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Abstract. We present novel reductions of the propositional modal logics
KB, KD, KT, K4 and K5 to Separated Normal Form with Sets of Modal
Levels. The reductions result in smaller formulae than the well-known
reductions by Kracht and allow us to use the local reasoning of the prover
KSP to determine the satisfiability of modal formulae in these logics. We
show experimentally that the combination of our reductions with the
prover KSP performs well when compared with a specialised resolution
calculus for these logics and with the b̆uilt-in reductions of the first-order
prover SPASS.

1 Introduction

The main motivation for reducing problems in one logic (the source logic) to
‘equivalent’ problems in another logic (the target logic) is to exploit results and
tools for the target logic to solve theoretical or practical problems in the source
logic. For propositional modal logics this approach has been researched exten-
sively for reductions of the satisfiability problem in these logics to the satisfiabil-
ity problem in ‘stronger’ logics such as first-order logic [10,20], the second-order
theory of n successors [6], simple type theory [4], and regular grammar logics [19].

An alternative approach is to reduce propositional modal logics to a ‘weaker’
logic, in particular, the basic modal logic K. For extensions of K with one of the
axioms B, D, alt1, T, and 4, Kracht [12] defines reduction functions of their global
and local satisfiability problem to the corresponding problem in K and proves
their correctness. He also defines a reduction function for K5, the extension
of K with 5, to K4, but this reduction is incorrect as not all theorems of K4
are theorems of K5. Several features of Kracht’s approach are relevant to our
work. First, as is not uncommon in modal logic, he treats the modal operator
3 as abbreviation for ¬2¬, that is, 2 is the only modal operator occurring
in modal formulae. Second, the basic idea underlying his reduction functions
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is for a given modal formula ϕ to generate sufficiently many instances ∆ of
a modal axiom Λ so that ϕ is KΛ-satisfiable iff ϕ ∧ ∆ is K-satisfiable. Third,
Kracht is only concerned with preservation of the computational complexity
of the satisfiability problem under consideration, as well as the preservation of
other theoretical properties. For instance, the local satisfiability problem in the
modal logics covered by Kracht is PSPACE-complete. So, it is sufficient to ensure
that ∆ is polynomial in size with respect to ϕ. As Kracht himself concludes, his
method offers a uniform way of transferring results about one modal logic to
another, but may not be as useful for practical applications.

In [16,15] we have introduced a new normal form for basic multi-modal logic,
called Separated Normal Form with Modal Levels, SNFml, that uses labelled
modal clauses. These labels refer to the level within a tree Kripke structure
at which a modal clause holds. This can be seen as a compromise between ap-
proaches that label formulae with worlds at unspecified level [1,3] and approaches
that label formulae with paths [5,23]. A combination of a normal form transfor-
mation for modal formulae and a resolution-based calculus for labelled modal
clauses can then be used to decide local and global satisfiability in basic modal
logic. In [17,18] we have presented KSP, an implementation of that calculus, to-
gether with an experimental evaluation that indicates that KSP performs well
if propositional variables are evenly spread across a wide range of modal levels
within the formulae one wants to decide.

A feature of SNFml is its use of additional propositional symbols as ‘surro-
gates’ for subformulae of a modal formula ϕ. In the following we take advantage
of the availability of those surrogates to provide a novel transformation from ex-
tensions of K with a single one of the axioms B, D, T, 4 and 5 to SNFml. Another
novel aspect is that we modify the normal form so that it uses sets of modal
levels as labels instead of a single modal level. In K we only need a definition of
a surrogate at the modal level at which the corresponding subformula occurs in
ϕ. But in KB, KT, K4 and K5, we need a definition at every reachable modal
level, of which there can be many. We call the resulting normal form, Separated
Normal Form with Sets of Modal Levels, SNFsml.

The structure of the paper is as follows. In Section 2 we recap common con-
cepts of propositional modal logic including its syntax and semantics. Section
3 defines SNFsml and the reductions of K, KB, KD, KT, K4 and K5 to SNFsml.
Correctness is proved in Section 4. Related work is discussed in Section 5. In
Section 6 we compare the performance of a combination of our reductions and
the modal-layered resolution calculus implemented in prover KSP with reso-
lution calculi specifically designed for the logics under consideration and with
translation-based approaches built into the first-order theorem prover SPASS.

