Skip to main content

The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines

  • Conference paper
  • First Online:
Connecting with Computability (CiE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12813))

Included in the following conference series:

Abstract

We consider recognizability for Infinite Time Blum-Shub-Smale machines, a model of infinitary computability introduced by Koepke and Seyfferth. In particular, we show that the lost melody theorem (originally proved for ITTMs by Hamkins and Lewis), i.e. the existence of non-computable, but recognizable real numbers, holds for ITBMs, that ITBM-recognizable real numbers are hyperarithmetic and that both ITBM-recognizable and ITBM-unrecognizable real numbers appear at every level of the constructible hierarchy below \(L_{\omega _{1}^{\text {CK}}}\) above \(\omega ^{\omega }\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Weak ITRMs”, also known as “unresetting ITRM”, differ from ITRMs in that a computation in which the inferior limit of the sequence of contents of some register is infinite at some limit time, the computation is undefined, while for ITRMs, the content of such a register is just reset to 0; they were defined by Koepke in [11].

  2. 2.

    For ITRMs, this is proved in [4]; for ITTMs, it is known that there are, e.g., no recognizable real numbers in \(L_{\varSigma }\setminus L_{\lambda }\), see, e.g., [8], Theorem 4.2.6.

  3. 3.

    For example, we can take \(\psi _{0}(x)\) to be \(\forall {y\in x}(y\ne y)\) and then let \(\psi _{k+1}(x)\) be \(\forall {y}(y\in x\leftrightarrow (\exists {z}(\psi _{k}(z)\wedge y\in z)\vee \psi _{k}(y)))\).

  4. 4.

    Here is a sketch for the construction: Use p to split \(\omega \) into \(\omega \) many disjoint portions of the form \(\{p(k,i):i\in \omega \}\). For \(i\in \omega \), let \(f_{0}\) be the \(<_{L}\)-minimal bijection \(f_{0}:\omega \rightarrow L_{\omega }\) and, for \(i>0\), let \(f_{i}\) be the \(<_{L}\)-minimal bijection \(f_{i}:\omega \rightarrow L_{\omega ^{i+1}}\setminus L_{\omega ^{i}}\); for \(k\in \omega \), let \(F_{k}:=\bigcup _{i<k}f_{i}\). Then let \(c_{k}:=\{p(i,j):F_{k}(i)\in F_{k}(j)\}\) and \(c:=\bigcup _{k\in \omega }c_{k}\). Thus, c is a code for \(L_{\omega ^{\omega }}\). To compute c, it suffices to compute \(f_{k}\) and \(c_{k}\), uniformly in k. For this, run through the ITBM-programs and use H to identify the first program Q that computes a code d for \(L_{\omega ^{k+1}}\). Using H, we can actually obtain d by considering, for each \(i\in \omega \), the program \(Q^{\prime }_{i}\) which, for \(i\in \omega \), halts when Q(i) halts with output 0 and loops otherwise and using H to check whether \(Q^{\prime }_{i}\) halts (note that \(Q^{\prime }_{i}\) is recursive in Q and i). From d, one can compute \(f_{0}\), ..., \(f_{k-1}\), and hence also \(F_{k}\), using truth predicate evaluation (since natural numbers are definable without parameters); again using truth predicate evaluation, one obtains \(c_{k}\).

  5. 5.

    The same approach was used in [3] to obtain non-recognizables for ITRMs.

References

  1. Boolos, G.: On the semantics of the constructible levels. Math. Logic Q. 16, 139–148 (1970)

    Article  MathSciNet  Google Scholar 

  2. Boolos, G., Putnam, H.: Degrees of unsolvability of constructible sets of integers. J. Symb. Log. 33, 497–513 (1968)

    Article  MathSciNet  Google Scholar 

  3. Carl, M.: Optimal results on ITRM-recognizability. arXiv: Logic (2013)

  4. Carl, M.: The distribution of ITRM-recognizable reals. Ann. Pure Appl. Log. 165, 1403–1417 (2014)

    Article  MathSciNet  Google Scholar 

  5. Carl, M.: The lost melody phenomenon, pp. 49–70. arXiv: Logic (2014)

  6. Carl, M., Fischbach, T., Koepke, P., Miller, R., Nasfi, M., Weckbecker, G.: The basic theory of infinite time register machines. Arch. Math. Logic 49, 249–273 (2010)

    Article  MathSciNet  Google Scholar 

  7. Carl, M., Schlicht, P., Welch, P.: Recognizable sets and woodin cardinals: computation beyond the constructible universe. Ann. Pure Appl. Log. 169, 312–332 (2018)

    Article  MathSciNet  Google Scholar 

  8. Carl, M.: Ordinal Computability. An Introduction to Infinitary Machines. De Gruyter, Berlin, Boston (2019). https://doi.org/10.1515/9783110496154

  9. Hamkins, J., Lewis, A.: Infinite time turing machines. J. Symb. Logic 65, 567–604 (2000)

    Article  MathSciNet  Google Scholar 

  10. Jensen, R.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308 (1972)

    Article  MathSciNet  Google Scholar 

  11. Koepke, P.: Infinite time register machines. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 257–266. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342_27

    Chapter  Google Scholar 

  12. Koepke, P., Miller, R.: An Enhanced Theory of Infinite Time Register Machines. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 306–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_34

    Chapter  MATH  Google Scholar 

  13. Koepke, P., Morozov, A.: The computational power of infinite time blum-shub-smale machines. Algebra Logic 56, 37–62 (2017). https://doi.org/10.1007/s10469-017-9425-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Koepke, P., Seyfferth, B.: Towards a theory of infinite time blum-shub-smale machines. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 405–415. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30870-3_41

    Chapter  Google Scholar 

  15. Marek, W., Srebrny, M.: Gaps in the constructible universe. Ann. Math. Logic 6, 359–394 (1974)

    Article  MathSciNet  Google Scholar 

  16. Mathias, A.: Provident sets and rudimentary set forcing. Fundamenta Mathematicae 230, 99–148 (2015)

    Article  MathSciNet  Google Scholar 

  17. Mathias, A.R.D., Bowler, N.J.: Rudimentary recursion, gentle functions and provident sets. Notre Dame J. Formal Logic 56(1), 3–60 (2015)

    Article  MathSciNet  Google Scholar 

  18. Sacks, G.E.: Higher Recursion Theory. Perspectives in Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316717301

  19. Welch, P.D.: Discrete transfinite computation. In: Sommaruga, G., Strahm, T. (eds.) Turing’s Revolution, pp. 161–185. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22156-4_6

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank our three anonymous referees for various helpful suggestions for improving the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin Carl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carl, M. (2021). The Lost Melody Theorem for Infinite Time Blum-Shub-Smale Machines. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds) Connecting with Computability. CiE 2021. Lecture Notes in Computer Science(), vol 12813. Springer, Cham. https://doi.org/10.1007/978-3-030-80049-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80049-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80048-2

  • Online ISBN: 978-3-030-80049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics