Stanley A, Esteve-Núñez A, Khare T, Tollaksen SL, Zhu W, Adkins JN, Lipton MS, Smith RD, Mester T, Lovley DR (2006) The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions [J]. Biochim Biophys Acta 1764:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Dong HL (2010) Mineral-microbe interactions: a review. Front Earth Sci China 4:127147

    Google Scholar 

  • Douglas S (2005) Mineralogical footprints of microbial life. American J Sci 305:503–525

    Article  CAS  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities [J]. FEMS Microbiol Ecol 26:79–88

    Article  CAS  Google Scholar 

  • Drever JI, Stillings LL (1997) The role of organic acids in mineral weathering. Colloids Surf 120(1–3):167–181

    Article  CAS  Google Scholar 

  • Drever JI, Vance GF (1994) Role of organic acids in mineral weathering processes. In: Lewan MD, Pittman ED (eds) The role of organic acids in geological processes. Springer, Berlin, pp 138–161

    Chapter  Google Scholar 

  • Duff RB, Webley DM (1959) 2-ketoglutaric acid and natural chelator produced by soil bacterial. Chem. India 44:1376–1377

    Google Scholar 

  • Duff RB, Webley DM, Scott RO (1963) Solubilization of minerals and related materials by 2 ketogluconic acid producing bacteria. Soil Sci 5:105–114

    Article  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Dziurla MA, Achouak W, Lam BT, Heulin T, Berthelin J (1998) Enzyme-linked immunofiltration assay to estimate attachment of Thiobacilli to pyrite [J]. Appl Environ Microbiol 64:2937–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich HL (1981) Geomicrobiology. Marcel Dekker Inc., New York, p 393

    Google Scholar 

  • Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132:5–9

    Article  CAS  Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    Article  CAS  Google Scholar 

  • Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–60

    Article  CAS  Google Scholar 

  • Ehrlich HL, Brierley CL (eds) (1990) Microbial mineral recovery. McGraw-Hill, New York, NY, p 454

    Google Scholar 

  • Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Emmerich K, Wolters F, Kahr G, Lagaly G (2009) Clay profiling: the classification of montmorillonites. Clay Clay Miner 57:101–114

    Article  CAS  Google Scholar 

  • Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989 May) Metal interactions with microbial biofilms in acidic and neutral pH Environments. Appl Environ Microbiol 55(5):1249–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin D, Ferris FG, Beveridge TJ (1998) Surface mediated mineral development by bacteria. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals, Reviews in mineralogy, 35. Mineralogical Society of America, Washington, DC, pp 161–180

    Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317

    Article  CAS  Google Scholar 

  • Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe–metal interactions. American Society for Microbiology, Washington, DC, pp 237–256

    Google Scholar 

  • Gadd GM, Fomina M, Burford EP (2005) Fungal roles and function in rock, mineral and soil transformations. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Microorganisms in earth systems – advances in Geomicrobiology. Cambridge University Press, Cambridge, pp 201–231

    Chapter  Google Scholar 

  • Gadd GM, Burford EP, Fomina M, Melville K (2007) Mineral transformation and biogeochemical cycles: a geomycological perspective. In: Gadd GM, Dyer P, Watkinson S (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 78–111

    Chapter  Google Scholar 

  • Gates WP, Wilkinson HT, Stucki JW (1993) Swelling properties of microbially-reduced ferruginous smectite. Clay Clay Miner 41:360–364

    Article  CAS  Google Scholar 

  • Geesey GG, Iwaoka T, Griffiths PR (1987) Characterization of interfacial phenomena occurring during exposure of a thin copper film to an aqueous suspension of an acidic polysaccharide. J Colloid Interface Sci 120:370–376

    Article  Google Scholar 

  • Geesey GG, Jang L, Jolley JG, Hankins MR, Iwaoka T, Griffiths PR (1988) Binding of metal ions by extracellular polymers of biofilm bacteria. Water Sci Technol 20:161–165

    Article  CAS  Google Scholar 

  • Girgis MGZ, Heba M, Khalil A, Sharaf MS (2008) In vitro evaluation of rock phosphate and potassium solubilizing potential of some Bacillus strains. Australian J Basic Appli Sci 2(1):68–81

    Google Scholar 

  • Gleeson DB, Kennedy NM, Clipson NJW, Melville K, Gadd GM, McDermott FP (2006) Mineralogical influences on bacterial community structure on a weathered pegmatitic granite. Microb Ecol 51:526–534

    Article  PubMed  Google Scholar 

  • Gorbushina AA, Krumbein WE (2005) Role of organisms in wear down of rocks and minerals. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, pp 59–84

    Chapter  Google Scholar 

  • Gorbushina AA, Boettcher M, Brumsack HJ, Krumbein WE, Vendrell-Saz M (2001) Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table e mountain systems (tepuis) of Venezuela. Geomicrobiol J 18:117–132

    Article  CAS  Google Scholar 

  • Goudie AS (1996) Organic agency in calcrete development. J Arid Environ 32:103–110

    Article  Google Scholar 

  • Grote G, Krumbein WE (1992) Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10:49–57

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1(2):176–180

    Google Scholar 

  • Han HS, Supanjani P, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Pl Soil Environ 52(3):130–136

    Google Scholar 

  • Hawthorne FC, Uvarova YA, Sokolova E (2019) A structure hierarchy for silicate minerals: sheet silicates. Mineral Mag 83:3–55

    Article  CAS  Google Scholar 

  • Henderson MEK, Duff RB (1963) The release of metallic and silicate ions from minerals and soils by fungal activity. J Soil Sci 14:236–246

    Article  CAS  Google Scholar 

  • Hernandez ME et al (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J Soil Sci 44:525–534

    Article  CAS  Google Scholar 

  • Hinsinger P, Jaillard B, Dufey JV (1992) Rapid weathering of a trioctahedral mica by the roots of ryegrass. Soil Sci Soc Am J 65:977–982

    Article  Google Scholar 

  • Hochella MF (2002) Sustaining earth: thoughts on the present and future roles in mineralogy in environmental science. Mineral Mag 66:627–652

    Article  CAS  Google Scholar 

  • Hoffland E, Giesler R, Jongmans T, Van Breemen N (2002) Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems 5:11–22

    Article  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmstrom S, Landeweert R, Lundstrom US, other authors (2004a) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004b) The role of fungi in weathering. Front Ecol Environ (June 2004). https://doi.org/10.2307/3868266

  • Huang PM, Wang MC, Wang MK (2004) Mineral–organic– microbial interactions. In: Hillel D, Rosenzweig C, Powlson DS, Scow KM, Singer MJ, Sparks DL, Hatfield J (eds) Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 486–499

    Google Scholar 

  • Jacobs H, Boswell GP, Ritz K, Davidson FA, Gadd GM (2002a) Solubilization of metal phosphates by Rhizoctonia solani. Mycol Res 106:1468–1479

    Article  CAS  Google Scholar 

  • Jacobs H, Boswell GP, Ritz K, Davidson FA, Gadd GM (2002b) Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol Ecol 40:65–71

    Article  CAS  PubMed  Google Scholar 

  • Jaisi DP (2007) Fe(III) reduction in clay minerals and its application to technetium immobilization. PhD dissertation, Miami University, Oxford, Ohio, USA, p 319

    Google Scholar 

  • Jones B, Renaut RW, Rosen MR (1998) Microbial biofacies in hot spring sinters: a model based on Ohaaki Pool, North Island, New Zealand. J Sediment Res 68:413–434

    Article  CAS  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock-eating fungi [J]. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kalinowski BE, Liermann LJ, Givens S, Brantley SL (2000) Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches. Chem Geol 169:357–370

    Article  CAS  Google Scholar 

  • Kim J, Furukawa Y, Dong HL, Newell SW (2005) The effect of microbial Fe(III) reduction on smectite flocculation. Clay Clay Miner 53:572579

    Article  CAS  Google Scholar 

  • Kirchman DL, Henry DL, Dexter SC (1989) Adsorption of proteins to surfaces in seawater. Mar Chem 27:201–217

    Article  CAS  Google Scholar 

  • Konhauser KO, Fisher QJ, Fyfe WS, Longstaffe FJ, Powell MA (1998) Authigenic mineralization and detrital clay binding by freshwater biofilms: the Brahmani River, India. Geomicrobiol J 15:209–222

    Article  CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, Van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  CAS  PubMed  Google Scholar 

  • Lauwers AM, Heinen W (1974) Bio-degradation and utilization of silica and quartz arch. Microbiol by Springer-Verlag. Arch Microbiol 95:67–78

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1989) Interactions between Laccaria laccata, agrobacterium radiobacter and beech roots: influence on P, K, mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016

    Article  CAS  Google Scholar 

  • Li X, Wu ZQ, Li WD, Yan RX (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbial Cell Physiol 74:11201125

    Google Scholar 

  • Lian B (1998) A study on how silicate bacteria GY92 dissolves potassium from illite. Acta Mineral Sin 18:234237

    Google Scholar 

  • Lian B (1998) Study on silicate bacteria dissolve potassium. Guizhou Science and Technol. Press, Guiyang, pp 103–108

    Google Scholar 

  • Lian B, Pingqiu F, Deming M, Congqiang L (2002) A comprehensive review of the mechanism of potassium releasing by silicate bacteria [J]. Acta Mineral Sin 22:179–183. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Lian B, Chen Y, Zhao J, Teng H, Zhu LJ, Yuan S (2008) Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresour Technol 99:48254831

    Article  CAS  Google Scholar 

  • Liang X, Wan G, Ronggui H (2002) Distribution and variation of ribonucleic acid (RNA) and protein and its hydrolysis products in lake sediments [J]. Chin J Geochem 21:175–185

    Article  CAS  Google Scholar 

  • Little BJ, Wagner PA, Lewandowski Z (1997) Spatial relationships between bacteria and mineral surface. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals, vol 35. Mineralogical Society of America, Reviews in Mineralogy, Washington, DC, pp 123–159

    Chapter  Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Lian PC (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  CAS  Google Scholar 

  • Lunsdorf H, Erb RW, Abraham WR, Timmis KN (2000) ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environ Microbiol 2:161–168

    Article  CAS  PubMed  Google Scholar 

  • Madsen EL (1998) Epistemology of environmental microbiology [J]. Environ Sci Technol 32:429–439

    Article  CAS  Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiol 59:49–55

    Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Meena MD, Biswas DR (2013) Residual effect of rock phosphate and waste mica enriched compost on yield and nutrient uptake by soybean. Legum Res 36:406–413

    Google Scholar 

  • Mikhailouskaya N, Tchernysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latv J Agron 8:154–157

    Google Scholar 

  • Mittelman MW, Geesey GG (1985) Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Appl Environ Microbiol 49:846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojallali H, Weed SB (1978) Weathering of micas by mycorrhizal soybean plants. Soil Sci Soc Am J 42:367–372

    Article  CAS  Google Scholar 

  • Monib M, Zahra MK, Abdel-Al HA (1986) Role of silicate bacteria in releasing K and Si from biotite and orthoclase. Soil Biol Conserv Biosphere 2:733743

    Google Scholar 

  • Neal AL, Rosso KM, Geesey GG, Gorby Y, Little BJ (2003) Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis [J]. Geochim Cosmochim Acta 67:4489–4503

    Article  CAS  Google Scholar 

  • Neijssel OM, Tempest DW (1975) The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms growing in chemostat culture. Arch Microbiol 106:215–221

    Article  Google Scholar 

  • Newman DK (2001) How bacteria respire minerals. Science 292:1312–1313

    Article  CAS  PubMed  Google Scholar 

  • Nishanth D, Biswas DR (2008) Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresour Technol 99:3342–3353

    Article  CAS  PubMed  Google Scholar 

  • Page WJ, Huyer M (1984) Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J Bacteriol 158:496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoenix VR, Adams DG, Konhauser KO (2000) Cyanobacterial viability during hydrothermal biomineralization. Chem Geol 169:329–338

    Article  CAS  Google Scholar 

  • Phoenix VR, Martinez RE, Konhauser KO, Ferris FG (2002) Characterization and implications of the cell surface reactivity of the cyanobacterium Calothrix KC97. Appl Environ Microbiol 68:4827–4834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sand W, Gehrke T (2005) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  PubMed  CAS  Google Scholar 

  • Sha L, Fuchun L, Cheng L (2006) Recent development in bio-weathering research [J]. Mineral Resour Geol 20:577–582. (in Chinese with English abstract)

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37(10):1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian J Microbiol 52(1):66–72

    Article  CAS  Google Scholar 

  • Silverman MP, Munoz EF (1970) Fungal attack on rock: Solubilization and altered infrared spectra. Science 169:985–987

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kapoor KK (1998) Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions [J]. Mycorrhiza 7:249–253

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks. Science 215:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Stamford NP, Lima RA, Lira MA Jr, Santos CRS (2008) Effectiveness of phosphate and potash rocks with Acidithiobacillus on sugarcane yield and their effects on soil chemical attributes world. J Microbiol Biotechnol 24:2061–2066

    Article  CAS  Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    Article  CAS  Google Scholar 

  • Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14:219–231

    Article  Google Scholar 

  • Stretch RC, Viles HA (2002) The nature and rate of weathering by lichens on lava flows on Lanzarote. Geomorphology 47:87–94

    Article  Google Scholar 

  • Stucki JW, Kostka JE (2006) Microbial reduction of iron in smectite. Comptes Rendus Geoscience 338:468–475

    Article  CAS  Google Scholar 

  • Stucki JW, Komadel P, Wilkinson HT (1987) Microbial reduction of structural iron(III) in smectites. Soil Sci Soc America J 51:1663–1665

    Article  CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3(3):350–355

    Google Scholar 

  • Sun D, Zhang Q (2006) Screening of silicate bacteria and bio-leaching silicon from silicate ores [J]. Bull Xi’An Univ Sci Technol 26:235–239. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Sverdrup H, Warfvinge P (1995) Estimating field weathering rates using laboratory kinetics. Reviews in mineralogy and geochemistry. In: White AF, Brantly SL (eds) Chemical weathering rates of silicates minerals, vol 31. Mineralogical Society of America, Washington, DC, pp 485–541