2 Preliminaries

The language of modal logic is an extension of the language of propositional
logic with a unary modal operator 2 and its dual 3. More precisely, given a
denumerable set of propositional symbols, P = {p, p0, q, q0, t, t0, . . .} as well as
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propositional constants true and false, modal formulae are inductively defined
as follows: Constants and propositional symbols are modal formulae. If ϕ and ψ
are modal formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), 2ϕ, and 3ϕ.
We also assume that ∧ and ∨ are associative and commutative operators and
consider, e.g., (p∨(q∨r)) and (r∨(q∨p)) to be identical formulae. We often omit
parentheses if this does not cause confusion. By var(ϕ) we denote the set of all
propositional symbols occurring in ϕ. This function straightforwardly extends
to finite sets of modal formulae. A modal axiom (schema) is a modal formula ψ
representing the set of all instances of ψ.

A literal is either a propositional symbol or its negation; the set of literals is
denoted by L. We denote by ¬l the complement of the literal l ∈ L, that is, ¬l
denotes ¬p if l is the propositional symbol p, and ¬l denotes p if l is the literal
¬p. A modal literal is either 2l or 3l, where l ∈ L.

A (normal) modal logic is a set of modal formulae which includes all propo-
sitional tautologies, the axiom schema 2(ϕ→ ψ) → (2ϕ → 2ψ), called the
axiom K, is closed under modus ponens (if ` ϕ and ` ϕ→ ψ then ` ψ) and the
rule of necessitation (if ` ϕ then ` 2ϕ).

K is the weakest modal logic, that is, the logic given by the smallest set
of modal formulae constituting a normal modal logic. By KΣ we denote an
extensions of K by a set Σ of axioms.

The standard semantics of modal logics is the Kripke semantics or possible
world semantics. A Kripke frame F is an ordered pair 〈W,R〉 where W is a
non-empty set of worlds and R is a binary (accessibility) relation over W . A
Kripke structure M over P is an ordered pair 〈F, V 〉 where F is a Kripke frame
and the valuation V is a function mapping each propositional symbol in P to
a subset V (p) of W . We say M = 〈F, V 〉 is based on the frame F . A rooted
Kripke structure is an ordered pair 〈M,w0〉 with w0 ∈W . To simplify notation,
in the following we write 〈W,R, V 〉 and 〈W,R, V,w0〉 instead of 〈〈W,R〉, V 〉 and
〈〈〈W,R〉, V 〉, w0〉, respectively.

Satisfaction (or truth) of a formula at a world w of a Kripke structure M =
〈W,R, V 〉 is inductively defined by:

〈M,w〉 |= true; 〈M,w〉 6|= false;

〈M,w〉 |= p iff w ∈ V (p), where p ∈ P ;

〈M,w〉 |= ¬ϕ iff 〈M,w〉 6|= ϕ;

〈M,w〉 |= (ϕ ∧ ψ) iff 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;

〈M,w〉 |= (ϕ ∨ ψ) iff 〈M,w〉 |= ϕ or 〈M,w〉 |= ψ;

〈M,w〉 |= (ϕ→ ψ) iff 〈M,w〉 |= ¬ϕ or 〈M,w〉 |= ψ;

〈M,w〉 |= 2ϕ iff for every v, w R v implies 〈M,v〉 |= ϕ;

〈M,w〉 |= 3ϕ iff there is v, w R v and 〈M, v〉 |= ϕ.

If 〈M,w〉 |= ϕ holds then M is a model of ϕ, ϕ is true at w in M and M satisfies
ϕ. A modal formula ϕ is satisfiable iff there exists a Kripke structure M and a
world w in M such that 〈M,w〉 |= ϕ. A modal formula ϕ is globally true or valid
in a Kripke structure M if it is true at all worlds of M ; it is valid if it is valid in
all Kripke structures.
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Name Axiom Frame Property

D 2ϕ→ 3ϕ Serial ∀v∃w.v R w

T 2ϕ→ ϕ Reflexive ∀w.w R w

B ϕ→ 23ϕ Symmetric ∀vw.v R w → w R v

4 2ϕ→ 22ϕ Transitive ∀uvw.(u R v ∧ v R w) → u R w

5 3ϕ→ 23ϕ Euclidean ∀uvw.(u R v ∧ u R w) → v R w

Table 1. Modal axioms and relational frame properties

In the following we are interested in extensions of K with the axiom schemata
shown in Table 1. Each of these axiom schemata defines a class of Kripke frames
where the accessibility relation R satisfies the first-order property stated in the
table. Given a normal modal logic L with corresponding class of frames F, we say
a modal formula ϕ is L-satisfiable iff there exists a frame F ∈ F, a valuation V
and a world w0 ∈ F such that 〈F, V,w0〉 |= ϕ.

A path rooted at w of length k, k ≥ 0, in a frame F = 〈W,R〉 is a sequence
~w = (w0, w1, . . . , wk) where for every i, 1 ≤ i ≤ k, wi−1 R wi. We say that the
path (w0, w1, . . . , wk) connects w0 and wk. For a path ~w = (w0, . . . , wk) and
world wk+1 with wk R wk+1, ~w ◦ wk+1 denotes the path (w0, . . . , wk, wk+1). A
path (w0) of length 0 is identified with its root w0. We denote the set of all paths

rooted at a world w0 in F by ~F [w0] and the set of all paths by ~F . The function

trm : ~F →W maps every path ~w = (w0, . . . , wk) to its terminal world wk while

the function len : ~F → N maps every path ~w = (w0, w1, . . . , wk) to its length k.

A rooted Kripke structure M = 〈W,R, V,w0〉 is a rooted tree Kripke structure
iff R is a tree, that is, a directed acyclic connected graph where each node has at
most one predecessor, with root w0. It is a rooted tree Kripke model of a modal
formula ϕ iff 〈W,R, V,w0〉 |= ϕ. In a rooted tree Kripke structure with root w0

for every world wk ∈W there is exactly one path ~w connecting w0 and wk; the
modal level of wk (in M), denoted by mlM (wk), is given by len(~w).

Let F = 〈W,R〉 be a Kripke frame with w ∈W . The unravelling Fu[w] of F

at w is the frame 〈 ~W, ~R〉 where:

– ~W = ~F [w] is the set of all rooted paths at w in F ;

– for all ~v, ~w ∈ ~W , if ~w = ~v ◦ w for some w ∈W , then ~v ~R ~w.

Let F = 〈W,R〉 and F ′ = 〈W ′, R′〉 be two Kripke frames. A function f : W 7→W ′

is a p-morphism (or a bounded morphism) from F to F ′ if the following holds:

– if v R w, then f(v)R′ f(w).

– if f(u)R′ w, then there exists v ∈W s.t. f(v) = w and u R v.

Analogously for Kripke models. For F = 〈W,R〉, M ′ = 〈F, V ′, w0〉, and M =
〈Fu[w0], V, (w0)〉, the function trm is a p-morphism from M to M ′.

When considering local satisfiability, the following holds (see, [8]):

Theorem 1. Let ϕ be a modal formula. Then ϕ is K -satisfiable iff there is a
finite rooted tree Kripke structure M = 〈F, V,w0〉 such that 〈M,w0〉 |= ϕ.
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ϕ ∧ ϕ ⇒ ϕ

ϕ ∨ ϕ ⇒ ϕ

ϕ ∧ true ⇒ ϕ

ϕ ∧ ¬ϕ ⇒ false

ϕ ∨ ¬ϕ ⇒ true

ϕ ∧ false ⇒ false

2true ⇒ true

3false ⇒ false

ϕ ∨ false ⇒ ϕ

¬true ⇒ false

¬false ⇒ true

ϕ ∨ true ⇒ true

¬¬ϕ ⇒ ϕ

Table 2. Rewriting Rules for Simplification

For the normal form transformation presented in the next section we assume
that any modal formula ϕ has been simplified by exhaustively applying the
rewrite rules in Table 2 and is in Negation Normal Form (NNF), that is, a
formula where only propositional symbols are allowed in the scope of negations.
We say that such a formula is in simplified NNF.

3 Layered Normal Form with Sets of Levels

A formula to be tested for satisfiability is first transformed into a normal form
called Separated Normal Form with Sets of Modal Levels, SNFsml, whose lan-
guage extends that of modal logic with labels consisting of sets of modal levels.
Informally, we write S : ϕ, where S is a set of natural numbers, to denote that
a formula ϕ is true at modal levels ml ∈ S. We write ? : ϕ instead of N : ϕ.

