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Learning Objectives
After reading this chapter, you should understand:
	1.	 The concept of indicator reliability
	2.	 The different metrics for assessing internal consistency reliability
	3.	 How to interpret the average variance extracted (AVE) as a measure of conver-

gent validity
	4.	 How to evaluate discriminant validity using the HTMT criterion
	5.	 How to use SEMinR to assess reflectively measured constructs in the corporate 

reputation example

4.1	 �Introduction

This chapter describes how to evaluate the quality of reflective measurement mod-
els estimated by PLS-SEM, both in in terms of reliability and validity. Assessing 
reflective measurement models includes evaluating the reliability of measures, on 
both an indicator level (indicator reliability) and a construct level (internal consis-
tency reliability). Validity assessment focuses on each measure’s convergent validity 
using the average variance extracted (AVE). Moreover, the heterotrait–monotrait 
(HTMT) ratio of correlations allows to assess a reflectively measured construct’s 
discriminant validity in comparison with other construct measures in the same 
model. .  Figure 4.1 illustrates the reflective measurement model evaluation pro-
cess. In the following sections, we address each criterion for the evaluation of 
reflective measurement models and offer rules of thumb for their use. In the second 
part of this chapter, we explain how to apply the metrics to our corporate reputa-
tion example using SEMinR.

Assess the indicator reliability

Assess the internal
consistency reliability

Step 1

Step 2

Step 3

Assess the discriminant validityStep 4

Assess the convergent validity

.      . Fig. 4.1  Reflective measure-
ment model assessment 
procedure. (Source: authors’  
own figure)

	 Chapter 4 · Evaluation of Reflective Measurement Models



77 4

4.2	 �Indicator Reliability

The first step in reflective measurement model assessment involves examining how 
much of each indicator’s variance is explained by its construct, which is indicative 
of indicator reliability. To compute an indicator’s explained variance, we need to 
square the indicator loading, which is the bivariate correlation between indicator 
and construct. As such, the indicator reliability indicates the communality of  an 
indicator. Indicator loadings above 0.708 are recommended, since they indicate 
that the construct explains more than 50 percent of the indicator’s variance, thus 
providing acceptable indicator reliability.

Researchers frequently obtain weaker indicator loadings (< 0.708) for their 
measurement models in social science studies, especially when newly developed 
scales are used (Hulland, 1999). Rather than automatically eliminating indicators 
when their loading is below 0.70, researchers should carefully examine the effects 
of indicator removal on other reliability and validity measures. Generally, indica-
tors with loadings between 0.40 and 0.708 should be considered for removal only 
when deleting the indicator leads to an increase in the internal consistency reliabil-
ity or convergent validity (discussed in the next sections) above the suggested 
threshold value. Another consideration in the decision of whether to delete an indi-
cator is the extent to which its removal affects content validity, which refers to the 
extent to which a measure represents all facets of a given construct. As a conse-
quence, indicators with weaker loadings are sometimes retained. Indicators with 
very low loadings (below 0.40) should, however, always be eliminated from the 
measurement model (Hair, Hult, Ringle, & Sarstedt, 2022).

4.3	 �Internal Consistency Reliability

The second step in reflective measurement model assessment involves examining 
internal consistency reliability. Internal consistency reliability is the extent to 
which indicators measuring the same construct are associated with each other. One 
of the primary measures used in PLS-SEM is Jöreskog’s (1971) composite reliabil-
ity rhoc. Higher values indicate higher levels of reliability. For example, reliability 
values between 0.60 and 0.70 are considered “acceptable in exploratory research,” 
whereas values between 0.70 and 0.90 range from “satisfactory to good.” Values 
above 0.90 (and definitely above 0.95) are problematic, since they indicate that the 
indicators are redundant, thereby reducing construct validity (Diamantopoulos, 
Sarstedt, Fuchs, Wilczynski, & Kaiser, 2012). Reliability values of 0.95 and above 
also suggest the possibility of undesirable response patterns (e.g., straight-lining), 
thereby triggering inflated correlations among the error terms of the indicators.

Cronbach’s alpha is another measure of internal consistency reliability, which 
assumes the same thresholds as the composite reliability (rhoc). A major limitation 
of Cronbach’s alpha, however, is that it assumes all indicator loadings are the same 
in the population (also referred to as tau-equivalence). The violation of this 
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assumption manifests itself  in lower reliability values than those produced by rhoc. 
Nevertheless, researchers have shown that even in the absence of tau-equivalence, 
Cronbach’s alpha is an acceptable lower-bound approximation of the true internal 
consistency reliability (Trizano-Hermosilla & Alvarado, 2016).

