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Learning Objectives
After reading this chapter, you should:
 1. Understand the principles of structural equation modeling (SEM)
 2. Describe the basic elements of a structural equation model
 3. Comprehend the basic concepts of partial least squares structural equation 

modeling (PLS-SEM)
 4. Explain the differences between covariance-based structural equation modeling 

(CB-SEM) and PLS-SEM and when to use each of the approaches

1.1  What Is Structural Equation Modeling?

First-generation multivariate data analysis techniques, such as multiple regression, 
logistic regression, and analysis of variance, belong to the core set of statistical 
methods employed by researchers to empirically test hypothesized relationships 
between variables of interest. Numerous researchers in various scientific disciplines 
have applied these methods to generate findings that have significantly shaped the 
way we see the world today. These techniques have three important limitations in 
common, namely (1) the postulation of a simple model structure, (2) requiring that 
all variables can be considered observable, and (3) the assumption that all variables 
are measured without error (Haenlein & Kaplan, 2004).

With regard to the first limitation, multiple regression analysis and its exten-
sions postulate a simple model structure involving one layer of dependent and 
independent variables. Causal chains, such as “A leads to B leads to C” or more 
complex nomological networks involving a large number of intervening variables, 
can only be estimated piecewise with these methods rather than simultaneously, 
which can have severe consequences for the quality of the results (Sarstedt, Hair, 
Nitzl, Ringle, & Howard, 2020).

With regard to the second limitation, regression-type methods are restricted to 
processing observable variables, such as age or sales (in units or dollars). Theoretical 
concepts, which are “abstract, unobservable properties or attributes of a social unit 
of entity” (Bagozzi & Philipps, 1982, p. 465), can only be considered after prior 
stand-alone validation by means of, for example, a confirmatory factor analysis 
(CFA). The ex post inclusion of measures of theoretical concepts, however, comes 
with various shortcomings.

With regard to the third limitation and related to the previous point, one has to 
bear in mind that each observation of the real world is accompanied by a certain 
degree of measurement error, which can be systematic or random. First-generation 
techniques are, strictly speaking, only applicable when measured variables contain 
neither systematic nor random error. This situation is, however, rarely encountered 
in reality, particularly when the aim is to estimate relationships among measures of 
theoretical concepts. Since the social sciences, and many other fields of scientific 
inquiry, routinely deal with theoretical concepts, such as perceptions, attitudes, and 
intentions, these limitations of first-generation techniques are fundamental.

1.1 · What Is Structural Equation Modeling?
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To overcome these limitations, researchers have increasingly been turning to 

second-generation techniques. These methods, referred to as structural equation 
modeling (SEM), enable researchers to simultaneously model and estimate com-
plex relationships among multiple dependent and independent variables. The con-
cepts under consideration are typically unobservable and measured indirectly by 
multiple indicators. In estimating the relationships, SEM accounts for measure-
ment error in observed variables. As a result, the method obtains a more precise 
measurement of the theoretical concepts of interest (Cole & Preacher, 2014). We 
will discuss these aspects in the following sections in greater detail.

Two popular methods dominate SEM in practice: covariance-based SEM (CB- 
SEM) and partial least squares SEM (PLS-SEM, also called PLS path modeling). 
CB-SEM is primarily used to confirm (or reject) theories and their underlying 
hypotheses. This approach confirms/rejects hypotheses by determining how closely 
a proposed theoretical model can reproduce the covariance matrix for an observed 
sample dataset. In contrast, PLS has been introduced as a “causal–predictive” 
approach to SEM (Jöreskog & Wold, 1982, p. 270), which focuses on explaining the 
variance in the model’s dependent variables (Chin et al., 2020).

PLS-SEM is evolving rapidly as a statistical modeling technique. Over the last 
few decades, there have been numerous introductory articles on this methodology 
(e.g., Chin, 1998; Haenlein & Kaplan, 2004; Hair et al., 2020; Hair, Howard, & 
Nitzl, 2020; Hair, Risher, Sarstedt, & Ringle, 2019; Nitzl & Chin, 2017; Rigdon, 
2013; Roldán & Sánchez-Franco, 2012; Tenenhaus, Esposito Vinzi, Chatelin, & 
Lauro, 2005; Wold, 1985) as well as review articles examining how researchers 
across different disciplines have used the method (. Table  1.1). In light of the 
increasing maturation of the field, researchers have also started exploring the 
knowledge infrastructure of methodological research on PLS-SEM by analyzing 
the structures of authors, countries, and co-citation networks (Hwang, Sarstedt, 
Cheah, & Ringle, 2020; Khan et al., 2019).

The remainder of this chapter first provides a brief  introduction of measure-
ment and structural theory as a basis for presenting the PLS-SEM method. In 
describing the PLS-SEM method’s characteristics, we also discuss distinguishing 
features vis-à-vis CB-SEM.  Finally, we outline considerations when using PLS- 
SEM and highlight situations that favor its use compared to CB-SEM.

1.2  Principles of Structural Equation Modeling

1.2.1  Path Models with Latent Variables

Path models are diagrams used to visually display the hypotheses and variable rela-
tionships that are examined when SEM is applied (Hair, Page, & Brunsveld, 2020; 
Hair, Ringle, & Sarstedt, 2011). An example of a path model is shown in . Fig. 1.1.

Constructs (i.e., variables that are not directly measurable), also referred to as 
latent variables, are represented in path models as circles or ovals (Y1 to Y4). The 
indicators, also called items or manifest variables, are the directly measured vari-
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       . Table 1.1 Review articles on the use of  PLS-SEM

Disciplines References

Accounting Lee, Petter, Fayard, and Robinson (2011)
Nitzl (2016)

Construction management Zeng, Liu, Gong, Hertogh, and König (2021)

Entrepreneurship Manley, Hair, Williams, and McDowell (2020)

Family business Sarstedt, Ringle, Smith, Reams, and Hair (2014)

Higher education Ghasemy, Teeroovengadum, Becker, & Ringle, (2020)

Hospitality and tourism Ali, Rasoolimanesh, Sarstedt, Ringle, and Ryu (2018)
do Valle, P. O.,, and Assaker, G. (2016)
Usakli and Kucukergin (2018)

Human resource management Ringle et al. (2020)

International business research Richter, Sinkovics, Ringle, and Schlägel (2016)

Knowledge management Cepeda Carrión, Cegarra-Navarro, and Cillo (2019)

Management Hair, Sarstedt, Pieper, and Ringle (2012)

Marketing Hair, Sarstedt, Ringle, and Mena (2012)

Management information systems Hair, Hollingsworth, Randolph, and Chong (2017)
Ringle et al. (2012)

Operations management Bayonne, Marin-Garcia, and Alfalla-Luque (2020)
Peng and Lai (2012)

Psychology Willaby, Costa, Burns, MacCann, and Roberts (2015)

Software engineering Russo and Stol (2021)

Supply chain management Kaufmann and Gaeckler (2015)

Source: Hair, Hult, Ringle, & Sarstedt (2022), Chap. 1; used with permission by Sage

ables that contain the raw data. They are represented in path models as rectangles 
(x1 to x10). Relationships between constructs, as well as between constructs and 
their assigned indicators, are depicted as arrows. In PLS-SEM, the arrows are 
always single headed, thus representing directional relationships. Single-headed 
arrows are considered predictive relationships and, with strong theoretical support, 
can be interpreted as causal relationships.

A PLS path model consists of two elements. First, there is a structural model 
(also called the inner model in the context of PLS-SEM) that links together the 
constructs (circles or ovals). The structural model also displays the relationships 
(paths) between the constructs. Second, there are the measurement models (also 
referred to as the outer models in PLS-SEM) of the constructs that display the 
relationships between the constructs and the indicator variables (rectangles). In 
. Fig.  1.1, there are two types of measurement models: one for the exogenous 
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       . Fig. 1.1 A simple path model. (Source: Hair et al., 2022, Chap. 1; used with permission by Sage)

latent variables (i.e., those constructs that only explain other constructs in the 
model) and one for the endogenous latent variables (i.e., those constructs that are 
being explained in the model). Rather than referring to measurement models of 
exogenous and endogenous latent variables, researchers often refer to the measure-
ment model of one specific latent variable. For example, x1 to x3 are the indicators 
used in the measurement model of Y1, while Y4 only includes the x10 indicator in 
the measurement model.

The error terms (e.g., e7 or e8; . Fig. 1.1) are connected to the (endogenous) 
constructs and (reflectively) measured variables by single-headed arrows. Error 
terms represent the unexplained variance when path models are estimated (i.e., the 
difference between the model’s in-sample prediction of a value and an observed 
value of a manifest or latent variable). Error terms e7 to e9 in . Fig. 1.1 are con-
nected to those indicators whose relationships point from the construct (Y3) to the 
indicators (i.e., reflectively measured indicators).

In contrast, the formatively measured indicators x1 to x6, where the relationship 
goes from the indicator to the construct (Y1 and Y2), do not have error terms 
(Sarstedt, Hair, Ringle, Thiele, & Gudergan, 2016). Finally, for the single-item con-
struct Y4, the direction of the relationships between the construct and the indicator 
is not relevant, as construct and item are equivalent. For the same reason, there is 
no error term connected to x10. The structural model also contains error terms. In 
. Fig. 1.1, z3 and z4 are associated with the endogenous latent variables Y3 and Y4 
(note that error terms on constructs and measured variables are labeled differ-
ently). In contrast, the exogenous latent variables (Y1 and Y2) that only explain 
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other latent variables in the structural model do not have an error term, regardless 
of whether they are specified reflectively or formatively.

1.2.2  Testing Theoretical Relationships

Path models are developed based on theory and are often used to test theoretical 
relationships. Theory is a set of systematically related hypotheses developed fol-
lowing the scientific method that can be used to explain and predict outcomes. 
Thus, hypotheses are individual conjectures, whereas theories are multiple hypoth-
eses that are logically linked together and can be tested empirically. Two types of 
theory are required to develop path models: measurement theory and structural 
theory. Measurement theory specifies which indicators and how these are used to 
measure a certain theoretical concept. In contrast, structural theory specifies how 
the constructs are related to one another in the structural model.

Testing theory using PLS-SEM follows a two-step process (Hair, Black, Babin, 
& Anderson, 2019). We first test the measurement theory to confirm the reliability 
and validity of the measurement models. After the measurement models are con-
firmed, we move on to testing the structural theory. The logic is that we must first 
confirm the measurement theory before testing the structural theory, because 
structural theory cannot be confirmed if  the measures are unreliable or invalid.

1.2.3  Measurement Theory

Measurement theory specifies how the latent variables (constructs) are measured. 
Generally, there are two different ways to measure unobservable variables. One 
approach is referred to as reflective measurement, and the other is formative mea-
surement. Constructs Y1 and Y2 in . Fig.1.1 are modeled based on a formative 
measurement model. Note that the directional arrows are pointing from the indica-
tor variables (x1 to x3 for Y1 and x4 to x6 for Y2) to the construct, indicating a pre-
dictive (causal) relationship in that direction.

In contrast, Y3 in . Fig.  1.1 is modeled based on a reflective measurement 
model. With reflective indicators, the direction of the arrows is from the construct 
to the indicator variables, indicating the assumption that the construct “causes” the 
measurement (more precisely, the covariation) of the indicator variables. As indi-
cated in . Fig. 1.1, reflective measures have an error term associated with each 
indicator, which is not the case with formative measures. The latter are assumed to 
be error- free (Diamantopoulos, 2006). Finally, note that Y4 is measured using a 
single item rather than multi-item measures. Therefore, the relationship between 
construct and indicator is undirected.

Deciding whether to measure the constructs reflectively versus formatively and 
whether to use multiple items or a single-item measure is fundamental when devel-
oping path models. Hair, Hult, Ringle, and Sarstedt (2022; Chap. 2) explain these 
approaches to modeling constructs in more detail.

1.2 · Principles of Structural Equation Modeling
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1.2.4  Structural Theory

Structural theory shows how the latent variables are related to one another (i.e., it 
shows the constructs and their path relationships in the structural model). The 
location and sequence of the constructs are either based on theory or the research-
er’s experience and accumulated knowledge or both. When path models are devel-
oped, the sequence is from left to right. The variables on the left side of the path 
model are independent variables, and any variable on the right side is a dependent 
variable. Moreover, variables on the left are shown as sequentially preceding and 
predicting the variables on the right. However, when variables are in the middle of 
the path model (between the variables that serve only as independent or dependent 
variables – Y3; . Fig. 1.1), they serve as both independent and dependent variables 
in the structural model.

When latent variables only serve as independent variables, they are called exog-
enous latent variables (Y1 and Y2). When latent variables only serve as dependent 
variables (Y4) or as both independent and dependent variables (Y3), they are called 
endogenous latent variables (. Fig. 1.1). Any latent variable that has only single-
headed arrows going out of it is an exogenous latent variable. In contrast, endog-
enous latent variables can have either single-headed arrows going both into and out 
of them (Y3) or only going into them (Y4). Note that the exogenous latent variables 
Y1 and Y2 do not have error terms, since these constructs are the entities (indepen-
dent variables) that are explaining the dependent variables in the path model.

1.3  PLS-SEM and CB-SEM

There are two main approaches to estimating the relationships in a structural equa-
tion model (Hair et al., 2011; Hair, Black, et al., 2019). One is CB-SEM, and the 
other is PLS-SEM, the latter being the focus of this book. Each is appropriate for 
a different research context, and researchers need to understand the differences in 
order to apply the correct method (Marcoulides & Chin, 2013; Rigdon, Sarstedt, 
& Ringle, 2017). Finally, some researchers have argued for using regressions based 
on sum scores, instead of some type of indicator weighting as is done by PLS- 
SEM. The sum scores approach offers practically no value compared to the PLS- 
SEM weighted approach and in fact can produce erroneous results (Hair et al., 
2017). For this reason, in the following sections, we only briefly discuss sum scores 
and instead focus on the PLS-SEM and CB-SEM methods.

A crucial conceptual difference between PLS-SEM and CB-SEM relates to the 
way each method treats the latent variables included in the model. CB-SEM repre-
sents a common factor-based SEM method that considers the constructs as com-
mon factors that explain the covariation between its associated indicators. This 
approach is consistent with the measurement philosophy underlying reflective 
measurement, in which the indicators and their covariations are regarded as mani-
festations of the underlying construct. In principle, CB-SEM can also accommo-
date formative measurement models, even though the method follows a common 

 Chapter 1 · An Introduction to Structural Equation Modeling
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factor model estimation approach. To estimate this model type, however, research-
ers must follow rules that require specific constraints on the model to ensure model 
identification (Bollen & Davies, 2009; Diamantopoulos & Riefler, 2011), which 
means that the method can calculate estimates for all model parameters. As Hair, 
Sarstedt, Ringle, and Mena (2012, p. 420) note, “[t]hese constraints often contra-
dict theoretical considerations, and the question arises whether model design 
should guide theory or vice versa.”

PLS-SEM, on the other hand, assumes the concepts of interest can be mea-
sured as composites (Jöreskog & Wold, 1982), which is why PLS is considered a 
composite-based SEM method (Hwang et  al., 2020). Model estimation in PLS-
SEM involves linearly combining the indicators of a measurement model to form 
composite variables. The composite variables are assumed to be comprehensive 
representations of the constructs, and, therefore, valid proxies of the conceptual 
variables being examined (e.g., Hair & Sarstedt, 2019). The composite-based 
approach is consistent with the measurement philosophy underlying formative 
measurement, but this does not imply that PLS-SEM is only capable of estimating 
formatively specified constructs. The reason is that the estimation perspective (i.e., 
forming composites to represent conceptual variables) should not be confused with 
the measurement theory perspective (i.e., specifying measurement models as reflec-
tive or formative). The way a method like PLS-SEM estimates the model parame-
ters needs to be clearly distinguished from any measurement theoretical 
considerations on how to operationalize constructs (Sarstedt et  al., 2016). 
 Researchers can include reflectively and formatively specified measurement models 
that PLS-SEM can straightforwardly estimate.

In following a composite-based approach to SEM, PLS relaxes the strong 
assumption of CB-SEM that all of the covariation between the sets of indicators is 
explained by a common factor (Henseler et al., 2014; Rigdon, 2012; Rigdon et al., 
2014). At the same time, using weighted composites of indicator variables facili-
tates accounting for measurement error, thus making PLS-SEM superior com-
pared to multiple regression using sum scores, where each indicator is weighted 
equally.

It is important to note that the composites produced by PLS-SEM are not 
assumed to be identical to the theoretical concepts, which they represent. They are 
explicitly recognized as approximations (Rigdon, 2012). As a consequence, some 
scholars view CB-SEM as a more direct and precise method to empirically measure 
theoretical concepts (e.g., Rönkkö, McIntosh, & Antonakis, 2015), while PLS- 
SEM provides approximations. Other scholars contend, however, that such a view 
is quite shortsighted, since common factors derived in CB-SEM are also not neces-
sarily equivalent to the theoretical concepts that are the focus of the research 
(Rigdon, 2012; Rigdon et al., 2017; Rossiter, 2011; Sarstedt et al., 2016). Rigdon, 
Becker, and Sarstedt (2019a) show that common factor models can be subject to 
considerable degrees of metrological uncertainty. Metrological uncertainty refers 
to the dispersion of the measurement values that can be attributed to the object or 
concept being measured (JCGM/WG1, 2008). Numerous sources contribute to 
metrological uncertainty such as definitional uncertainty or limitations related to 
the measurement scale design, which go well beyond the simple standard errors 

1.3 · PLS-SEM and CB-SEM
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produced by CB-SEM analyses (Hair & Sarstedt, 2019). As such, uncertainty is a 
validity threat to measurement and has adverse consequences for the replicability 
of study findings (Rigdon, Sarstedt, & Becker, 2020). While uncertainty also 
applies to composite-based SEM, the way researchers treat models in CB-SEM 
analyses typically leads to a pronounced increase in uncertainty (Rigdon & 
Sarstedt, 2021). More precisely, in an effort to improve model fit, researchers typi-
cally reduce the number of indicators per construct, which in turn increases uncer-
tainty (Hair, Matthews, Matthews, & Sarstedt, 2017; Rigdon et al., 2019a). These 
issues do not necessarily imply that composite models are superior, but they cast 
considerable doubt on the assumption of some researchers that CB-SEM consti-
tutes the gold standard when measuring unobservable concepts. In fact, research-
ers in various fields of science show increasing appreciation that common factors 
may not always be the right approach to measure concepts (e.g., Rhemtulla, van 
Bork, & Borsboom, 2020; Rigdon, 2016). Similarly, Rigdon, Becker, and Sarstedt 
(2019b) show that using sum scores can significantly increase the degree of metro-
logical uncertainty, which questions this measurement practice.

Apart from differences in the philosophy of measurement, the differing treat-
ment of latent variables and, more specifically, the availability of construct scores 
also have consequences for the methods’ areas of application. Specifically, while it 
is possible to estimate latent variable scores within a CB-SEM framework, these 
estimated scores are not unique. That is, an infinite number of different sets of 
latent variable scores that will fit the model equally well are possible. A crucial 
consequence of this factor (score) indeterminacy is that the correlations between a 
common factor and any variable outside the factor model are themselves indeter-
minate (Guttman, 1955). That is, they may be high or low, depending on which set 
of factor scores one chooses. As a result, this limitation makes CB-SEM grossly 
unsuitable for prediction (e.g., Dijkstra, 2014; Hair & Sarstedt, 2021). In contrast, 
a major advantage of PLS-SEM is that it always produces a single specific (i.e., 
determinate) score for each composite of each observation, once the indicator 
weights/loadings are established. These determinate scores are proxies of the theo-
retical concepts being measured, just as factors are proxies for the conceptual vari-
ables in CB-SEM (Rigdon et al., 2017; Sarstedt et al., 2016).

Using these proxies as input, PLS-SEM applies ordinary least squares regres-
sion with the objective of minimizing the error terms (i.e., the residual variance) of 
the endogenous constructs. In short, PLS-SEM estimates coefficients (i.e., path 
model relationships) with the goal of maximizing the R2 values of the endogenous 
(target) constructs. This feature achieves the (in-sample) prediction objective of 
PLS-SEM (Hair & Sarstedt, 2021), which is therefore the preferred method when 
the research objective is theory development and explanation of variance (predic-
tion of the constructs). For this reason, PLS-SEM is also regarded a variance-
based SEM approach. Specifically, the logic of the PLS-SEM approach is that all 
of the indicators’ variance should be used to estimate the model relationships, with 
particular focus on prediction of the dependent variables (e.g., McDonald, 1996). 
In contrast, CB- SEM divides the total variance into three types – common, unique, 
and error variance – but utilizes only common variance (i.e., the variance shared 
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with other indicators in the same measurement model) for the model estimation 
(Hair, Black, et al., 2019). That is, CB-SEM only explains the covariation between 
measurement and structural model indicators (Jöreskog, 1973) and does not focus 
on predicting dependent variables (Hair, Matthews, et al., 2017).

 ! Attention
PLS-SEM is similar but not equivalent to PLS regression, another popular multi-
variate data analysis technique (Abdi, 2010; Wold, Sjöström, & Eriksson, 2001). 
PLS regression is a regression-based approach that explores the linear relation-
ships between multiple independent variables and a single or multiple dependent 
variable(s). PLS regression differs from regular regression, however, because, in 
developing the regression model, the method derives composite factors from the 
multiple independent variables by means of  principal component analysis. PLS- 
SEM, on the other hand, relies on prespecified networks of  relationships between 
constructs as well as between constructs and their measures (see Mateos-Aparicio, 
2011, for a more detailed comparison between PLS-SEM and PLS regression).

1.4  Considerations When Applying PLS-SEM

1.4.1  Key Characteristics of the PLS-SEM Method

Several considerations are important when deciding whether or not to apply PLS- 
SEM. These considerations also have their roots in the method’s characteristics. 
The statistical properties of the PLS-SEM algorithm have important features asso-
ciated with the characteristics of the data and model used. Moreover, the proper-
ties of the PLS-SEM method affect the evaluation of the results. Four critical 
issues are relevant to the application of PLS-SEM (Hair et al., 2011; Hair, Risher, 
et al., 2019): (1) data characteristics, (2) model characteristics, (3) model estima-
tion, and (4) model evaluation. . Table 1.2 summarizes the key characteristics of 
the PLS-SEM method. An initial overview of these issues is provided in this chap-
ter. For a more detailed explanation, see Hair et al. (2022).

PLS-SEM works efficiently with small sample sizes and complex models 
(Cassel, Hackl, & Westlund, 1999; Hair, Sarstedt, & Ringle, 2019). In addition, 
different from maximum likelihood-based CB-SEM, which requires normally dis-
tributed data, PLS-SEM makes no distributional assumptions (i.e., it is nonpara-
metric). PLS-SEM can easily handle reflective and formative measurement models, 
as well as single-item constructs, with no identification problems. It can therefore 
be applied in a wide variety of research situations. When applying PLS-SEM, 
researchers also benefit from high efficiency in parameter estimation, which is 
manifested in the method’s greater statistical power in comparison to that of 
CB-SEM. Greater statistical power means that PLS-SEM is more likely to render 
a specific relationship significant when it is in fact present in the population. The 
same holds for the comparison with regression using sum score data, which is also 
characterized by lower statistical power than PLS-SEM (Hair, Hollingsworth, 
et al., 2017).

1.4 · Considerations When Applying PLS-SEM
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1        . Table 1.2 Key characteristics of  PLS-SEM

Data characteristics

Sample size    No identification issues with small sample sizes
   Achieves high levels of statistical power with small sample sizes
   Larger sample sizes increase the precision (i.e., consistency) of 

PLS-SEM estimations

Distribution    No distributional assumptions; PLS-SEM is a nonparametric method
   Influential outliers and collinearity may influence the results

Missing values    Highly robust as long as missing values are below a reasonable level 
(less than 5%)

Scale of measure-
ment

   Works with metric data and quasi-metric (ordinal) scaled variables
   The standard PLS-SEM algorithm accommodates binary-coded 

variables, but additional considerations are required when they are 
used as control variables and moderators and in the analysis of data 
from discrete choice experiments

Model characteristics

Number of items in 
each construct’s 
measurement model

   Handles constructs measured with single- and multi-item measures

Relationships 
between constructs 
and their indicators

   Easily incorporates reflective and formative measurement models

Model complexity    Handles complex models with many structural model relationships

Model setup    No causal loops (no circular relationships) are allowed in the 
structural model

Model estimation

Objective    Aims at maximizing the amount of unexplained variance in the 
dependent measures (i.e., the R2 values)

Efficiency    Converges after a few iterations (even in situations with complex 
models and/or large sets of data) to the optimum solution (i.e., the 
algorithm is very efficient)

Nature of 
constructs

   Viewed as proxies of the latent concept under investigation, 
represented by composites

Construct scores    Estimated as linear combinations of their indicators (i.e., they are 
determinate)

   Used for predictive purposes
   Can be used as input for subsequent analyses
   Not affected by data limitations and inadequacies

Parameter estimates    Structural model relationships are generally underestimated, and 
measurement model relationships are generally overestimated compared 
to solutions obtained using data from common factor models

   Unbiased and consistent when estimating data from composite models
   High levels of statistical power compared to alternative methods, such 

as CB-SEM and multiple regression with sum scores
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       . Table 1.2 (continued)

Model evaluation

Evaluation of the 
overall model

   The concept of fit – as defined in CB-SEM – does not apply to 
PLS-SEM. Efforts to introduce model fit measures have generally 
proven unsuccessful

Evaluation of the 
measurement 
models

   Reflective measurement models are assessed on the grounds of 
indicator reliability, internal consistency reliability, convergent 
validity, and discriminant validity

   Formative measurement models are assessed on the grounds of 
convergent validity, indicator collinearity, and the significance and 
relevance of indicator weights

Evaluation of the 
structural model

   Collinearity among sets of predictor constructs
   Significance and relevance of path coefficients
   Criteria available to assess the model’s in-sample (i.e., explanatory) 

power and out-of-sample predictive power (PLSpredict)

Additional analyses Methodological research has substantially extended the original 
PLS-SEM method by introducing advanced modeling, assessment, and 
analysis procedures. Some examples include:
   Confirmatory tetrad analysis
   Confirmatory composite analysis
   Discrete choice modeling
   Endogeneity assessment
   Higher-order constructs
   Latent class analysis
   Measurement model invariance
   Mediation analysis
   Model selection
   Moderating effects, including moderated mediation
   Multigroup analysis
   Necessary condition analysis
   Nonlinear effects

Source: Adapted and extended from Hair et al. (2011). Copyright © 2011 by M.E. Sharpe, 
Inc. Reprinted by permission of  the publisher (Taylor & Francis Ltd., 7 http://www. 
tandfonline. com)

There are, however, several limitations of PLS-SEM. In its basic form, the tech-
nique cannot be applied when structural models contain causal loops or circular 
relationships between the latent variables (i.e., non-recursive models). Early exten-
sions of the basic PLS-SEM algorithm that have not yet been implemented in stan-
dard PLS-SEM software packages, however, enable the handling of circular 
relationships (Lohmöller, 1989). Furthermore, since PLS-SEM does not have an 
established global goodness-of-fit measure, its use for theory testing and confirma-
tion is more limited in certain situations. Recent research has attempted to promote 
common goodness-of-fit measures within a PLS-SEM framework (Schuberth, 
Henseler, & Dijkstra, 2018) but with very limited success. The concept of model 
fit – as defined in CB-SEM – is not applicable to PLS-SEM because of the methods’ 
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different functioning principles (Hair, Sarstedt, & Ringle, 2019). Instead, PLS- 
SEM- based model estimation and assessment follow a causal–predictive paradigm, 
in which the objective is to test the predictive power of a model, derived from the-
ory and logic. As such, the method strikes a balance between machine learning 
methods, which are fully predictive in nature and CB-SEM, which focuses on 
 confirmation and model fit (Richter, Cepeda Carrión, Roldán, & Ringle, 2016). Its 
causal–predictive nature makes PLS-SEM particularly appealing for research in 
fields that aim to derive recommendations for practice. For example, recommenda-
tions in managerial implication sections in business research journals always include 
predictive statements (“our results suggest that managers should…”). Making such 
statements requires a prediction focus on model estimation and evaluation (Sarstedt 
& Danks, 2021). PLS-SEM perfectly emphasizes this need as the method sheds 
light on the mechanisms (i.e., the structural model relationships) through which the 
predictions are generated (Hair, 2020; Hair & Sarstedt, 2019, 2021).

In early writing, researchers noted that PLS estimation is “deliberately approx-
imate” to factor-based SEM (Hui & Wold, 1982, p. 127), a characteristic previously 
referred to as the PLS-SEM bias (e.g., Chin, Marcolin, & Newsted, 2003). A num-
ber of studies have used simulations to demonstrate the alleged PLS-SEM bias 
(e.g., Goodhue, Lewis, & Thompson, 2012; McDonald, 1996; Rönkkö & Evermann, 
2013). According to prior research on the PLS-SEM bias, measurement model 
estimates are biased upward, whereas structural model estimates are biased down-
ward compared to CB-SEM results. The studies conclude that parameter estimates 
will approach what has been labeled the “true” parameter values when both the 
number of indicators per construct and sample size increase (Hui & Wold, 1982). 
However, all the abovementioned simulation studies used CB-SEM as the bench-
mark against which the PLS-SEM estimates were evaluated with the assumption 
that they should be the same. Because PLS-SEM is a composite-based approach, 
which uses the total variance to estimate parameters, differences can be expected in 
such an assessment (Lohmöller, 1989; Schneeweiß, 1991). Not surprisingly, the 
very same issues apply when composite models are used to estimate CB- SEM 
results. In fact, Sarstedt et al. (2016) show that the bias produced by CB-SEM is far 
more severe than that of PLS-SEM, when applying the method to the wrong type 
of model (i.e., estimating composite models with CB-SEM versus estimating com-
mon factor models with PLS-SEM). Apart from these conceptual concerns, simu-
lation studies show that the differences between PLS-SEM and CB-SEM estimates, 
when assuming the latter as a standard of comparison, are very small, provided 
that measurement models meet minimum recommended standards in terms of 
measurement quality (i.e., reliability and validity). Specifically, when the measure-
ment models have four or more indicators and indicator loadings meet the com-
mon standards (≥ 0.70), there are practically no differences between the two 
methods in terms of parameter accuracy (e.g., Reinartz, Haenlein, & Henseler, 
2009; Sarstedt et al., 2016). Thus, the extensively discussed PLS-SEM bias is of no 
practical relevance for the vast majority of applications (e.g., Binz Astrachan, 
Patel, & Wanzenried, 2014).

Finally, methodological research has substantially extended the original PLS- 
SEM method by introducing advanced modeling, assessment, and analysis proce-
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dures. Examples include different types of robustness checks (Sarstedt et al., 2020), 
higher-order constructs (Sarstedt, Hair, Cheah, Becker, & Ringle, 2019), discrete 
choice modeling (Hair, Sarstedt, & Ringle, 2019), necessary condition analysis and 
related methods (Rasoolimanesh, Ringle, Sarstedt, & Olya, 2021; Richter, 
Schubring, Hauff, Ringle, & Sarstedt, 2020), and out-of-sample prediction metrics 
(Hair, 2020). Hair, Sarstedt, Ringle, and Gudergan (2018) offer an introduction 
into several of these advanced topics.

In the following, we discuss aspects related to data characteristics (e.g., mini-
mum sample size requirements) and model characteristics (e.g., model complexity).

1.4.2  Data Characteristics

Data characteristics, such as minimum sample size requirements, non-normal data, 
and scales of measurement (i.e., the use of different scale types), are among the 
most often stated reasons for applying PLS-SEM across numerous disciplines (e.g., 
Ghasemy, Teeroovengadum, Becker, & Ringle, 2020; Hair, Sarstedt, Ringle, & 
Mena, 2012; Ringle et al., 2020). While some of the arguments are consistent with 
the method’s capabilities, others are not. In the following sections, we discuss these 
and also aspects related data characteristics.

1.4.2.1  Minimum Sample Size Requirements
Small sample size is likely the most often abused reason stated for using PLS-SEM, 
with some researchers obtaining model solutions with unacceptably low sample 
sizes (Goodhue et  al., 2012; Marcoulides & Saunders, 2006). These researchers 
oftentimes believe there is some “magic” in the PLS-SEM approach that allows 
them to use a very small sample to obtain results representing the effects that exist 
in large populations of several million elements or individuals. No multivariate 
analysis technique, including PLS-SEM, has this kind of “magic” inferential capa-
bility (Petter, 2018).

PLS-SEM can certainly obtain solutions with smaller samples, but the popula-
tion’s nature determines the situations in which small sample sizes are acceptable 
(Rigdon, 2016). For example, in business-to-business research, populations are 
often restricted in size. Assuming that other situational characteristics are equal, 
the more heterogeneous the population, the larger the sample size needed to achieve 
an acceptable accuracy (Cochran, 1977). If  basic sampling theory guidelines are 
not considered (Sarstedt, Bengart, Shaltoni, & Lehmann, 2018), questionable 
results are produced.

In addition, when applying multivariate analysis techniques, the technical 
dimension of the sample size becomes relevant. Adhering to the minimum sample 
size guidelines ensures the results of a statistical method, such as PLS-SEM, have 
adequate statistical power. In these regards, an analysis based on an insufficient 
sample size may not reveal an effect that exists in the underlying population (which 
results in committing a type II error). Moreover, executing statistical analyses 
based on minimum sample size guidelines will ensure the results of the statistical 
method are robust and the model is generalizable to another sample from that 
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same population. Thus, an insufficient sample size may lead to PLS-SEM results 
that differ from those of another larger sample. In the following, we focus on the 
PLS-SEM method and its technical requirements of the minimum sample size.

The overall complexity of a structural model has little influence on the mini-
mum sample size requirements for PLS-SEM.  The reason is the PLS-SEM 
 algorithm does not compute all relationships in the structural model at the same 
time. Instead, it uses ordinary least squares regressions to estimate the model’s 
partial regression relationships. Two early studies systematically evaluated the per-
formance of PLS-SEM with small sample sizes and concluded that the method 
performed well (e.g., Chin & Newsted, 1999; Hui & Wold, 1982). More recently, 
simulation studies by Hair et  al. (2017) and Reinartz et  al. (2009) indicate that 
PLS- SEM is the method of choice when the sample size is small. Moreover, com-
pared with its covariance-based counterpart, PLS-SEM has higher levels of  statis-
tical power in situations with complex model structures and smaller sample sizes. 
Similarly, Henseler et al. (2014) show that results can be obtained with PLS-SEM 
when other methods do not converge or provide inadmissible solutions. For exam-
ple, problems often are encountered when using CB-SEM on complex models, 
especially when the sample size is limited. Finally, CB-SEM encounters identifica-
tion and convergence issues when formative measures are involved (e.g., 
Diamantopoulos & Riefler, 2011).

Unfortunately, some researchers believe sample size considerations do not play 
a role in the application of PLS-SEM. This idea has been fostered by the often- 
cited 10-time rule (Barclay, Higgins, & Thompson, 1995), which suggests the sam-
ple size should be equal to 10 times the number of independent variables in the 
most complex regression in the PLS path model (i.e., considering both measure-
ment and structural models). This rule of thumb is equivalent to saying the mini-
mum sample size should be 10 times the maximum number of arrowheads pointing 
at a latent variable anywhere in the PLS path model. While this rule offers a rough 
guideline, the minimum sample size requirement should consider the statistical 
power of the estimates. To assess statistical power, researchers can consider power 
tables (Cohen, 1992) or power analyses using programs, such as G*Power (Faul, 
Erdfelder, Buchner, & Lang, 2009), which is available free of charge at 7 http://
www. gpower. hhu. de/. These approaches do not explicitly consider the entire model 
but instead use the most complex regression in the (formative) measurement mod-
els and structural model of a PLS path model as a point of reference for assessing 
the statistical power. In doing so, researchers typically aim at achieving a power 
level of 80%. However, the minimum sample size resulting from these calculations 
may still be too small (Kock & Hadaya, 2018).

Addressing these concerns, Kock and Hadaya (2018) proposed the inverse 
square root method, which considers the probability that the ratio of a path coef-
ficient and its standard error will be greater than the critical value of a test statistic 
for a specific significance level. The results depend, therefore, on only one path 
coefficient and are dependent neither on the size of the most complex regression in 
the (formative) models nor on the size of the overall model. Assuming a common 
power level of 80% and significance levels of 1%, 5%, and 10%, the minimum sam-

 Chapter 1 · An Introduction to Structural Equation Modeling

http://www.gpower.hhu.de/
http://www.gpower.hhu.de/


17 1

ple size (nmin) is given by the following equations, respectively, where pmin is the 
value of the path coefficient with the minimum magnitude in the PLS path model:

Significance level = 1%: n
pmin
min
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For example, assuming a significance level of 5% and a minimum path coeffi-
cient of 0.2, the minimum sample size is given by

nmin
.
.

. .> 





 =

2 486
0 2

154 505
2

This result needs to be rounded to the next integer, so the minimum sample size 
is 155.

The inverse square root method is rather conservative, in that it slightly overes-
timates the sample size required to render an effect significant at a given power 
level. Most importantly, the method is characterized by its ease of use, since it can 
be readily implemented.

Nevertheless, two considerations are important when using the inverse square 
root method. First, by using the smallest statistical path coefficient as the point of 
reference, the method can be misleading as researchers will not expect marginal 
effects to be significant. For example, assuming a 5% significance level and a mini-
mum path coefficient of 0.01 would require a sample size of 61,802! Hence, 
researchers should choose a higher path coefficient as input, depending on whether 
the model produces either overall weak or strong effects or the smallest relevant (to 
be detected) effect.

Second, by relying on model estimates, the inverse square root method follows 
a retrospective approach. As a result, this assessment approach can be used as a 
basis for additional data collection or adjustments in the model. If  possible, how-
ever, researchers should follow a prospective approach by trying to derive the min-
imum expected effect size prior to data analysis. To do so, researchers can draw on 
prior research involving a comparable conceptual background or models with 
similar complexity or, preferably, the results of a pilot study, which tested the 
hypothesized model using a smaller sample of respondents from the same popula-
tion. For example, if  the pilot study produced a minimum path coefficient of 0.15, 
this value should be chosen as input for computing the required sample size for the 
main study.
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1        . Table 1.3 Minimum sample sizes for different levels of  minimum path coefficients (pmin) 
and a power of  80%

pmin Significance level

1% 5% 10%

0.05–0.1 1004 619 451

0.11–0.2 251 155 113

0.21–0.3 112 69 51

0.31–0.4 63 39 29

0.41–0.5 41 25 19

Source: Hair et al. (2022), Chap. 1; used with permission by Sage

In most cases, however, researchers have only limited information regarding the 
expected effect sizes, even if  a pilot study has been conducted. Hence, it is reason-
able to consider ranges of effect sizes rather than specific values to determine the 
sample size required for a specific study. . Table 1.3 shows the minimum sample 
size requirement for different significance levels and varying ranges of pmin. In 
deriving the minimum sample size, it is reasonable to consider the upper boundary 
of the effect range as reference, since the inverse square root method is rather con-
servative. For example, when assuming that the minimum path coefficient expected 
to be significant is between 0.11 and 0.20, one would need approximately 155 
observations to render the corresponding effect significant at 5%. Similarly, if  the 
minimum path coefficient expected to be significant is between 0.31 and 0.40, then 
the recommended sample size would be 39.

1.4.2.2  Missing Value Treatment
As with other statistical analyses, missing values should be dealt with when using 
PLS-SEM. For reasonable limits (i.e., less than 5% values missing per indicator), 
missing value treatment options, such as mean replacement, the EM (expectation–
maximization) algorithm, and nearest neighbor (e.g., Hair, Black, et  al., 2019), 
generally result in only slightly different PLS-SEM estimates (Grimm & Wagner, 
2020). Alternatively, researchers can opt for deleting all observations with missing 
values, which decreases variation in the data and may introduce biases when cer-
tain groups of observations have been deleted systematically.