    Chapter  Google Scholar 

  • Tazaki K (2006) Clays, microorganisms, and biomineralization. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, developments in clay science, vol 1. Elsevier, Amsterdam, pp 477–497

    Chapter  Google Scholar 

  • Tempest DW, Neijssel OM (1992) Physiological and energetic aspects of bacterial metabolite over production. FEMS (Fed Eur Mirobiol Sci) Microbiol Lett 100:169–176

    Article  CAS  Google Scholar 

  • Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–399

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Organic chemistry of natural waters. Martinus Nijhoff/D.W, Junk, Dordrecht, p 497

    Book  Google Scholar 

  • Tjalsma H, van Dij JM (2005) Proteomics-based consensus prediction of protein retention in a bacterial membrane [J]. Proteomics 5:4472–4482

    Article  CAS  PubMed  Google Scholar 

  • Urzi C, Wollenzien U, Crizeo G, Krumbein WE (1995) Biodiversity of the rock inhabiting microbiota with special reference to black fungi and yeasts. In: Allsopp D, Cowell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. CAB International, Wallingford, pp 289–302

    Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27:241–251

    Article  CAS  PubMed  Google Scholar 

  • Vaughan DJ, Pattrick RAD, Wogelius RA (2002) Minerals, metals and molecules: ore and environmental mineralogy in the new millennium. Mineral Mag 66:653–676

    Article  CAS  Google Scholar 

  • Walker SG, Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls to surfaces in seawater. Mar Chem 27:201–217

    Article  Google Scholar 

  • Wallander H, Wickmann T (1999) Biotite and microcline as a K source in ectomycorrhizal and non-ectomycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • Warren LA, Ferris FG (1998) Continuum between sorption and precipitation of Fe(III) on microbial surfaces. Environ Sci Technol 32:2331–2337

    Article  CAS  Google Scholar 

  • Webley DM, Duff RB, Mitchell WA (1960) A plate method for studying the breakdown of synthetic and natural silicates by soil bacteria. Nature 188:766–767

    Article  CAS  PubMed  Google Scholar 

  • Welch SA, Ullman WJ (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochimica et Cosmochimica Acta 57:2725–2736

    Article  CAS  Google Scholar 

  • Welch SA, Vandevivere P (1995) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiol J 12:227–238

    Article  Google Scholar 

  • Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419

    Article  CAS  Google Scholar 

  • Welch SA, Taunton AE, Banfield JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geophys J R Astron Soc 19:343–367

    CAS  Google Scholar 

  • Wright JS (2002) Geomorphology and stone conservation: sandstone decay in stoke-on-Trent. Struct Surv 20:50–61

    Article  Google Scholar 

  • Wu J, Roth CB, Low PF (1988) Biological reduction of structural Fe in sodium-nontronite. Soil Sci Soc Am J 52:295–296

    Article  CAS  Google Scholar 

  • Yee N, Phoenix VR, Konhauser KO, Benning LG, Ferris FG (2003) The effect of cyanobacteria on Si precipitation kinetics at neutral pH: implications for bacterial silicification in geothermal hot springs. Chem Geol 99:83–90

    Article  CAS  Google Scholar 

  • Youssef GH, Seddik WM, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. J Am Sci 6:647–660

    Google Scholar 

  • Zapata F, Roy RN (2004) Use of phosphate rock for sustainable agriculture. FAO and IAEA, Rome

    Google Scholar 

  • Zhang CJ, Tu GQ, Cheng CJ (2004) Study on potassium dissolving ability of silicate bacteria. Shaoguan College J 26:1209–1216

    Google Scholar 

  • Zhu Y, Li Y, Lu A, Wan H, Yang X, Hangqiu Wang C, Cao W, Wang Q, Zhang X, Pan D, Pan X (2011a) Study of the interaction between Bentonite and a strain of Bacillus Mucilaginosus. Clay Clay Miner 59(5):538–545

    Article  CAS  Google Scholar 

  • Zhu Y, Li Y, Lu A, Wang H, Yang X, Wang C, Cao W, Wang Q, Zhang X, Pan D, Pan X (2011b) Study of the interaction between bentonite and a strain of Bacillus mucilaginosus. Clay Miner 59(5):538–545

    Article  CAS  Google Scholar 

  • Zoltai T (1960) Classification of silicates and other minerals with tetrahedral Structure. American Mineralogist 45:911–936

    Google Scholar 

Download references

Acknowledgment

I would like to thank Dr. Aydin Berenjian for giving the opportunity to compose this chapter and publish in Springer Nature.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brindavathy, R. (2022). Silicate Minerals Induced by Microorganisms. In: Berenjian, A., Seifan, M. (eds) Mineral Formation by Microorganisms. Microbiology Monographs, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-80807-5_5

Download citation

Publish with us

Policies and ethics