While Cronbach’s alpha is rather conservative, the composite reliability rhoc 
may be too liberal, and the construct’s true reliability is typically viewed as within 
these two extreme values. As an alternative and building on Dijkstra (2010), subse-
quent research has proposed the exact (or consistent) reliability coefficient rhoA 
(Dijkstra, 2014; Dijkstra & Henseler, 2015). The reliability coefficient rhoA usually 
lies between the conservative Cronbach’s alpha and the liberal composite reliability 
and is therefore considered and acceptable compromise between these two 
measures.

4.4	 �Convergent Validity

The third step is to assess (the) convergent validity of  each construct. Convergent 
validity is the extent to which the construct converges in order to explain the vari-
ance of its indicators. The metric used for evaluating a construct’s convergent 
validity is the average variance extracted (AVE) for all indicators on each con-
struct. The AVE is defined as the grand mean value of the squared loadings of the 
indicators associated with the construct (i.e., the sum of the squared loadings 
divided by the number of indicators). Therefore, the AVE is equivalent to the com-
munality of  a construct. The minimum acceptable AVE is 0.50 – an AVE of 0.50 or 
higher indicates the construct explains 50 percent or more of the indicators’ vari-
ance that make up the construct (Hair et al., 2022).

4.5	 �Discriminant Validity

The fourth step is to assess discriminant validity. This metric measures the extent 
to which a construct is empirically distinct from other constructs in the structural 
model. Fornell and Larcker (1981) proposed the traditional metric and suggested 
that each construct’s AVE (squared variance within) should be compared to the 
squared inter-construct correlation (as a measure of shared variance between con-
structs) of that same construct and all other reflectively measured constructs in the 
structural model – the shared variance between all model constructs should not be 
larger than their AVEs. Recent research indicates, however, that this metric is not 
suitable for discriminant validity assessment. For example, Henseler, Ringle, and 
Sarstedt (2015) show that the Fornell–Larcker criterion (i.e., FL in SEMinR) does 
not perform well, particularly when the indicator loadings on a construct differ 
only slightly (e.g., all the indicator loadings are between 0.65 and 0.85). Hence, in 
empirical applications, the Fornell–Larcker criterion often fails to reliably identify 
discriminant validity problems (Radomir & Moisescu, 2019) and should therefore 
be avoided. Nonetheless, we include this criterion in our discussion, as many 
researchers are familiar with it.

	 Chapter 4 · Evaluation of Reflective Measurement Models
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.      . Fig. 4.2  Discriminant 
validity assessment using the 
HTMT. (Source: authors’ own 
figure)

As a better alternative, we recommend the heterotrait–monotrait ratio (HTMT) 
of  correlations (Henseler et al., 2015) to assess discriminant validity. The HTMT is 
defined as the mean value of the indicator correlations across constructs (i.e., the 
heterotrait–heteromethod correlations) relative to the (geometric) mean of the 
average correlations for the indicators measuring the same construct (i.e., the 
monotrait–heteromethod correlations). .  Figure 4.2 illustrates this concept. The 
arrows connecting indicators of different constructs represent the heterotrait–het-
eromethod correlations, which should be as small as possible. On the contrary, the 
monotrait–heteromethod correlations – represented by the dashed arrows – repre-
sent the correlations among indicators measuring the same concept, which should 
be as high as possible.

Discriminant validity problems are present when HTMT values are high. 
Henseler et al. (2015) propose a threshold value of 0.90 for structural models with 
constructs that are conceptually very similar, such as cognitive satisfaction, affec-
tive satisfaction, and loyalty. In such a setting, an HTMT value above 0.90 would 
suggest that discriminant validity is not present. But when constructs are conceptu-
ally more distinct, a lower, more conservative, threshold value is suggested, such as 
0.85 (Henseler et al., 2015).