1.4.2.3  Non-normal Data
The use of PLS-SEM has two other key advantages associated with data character-
istics (i.e., distribution and scales). In situations where it is difficult or impossible to 
meet the stricter requirements of more traditional multivariate techniques (e.g., 
normal data distribution), PLS-SEM is always the preferred method. PLS-SEM’s 
greater flexibility is described by the label “soft modeling,” coined by Wold (1982), 
who developed the method. It should be noted, however, that “soft” is attributed 
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only to the distributional assumptions and not to the concepts, models, or estima-
tion techniques (Lohmöller, 1989). PLS-SEM’s statistical properties provide very 
robust model estimations with data that have normal as well as extremely non-
normal (i.e., skewness and/or kurtosis) distributional properties (Hair, 
Hollingsworth, et al., 2017; Hair, Matthews, et al., 2017; Reinartz et al., 2009). It 
must be remembered, however, that influential observations, outliers, and collin-
earity do influence the ordinary least squares regressions in PLS-SEM and research-
ers should evaluate the data and results for these issues (Hair, Black, et al., 2019).

1.4.2.4  Scales of Measurement
The PLS-SEM algorithm generally requires variables to be measured on a metric 
scale (ratio scale or interval scale) for the measurement model indicators. But the 
method also works well with ordinal scales with equidistant data points (i.e., quasi-
metric scales; Sarstedt & Mooi, 2019; Chap. 3.6) and with binary-coded data. The 
use of binary-coded data is often a means of including categorical control vari-
ables (Hair et al., 2022) or moderators in PLS-SEM models. In short, binary indi-
cators can be included in PLS-SEM models but require special attention. For 
example, using PLS-SEM in discrete choice experiments, where the aim is to 
explain or to predict a binary dependent variable, requires specific designs and 
estimation routines (Hair, Ringle, Gudergan, Fischer, Nitzl, & Menictas, 2019).

1.4.2.5  Secondary Data
Secondary data are data that have already been gathered, often for a different 
research purpose some time ago (Sarstedt & Mooi, 2019; Chap. 3.2.1). Secondary 
data are increasingly available to explore real-world phenomena. Research based 
on secondary data typically focuses on a different objective than in a standard CB- 
SEM analysis, which is strictly confirmatory in nature. More precisely, secondary 
data are mainly used in exploratory research to propose causal–predictive relation-
ships in situations that have little clearly defined theory (Hair, Matthews, et al.,  
2017; Hair, Hollingsworth, et al., 2017). Such settings require researchers to place 
greater emphasis on examining all possible relationships rather than achieving 
model fit (Nitzl, 2016). By its nature, this process creates large, complex models 
that can hardly be analyzed with the CB-SEM method. In contrast, due to its less 
stringent data requirements, PLS-SEM offers the flexibility needed for the inter-
play between theory and data (Nitzl, 2016). Or, as Wold (1982, p. 29) notes, “soft 
modeling is primarily designed for research contexts that are simultaneously data-
rich and theory-skeletal.” Furthermore, the increasing popularity of secondary 
data analysis (e.g., by using data that stem from company databases, social media, 
customer tracking, national statistical bureaus, or publicly available survey data) 
shifts the research focus from strictly confirmatory to predictive and causal–predic-
tive modeling. Such research settings are a perfect fit for the prediction-oriented 
PLS-SEM approach and even more so when assessing out-of-sample prediction 
(Shmueli, et al., 2019).

PLS-SEM also proves valuable for analyzing secondary data from a measure-
ment theory perspective. First, unlike survey measures, which are usually crafted to 
confirm a well-developed theory, measures used in secondary data sources are typ-
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. Table 1.4 Data considerations when applying PLS-SEM 

• The 10-time rule is not a reliable indication of sample size requirements in PLS-SEM. While 
statistical power analyses provide a more reliable minimum sample size estimate, researchers 
should primarily draw on the inverse square root method, which is superior in terms of 
precision and ease of use 

• When the construct measures meet recommended guidelines in terms of reliability and 
validity, results from CB-SEM and PLS-SEM are generally similar 

• PLS-SEM can handle extremely non-normal data (e.g., data with high levels of skewness) 
• Most missing value treatment procedures (e.g., mean replacement, pairwise deletion, EM, and 

nearest neighbor) can be used for reasonable levels of missing data (less than 5% missing per 
indicator) with limited effect on the analysis results 

• PLS-SEM works with metric, quasi-metric, and categorical (i.e., dummy-coded) scaled data, 
although there are certain limitations. Processing of data from discrete choice experiments 
requires specific designs and estimation routines 

• Due to its flexibility in handling different data and measurement types, PLS-SEM is the 
method of choice when analyzing secondary data 

Source: Hair et al. (2022), Chap. 1; used with permission by Sage 

ically not created and refined over time for confirmatory analyses. Thus, achieving 
model fit is very unlikely with secondary data measures in most research situations 
when using CB-SEM. Second, researchers who use secondary data do not have the 
opportunity to revise or refine the measurement model to achieve fit. Third, a 
major advantage of PLS-SEM when using secondary data is that it permits the 
unrestricted use of single-item and formative measures. This is extremely valuable 
for research involving secondary data, because many measures included in corpo-
rate databases are artifacts, such as financial ratios and other firm-fixed factors 
(Henseler, 2017). Such artifacts typically are reported in the form of formative 
indices whose estimation dictates the use of PLS-SEM. 

. Table 1.4 summarizes key considerations related to data characteristics. 

1.4.3 Model Characteristics 

PLS-SEM is very flexible in its modeling properties. In its basic form, the PLS-
SEM algorithm requires all models to not include circular relationships or loops 
of relationships between the latent variables in the structural model. Although 
causal loops are sometimes specified in business research, this characteristic does 
not limit the applicability of PLS-SEM, if  such models are required as Lohmöller’s 
(1989) extensions of the basic PLS-SEM algorithm allow for handling such model 
types. Other model specification requirements that constrain the use of CB-SEM, 
such as distribution and identification assumptions, are generally not relevant with 
PLS-SEM. 

Measurement model difficulties are one of the major obstacles to obtaining a 
solution with CB-SEM. For instance, estimation of complex models with many 
latent variables and/or indicators is often impossible with CB-SEM. In contrast, 
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PLS-SEM can easily be applied in such situations, since this method is not con-
strained by identification and other technical issues. Consideration of reflective 
and formative measurement models is a key issue in the application of SEM (Bollen 
& Diamantopoulos, 2017). PLS-SEM can easily handle both formative and reflec-
tive measurement models and is (therefore) considered the primary approach when 
the hypothesized model incorporates formative measures. CB-SEM can accom-
modate formative indicators, but to ensure model identification, they must follow 
distinct specification rules (Diamantopoulos & Riefler, 2011). In fact, the require-
ments often prevent running the analysis as originally planned. In contrast, PLS-
SEM does not have such requirements and handles formative measurement models 
without any limitation. This also applies to model settings in which endogenous 
constructs are measured formatively. The applicability of CB-SEM to such model 
settings has been subject to considerable debate (Cadogan & Lee, 2013; Rigdon, 
2014), but due to PLS-SEM’s multistage estimation process (Tenenhaus et  al., 
2005), which separates measurement from structural model estimation, the inclu-
sion of formatively measured endogenous constructs is not an issue in PLS-SEM 
(Rigdon et al., 2014). The only problematic issue is when high levels of collinearity 
exist between the indicator variables of a formative measurement model. 