In addition, bootstrap confidence intervals can be used to test if  the HTMT is 
significantly different from 1.0 (Henseler et al., 2015) or a lower threshold value, 
such as 0.9 or 0.85, which should be defined based on the study context (Franke & 
Sarstedt, 2019). To do so, we need to assess whether the upper bound of the 95% 
confidence interval (assuming a significance level of 5%) is lower than 0.90 or 0.85. 
Hence, we have to consider a 95% one-sided bootstrap confidence interval, whose 
upper boundary is identical to the one produced when computing a 90% two-sided 
bootstrap confidence interval. To obtain the bootstrap confidence intervals, in line 
with Aguirre-Urreta and Rönkkö (2018), researchers should generally use the 
percentile method. In addition, researchers should always use 10,000 bootstrap 
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.      . Table 4.1  Summary of  the criteria and rules of  thumb for their use

Criterion Metrics and thresholds

Reflective 
indicator 
loadings

≥ 0.708

Internal 
consistency 
reliability

Cronbach’s alpha is the lower bound, and the composite reliability rhoc is 
the upper bound for internal consistency reliability. The reliability 
coefficient rhoA usually lies between these bounds and may serve as a good 
representation of a construct’s internal consistency reliability
Minimum 0.70 (or 0.60 in exploratory research)
Maximum of 0.95 to avoid indicator redundancy, which would compro-
mise content validity
Recommended 0.80 to 0.90

Convergent 
validity

AVE ≥ 0.50

Discriminant 
validity

For conceptually similar constructs, HTMT <0.90
For conceptually different constructs, HTMT <0.85
Test if  the HTMT is significantly lower than the threshold value

Source: authors’ own table

samples (Streukens & Leroi-Werelds, 2016). See 7  Chap. 5 for details on boot-
strapping and confidence intervals.

.  Table 4.1 summarizes all the metrics that need to be applied when assessing 
reflective measurement models.

4.6	 �Case Study Illustration: Reflective Measurement Models

We continue analyzing the simple corporate reputation PLS path model introduced 
in the previous chapter. In 7  Chap. 3, we explained and demonstrated how to load 
the data, create the structural model and measurement model objects, and estimate 
the PLS path model using the SEMinR syntax. In the following, we discuss how to 
evaluate reflective measurement models, using the simple corporate reputation 
model (7  Fig. 3.2 in 7  Chap. 3) as an example.

Recall that to specify and estimate the model, we must first load the data and 
specify the measurement model and structural model. The model is then estimated 
by using the estimate_pls() command, and the output is assigned to an object. 
In our case study, we name this object corp_rep_pls_model. Once the PLS path 
model has been estimated, we can access the reports and analysis results by run-
ning the summary() function. To be able to view different parts of the analysis in 
greater detail, we suggest assigning the output to a newly created object that we call 
summary_corp_rep in our example (.  Fig. 4.3).

	 Chapter 4 · Evaluation of Reflective Measurement Models
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.      . Fig. 4.3  Recap on loading data, specifying and summarizing the model, and inspecting iterations. 
(Source: authors’ screenshot from RStudio)

# Load the SEMinR library
library(seminr)

# Load the data
corp_rep_data <- corp_rep_data

# Create measurement model
corp_rep_mm <- constructs(
  composite(“COMP”, multi_items(“comp_”, 1:3)),
  composite(“LIKE”, multi_items(“like_”, 1:3)),
  composite(“CUSA”, single_item(“cusa”)),
  composite(“CUSL”, multi_items(“cusl_”, 1:3)))

# Create structural model
corp_rep_sm <- relationships(
  paths(from = c(“COMP”, “LIKE”), to = c(“CUSA”, “CUSL”)),
  paths(from = c(“CUSA”), to = c(“CUSL”)))

# Estimating the model
corp_rep_pls_model <- estimate_pls(

4.6 · Case Study Illustration: Reflective Measurement Models
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  data = corp_rep_data,
  measurement_model = corp_rep_mm,
  structural_model = corp_rep_sm,
  missing = mean_replacement,
  missing_value = “-99”)

# Summarize the model results
summary_corp_rep <- summary(corp_rep_pls_model)

Note that the results are not automatically shown but can be extracted as needed 
from the summary_corp_rep object. For a reminder on what is returned from the 
summary() function applied to a SEMinR model and stored in the summary_
corp_rep object, refer to 7  Table 3.5. Before analyzing the results, we advise to 
first check if  the algorithm converged (i.e., the stop criterion of the algorithm was 
reached and not the maximum number of iterations – see 7  Table 3.4 for setting 
these arguments in the estimate_pls() function). To do so, it is necessary to 
inspect the iterations element within the summary_corp_rep object by using 
the $ operator.

# Iterations to converge
summary_corp_rep$iterations

The upper part of .  Fig. 4.3 shows the code for loading the model, estimating the 
object corp_rep_pls_model, and summarizing the model to the summary_
corp_rep object. The lower part of the figure shows the number of iterations 
that the PLS-SEM algorithm needed to converge. This number should be lower 
than the maximum number of iterations (e.g., 300). The bottom of .  Fig. 4.3 indi-
cates that the algorithm converged after iteration 4.

If the PLS-SEM algorithm does not converge in fewer than 300 iterations, which 
is the default setting in most PLS-SEM software, the algorithm could not find a 
stable solution. This kind of situation almost never occurs. But if  it does occur, 
there are two possible causes: (1) The selected stop criterion is set at a very small 
level (e.g., 1.0E-10 as opposed to the standard of 1.0E-7), so that small changes in 
the coefficients of the measurement models prevent the PLS-SEM algorithm from 
stopping, or (2) there are problems with the data and it needs to be checked care-
fully. For example, data problems may occur if  the sample size is too small or if  the 
responses to an indicator include many identical values (i.e., the same data points, 
which results in insufficient variability, error message is singular matrix).

In the following, we inspect the summary_corp_rep object to obtain statistics 
relevant for assessing the construct measures’ internal consistency reliability, con-
vergent validity, and discriminant validity. The simple corporate reputation model 
contains three constructs with reflective measurement models (i.e., COMP, CUSL, 
and LIKE) as well as a single-item construct (CUSA). For the reflective measure-

	 Chapter 4 · Evaluation of Reflective Measurement Models
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.      . Fig. 4.4  Indicator loadings and indicator reliability. (Source: authors’ screenshot from RStudio)

ment model, we need to estimate the relationships between the reflectively mea-
sured constructs and their indicators (i.e., loadings). .  Figure  4.4 displays the 
results for the indicator loadings, which can be found by using the $ operator when 
inspecting the summary_corp_rep object. The calculation of indicator reliability 
(.  Fig. 4.4) can be automated by squaring the values in the indicator loading table 
by using the ^ operator to square all values (i.e., ^2):

# Inspect the indicator loadings
summary_corp_rep$loadings
# Inspect the indicator reliability
summary_corp_rep$loadings^2

All indicator loadings of the reflectively measured constructs COMP, CUSL, and 
LIKE are well above the threshold value of 0.708 (Hair, Risher, Sarstedt, & Ringle, 
2019), which suggests sufficient levels of indicator reliability. The indicator comp_2 
(loading, 0.798) has the smallest indicator-explained variance with a value of 0.638 
(= 0.7982), while the indicator cusl_2 (loading, 0.917) has the highest explained 
variance, with a value of 0.841 (= 0.9172) – both values are well above the threshold 
value of 0.5.

4.6 · Case Study Illustration: Reflective Measurement Models
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.      . Fig. 4.5  Construct reliability and convergent validity table. (Source: authors’ screenshot from 
RStudio)

To evaluate the composite reliability of the construct measures, once again 
inspect the summary_corp_rep object by using $reliability:

# Inspect the composite reliability
summary_corp_rep$reliability

The internal consistency reliability values are displayed in a matrix format 
(.  Fig.  4.5). With rhoA values of 0.832 (COMP), 0.839 (CUSL), and 0.836 
(LIKE), all three reflectively measured constructs have high levels of internal con-
sistency reliability. Similarly, the results for Cronbach’s alpha (0.776 for COMP, 
0.831 for CUSL, and 0.831 for LIKE) and the composite reliability rhoc (0.865 for 
COMP, 0.899 for CUSL, and 0.899 for LIKE) are above the 0.70 threshold (Hair 
et al., 2019), indicating that all construct measures are reliable. Note that the inter-
nal consistency reliability values of CUSA (1.000) must not be interpreted as an 
indication of perfect reliability – since CUSA is measured with a single item and its 
internal consistency reliability is by definition 1.

The results can also be visualized using a bar chart, requested by the plot() 
function on the summary_corp_rep$reliability object. This plot visualizes 
the reliability in terms of Cronbach’s alpha, rhoA, and rhoC for all constructs. Note 
that the plots will be outputted to the plots panel window in RStudio (.  Fig. 4.6):

# Plot the reliabilities of constructs
plot(summary_corp_rep$reliability)

The horizontal dashed blue line indicates the common minimum threshold level for 
the three reliability measures (i.e., 0.70). As indicated in .  Fig. 4.6, all Cronbach’s 
alpha, rhoA, and rhoC values exceed the threshold.

	 Chapter 4 · Evaluation of Reflective Measurement Models
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.      . Fig. 4.6  Reliability charts. (Source: authors’ screenshot from R)

Convergent validity assessment is based on the average variance extracted 
(AVE) values (Hair et al., 2019), which can also be accessed by summary_corp_
rep$reliability. .  Figure 4.5 shows the AVE values along with the internal 
consistency reliability values. In this example, the AVE values of COMP (0.681), 
CUSL (0.748), and LIKE (0.747) are well above the required minimum level of 
0.50 (Hair et al., 2019). Thus, the measures of the three reflectively measured con-
structs have high levels of convergent validity.

Finally, SEMinR offers several approaches to assess whether the construct 
measures empirically demonstrate discriminant validity. According to the Fornell–
Larcker criterion (Fornell & Larcker, 1981), the square root of the AVE of each 
construct should be higher than the construct’s highest correlation with any other 
construct in the model (this notion is identical to comparing the AVE with the 
squared correlations between the constructs). These results can be outputted by 
inspecting the summary_corp_rep object and validity element for the fl_cri-
teria:

# Table of the FL criteria
summary_corp_rep$validity$fl_criteria

.  Figure 4.7 shows the results of the Fornell–Larcker criterion assessment with 
the square root of the reflectively measured constructs’ AVE on the diagonal and 

4.6 · Case Study Illustration: Reflective Measurement Models
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.      . Fig. 4.7  Fornell–Larcker criterion table. (Source: authors’ screenshot from RStudio)

.      . Fig. 4.8  HTMT result table. (Source: authors’ screenshot from RStudio)

the correlations between the constructs in the off-diagonal position. For example, 
the reflectively measured construct COMP has a value of 0.825 for the square root 
of its AVE, which needs to be compared with all correlation values in the column 
of COMP (i.e., 0.645, 0.436, and 0.450). Note that for CUSA, the comparison 
makes no sense, as the AVE of a single-item construct is 1.000 by design. Overall, 
the square roots of the AVEs for the reflectively measured constructs COMP 
(0.825), CUSL (0.865), and LIKE (0.864) are all higher than the correlations of 
these constructs with other latent variables in the PLS path model.

Note that while frequently used in the past, the Fornell–Larcker criterion does 
not allow for reliably detecting discriminant validity issues. Specifically, in light of 
the Fornell–Larcker criterion’s poor performance in detecting discriminant validity 
problems (Franke & Sarstedt, 2019; Henseler et al., 2015), any violation indicated 
by the criterion should be considered a severe issue. The primary criterion for dis-
criminant validity assessment is the HTMT criterion, which can be accessed by 
inspecting the summary_corp_rep() object and validity element for the $htmt.

# HTMT criterion
summary_corp_rep$validity$htmt

	 Chapter 4 · Evaluation of Reflective Measurement Models
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.      . Fig. 4.9  Bootstrapping processing. (Source: authors’ screenshot from RStudio)

.  Figure 4.8 shows the HTMT values for all pairs of  constructs in a matrix for-
mat. As can be seen, all HTMT values are clearly lower than the more conservative 
threshold value of 0.85 (Henseler et al., 2015), even for CUSA and CUSL, which, 
from a conceptual viewpoint, are very similar. Recall that the threshold value for 
conceptually similar constructs, such as CUSA and CUSL or COMP and LIKE, 
is 0.90.

In addition to examining the HTMT values, researchers should test whether 
the HTMT values are significantly different from 1 or a lower threshold, such as 
0.9 or even 0.85. This analysis requires computing bootstrap confidence inter-
vals obtained by running the bootstrapping procedure. To do so, use the boot-
strap_model() function and assign the output to an object, such as 
boot_corp_rep. Then, run the summary() function on the boot_corp_rep 
object and assign it to another object, such as sum_boot_corp_rep. In doing 
so, we need to set the significance level from 0.05 (default setting) to 0.10 using 
the alpha argument. In this way, we obtain 90% two-sided bootstrap confidence 
intervals for the HTMT values, which is equivalent to running a one-tailed test 
at 5%.