Different from CB-SEM, PLS-SEM facilitates easy specification of interaction 
terms to map moderation effects in a path model. This makes PLS-SEM the 
method of choice in simple moderation models and more complex conditional 
process models, which combine moderation and mediation effects (Sarstedt, Hair, 
et al., 2020). Similarly, higher-order constructs, which allow specifying a construct 
simultaneously on different levels of abstraction (Sarstedt et al., 2019), can readily 
be implemented in PLS-SEM. 

Finally, PLS-SEM is capable of estimating very complex models. For example, 
if  theoretical or conceptual assumptions support large models and sufficient data 
are available (i.e., meeting minimum sample size requirements), PLS-SEM can 
handle models of almost any size, including those with dozens of constructs and 
hundreds of indicator variables. As noted by Wold (1985), PLS-SEM is virtually 
without competition when path models with latent variables are complex in their 
structural relationships. . Table  1.5 summarizes rules of thumb for PLS-SEM 
model considerations. 

. Table 1.5 Model considerations when choosing PLS-SEM 

• PLS-SEM offers much flexibility in handling different measurement model setups. For 
example, PLS-SEM can handle reflective and formative measurement models as well as 
single-item measures without additional requirements or constraints 

• The method allows for the specification of advanced model elements, such as interaction 
terms and higher-order constructs 

• Model complexity is generally not an issue for PLS-SEM. As long as appropriate data meet 
minimum sample size requirements, the complexity of the structural model is virtually 
unrestricted 

Source: Hair et al. (2022), Chap. 1; used with permission by Sage) 
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1.5 Guidelines for Choosing Between PLS-SEM and CB-SEM 

Summarizing the previous discussions and drawing on Hair, Risher, et al. (2019), 
. Table 1.6 displays the rules of thumb applied when deciding whether to use CB-
SEM or PLS-SEM. As can be seen, PLS-SEM is not recommended as a universal 
alternative to CB-SEM. Both methods differ from a statistical point of view, are 
designed to achieve different objectives, and rely on different measurement philos-
ophies. Neither of the techniques is generally superior to the other, and neither of 
them is appropriate for all situations (Petter, 2018). Hence, to answer the question 
of when to use PLS-SEM versus CB-SEM, researchers should focus on the charac-
teristics and objectives that distinguish the two methods (Hair, Sarstedt, Ringle, & 
Mena, 2012). Broadly speaking, with its strong focus on model fit and in light of its 
extensive data requirements, CB-SEM is particularly suitable for testing a theory in 
the confinement of a concise theoretical model. However, if  the primary research 
objective is prediction and explanation of target constructs (Rigdon, 2012), PLS-
SEM should be given preference (Hair, Sarstedt, & Ringle, 2019; Hair, Holling-
sworth, Randolph, & Chong, 2017). 

In general, the strengths of PLS-SEM are CB-SEM’s limitations and vice versa, 
although PLS-SEM is increasingly being applied for scale development and confir-

. Table 1.6 Rules of  thumb for choosing between PLS-SEM and CB-SEM 

Use PLS-SEM when 
The analysis is concerned with testing a theoretical framework from a prediction perspective, 
particularly out-of-sample prediction 
The structural model is complex and includes many constructs, indicators, and/or model 
relationships 
The research objective is to better understand increasing complexity by exploring theoretical 
extensions of established theories (exploratory research for theory development) 
The path model includes one or more formatively measured constructs 
The research consists of financial ratios or similar types of artifacts 
The research is based on secondary data, which may lack a comprehensive substantiation on 
the grounds of measurement theory 
A small population restricts the sample size (e.g., business-to-business research), but note that 
PLS-SEM also works very well with large sample sizes 
Distribution issues are a concern, such as lack of normality 
The research requires latent variable scores for follow-up analyses 

Use CB-SEM when 
The goal is theory testing and confirmation 
Error terms require additional specification, such as the covariation 
The structural model has circular relationships 
The research requires a global goodness-of-fit criterion 

Source: Adapted from Hair, Risher, et al. (2019). Copyright © 2019 by Emerald Publishing. 
Reprinted by permission of  the publisher (Emerald Publishing; 7 https://www. 
emeraldgrouppublishing.com) 
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mation (Hair, Howard, & Nitzl, 2020). It is important that researchers understand 
the different applications each approach was developed for and use them accord-
ingly. Researchers need to apply the SEM technique that best suits their research 
objective, data characteristics, and model setup (Roldán & Sánchez-Franco, 2012).

Summary
SEM is a second-generation multivariate data analysis method, which facilitates 
analyzing the relationships among constructs, each measured by one or more indica-
tor variables. The primary advantage of SEM is its ability to measure complex model 
relationships while accounting for measurement error inherent in the indicators. 
There are two types of SEM methods – CB-SEM and PLS-SEM. The two method 
types differ in the way they estimate the model parameters and their assumptions 
regarding the nature of measurement. Compared to CB-SEM, PLS-SEM empha-
sizes prediction, while simultaneously relaxing the demands regarding the data and 
specification of relationships. PLS-SEM aims at maximizing the endogenous latent 
variables’ explained variance by estimating partial model relationships in an iterative 
sequence of ordinary least squares regressions. In contrast, CB-SEM estimates 
model parameters, such that the discrepancy between the estimated and sample 
covariance matrices is minimized. Instead of following a common factor model logic 
in estimating concept proxies as CB-SEM does, PLS-SEM calculates composites of 
indicators that serve as proxies for the concepts under research. The method is not 
constrained by identification issues, even if  the model becomes complex – a situation 
that typically restricts CB-SEM use – and does not rely on distributional assump-
tions. Moreover, PLS-SEM can better handle formative measurement models and 
has advantages when sample sizes are relatively small as well as when  analyzing sec-
ondary data. Researchers should consider the two SEM approaches as complemen-
tary and apply the SEM technique that best suits their research objective, data 
characteristics, and model setup.

 ? Exercise
Please answer the following questions:
 1. When would SEM methods be more advantageous than first- generation tech-

niques in understanding relationships between variables?
 2. Why should social science researchers consider using SEM instead of multiple 

regression?
 3. What are the most important considerations in deciding whether to use CB-SEM 

or PLS-SEM?
 4. Under what circumstances is PLS-SEM the preferred method over CB-SEM?
 5. Why is an understanding of theory important when deciding whether to use 

PLS-SEM or CB-SEM?
 6. Why is PLS-SEM’s prediction focus a major advantage of the method?
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