# Bootstrap the model
boot_corp_rep <- bootstrap_model(seminr_model = corp_rep_pls_
model, nboot = 1000)
sum_boot_corp_rep <- summary(boot_corp_rep, alpha = 0.10)

7  Chapter 5 includes a more detailed introduction to the bootstrapping proce-
dure and the argument settings. Bootstrapping should take a few seconds, since it 
is a processing-intensive operation. As the bootstrap computation is being per-
formed, a red STOP indicator should show in the top-right corner of  the console 
(.  Fig.  4.9). This indicator will automatically disappear when computation is 
complete, and the console will display “SEMinR Model successfully boot-
strapped.”

4.6 · Case Study Illustration: Reflective Measurement Models
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.      . Fig. 4.10  Bootstrapped results and confidence intervals for HTMT. (Source: authors’ screenshot 
from RStudio)

After running bootstrapping, access the bootstrapping confidence intervals of 
the HTMT by inspecting the $bootstrapped_HTMT of  the sum_boot_corp_rep 
variable:

# Extract the bootstrapped HTMT
sum_boot_corp_rep$bootstrapped_HTMT

The output in .  Fig. 4.10 displays the original ratio estimates (column: Original 
Est.), bootstrapped mean ratio estimates (column: Bootstrap Mean), bootstrap 
standard deviation (column: Bootstrap SD), bootstrap t- statistic (column: T Stat.), 
and 90% confidence interval (columns: 5% CI and 95% CI, respectively) as pro-
duced by the percentile method. Note that the results in .  Fig. 4.10 might differ 
slightly from your results due to the random nature of the bootstrapping proce-
dure. The differences in the overall bootstrapping results should be marginal if  you 
use a sufficiently large number of bootstrap subsamples (e.g., 10,000). The columns 
labeled 5% CI and 95% CI show the lower and upper boundaries of the 90% con-
fidence interval (percentile method). As can be seen, the confidence intervals’ upper 
boundaries, in our example, are always lower than the threshold value of 0.90. For 
example, the lower and upper boundaries of the confidence interval of HTMT for 
the relationship between COMP and CUSA are 0.366 and 0.554, respectively 
(again, your values might look slightly different because bootstrapping is a random 
process). To summarize, the bootstrap confidence interval results of the HTMT 
criterion clearly demonstrate the discriminant validity of the constructs and should 
be favored above the inferior Fornell–Larcker criterion.
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Summary
The goal of reflective measurement model assessment is to ensure the reliability and 
validity of the construct measures and therefore provides support for the suitability 
of their inclusion in the path model. The key criteria include indicator reliability, 
internal consistency reliability (Cronbach’s alpha, reliability rhoA, and composite 
reliability rhoC), convergent validity, and discriminant validity. Convergent validity 
implies that a construct includes more than 50% of the indicator’s variance and is 
being evaluated using the AVE statistic. Another fundamental element of validity 
assessment concerns establishing discriminant validity, which ensures that each con-
struct is empirically unique and captures a phenomenon not represented by other 
constructs in a statistical model. While the Fornell–Larcker criterion has long been 
the primary criterion for discriminant validity assessment, more recent research 
highlights that the HTMT criterion should be the preferred choice. Researchers 
using the HTMT should use bootstrapping to derive confidence intervals that allow 
assessing whether the values significantly differ from a specific threshold. Reflective 
measurement models are appropriate for further PLS-SEM analyses if  they meet all 

these requirements.

?? Exercise
In this exercise, we once again call upon the influencer model and dataset described 
in the exercise section of 7  Chap. 3. The data is called influencer_data and 
consists of 222 observations of 28 variables. The influencer model is illustrated in 
7  Fig. 3.10, and the indicators are described in 7  Tables 3.9 and 3.10.
	1.	 Load the influencer data, reproduce the influencer model in SEMinR syntax, 

and estimate the model.
	2.	 Focus your attention on the three reflectively measured constructs product liking 

(PL), perceived quality (PQ), and purchase intention (PI). Evaluate the con-
struct measures’ reliability and validity as follows:
	(a)	 Do all three constructs meet the criteria for indicator reliability?
	(b)	 Do all three constructs meet the criteria for internal consistency reliability?
	(c)	 Do these three constructs display sufficient convergent validity?
	(d)	 Do these three constructs display sufficient discriminant validity?
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