We introduce some notation that will be used in the following. Let S+ =
{l+1 ∈ N | l ∈ S}, S− = {l−1 ∈ N | l ∈ S}, and S≥ = {n | n ≥ min(S)}, where
min(S) is the least element in S. Note that the restriction of the elements being
in N implies that S− cannot contain negative numbers.

The labels in SNFsml work as a kind of weak universal operator, allowing us
to talk about formulae that are satisfied at all worlds in a given set of modal
levels. Formally, we restrict ourselves to rooted tree Kripke structures M =
〈W,R, V,w0〉 and if S is a set of modal levels, then by M [S] we denote the set of
worlds that are at a modal level in S, that is, M [S] = {w ∈ W | mlM (w) ∈ S}.
The satisfaction of labelled formulae in a rooted tree Kripke structure M is then
defined as follows:

M |= S : ϕ iff for every world w ∈M [S], we have 〈M,w〉 |= ϕ.

If M |= S : ϕ, then we say that S : ϕ holds in M . Note that if S = ∅, then
M |= S : ϕ trivially holds. For a set Φ of labelled formulae, M |= Φ iff M |= S : ϕ
for every S : ϕ in Φ, and we say Φ is K -satisfiable.

A labelled modal formula is then an SNFsml clause iff it is of one of the
following forms:

– Literal clause S :
∨r
b=1 lb

– Positive modal clause S : l′ → 2l
– Negative modal clause S : l′ → 3l

where S ⊆ N and l, l′, lb are propositional literals with 1 ≤ b ≤ r, r ∈ N. Positive
and negative modal clauses are together known as modal clauses. We regard a
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literal clause as a set of literals, that is, two clauses are the same if they contain
the same set of literals.

We assume that the set P of propositional symbols is partitioned into two
infinite sets Q and T such that for every modal formula ψ we have var(ψ) ⊂ Q
and there exists a propositional symbol tψ ∈ T uniquely associated with ψ.

Given a modal formula ϕ in simplified NNF and L ∈ {K,KB,KD,KT,K4,K5},
then we can obtain a set ΦL of clauses in SNFsml such that ϕ is L-satisfiable iff
ΦL is K-satisfiable as ΦL = {{0} : tϕ} ∪ ρL({0} : tϕ → ϕ), where ρL is defined
as follows:

ρL(S : t→ true) = ∅
ρL(S : t→ false) = {S : ¬t}

ρL(S : t→ (ψ1 ∧ ψ2)) = {S : ¬t ∨ η(ψ1), S : ¬t ∨ η(ψ2)}∪ δL(S, ψ1)∪ δL(S, ψ2)

ρL(S : t→ ψ) = {S : ¬t ∨ ψ}
if ψ is a disjunction of literals

ρL(S : t→ (ψ1 ∨ ψ2)) = {S : ¬t ∨ η(ψ1) ∨ η(ψ2)} ∪ δL(S, ψ1) ∪ δL(S, ψ2)

if ψ1 ∨ ψ2 is not a disjunction of literals

ρL(S : t→ 3ψ) = {S : t→ 3η(ψ)} ∪ δL(S+, ψ)

ρL(S : t→ 2ψ) = PL(S : t→ 2ψ) ∪∆L(S : t→ 2ψ)

where η and δL are defined as follows:

η(ψ) =


ψ, if ψ is a

literal

tψ, otherwise

δL(S, ψ) =


∅, if ψ is a

literal

ρL(S : tψ → ψ), otherwise

and functions PL, ∆L are defined as shown in Table 3. The function η maps
a propositional literal ψ to itself while it maps every other modal formula ψ
to a new propositional symbol tψ ∈ T uniquely associated with ψ. We call tψ
the surrogate of ψ or simply a surrogate. The functions PKB and PK5 introduce
additional propositional symbols, called supplementary propositional symbols,
t2¬t2ψ ∈ T and t3t2ψ ∈ T , respectively, that do not correspond to subformulae
of the formula we are transforming.

Intuitively, PKB is based on the following consideration: Take a world w in
a Kripke structure M with a symmetric accessibility relation R. If there exists
a world v with w R v such that 〈M,v〉 |= 2ψ, then 〈M,w〉 |= ψ. Now, take the
contrapositive of that statement: If 〈M,w〉 6|= ψ, then for every world v with
w R v, 〈M,v〉 6|= 2ψ. Equivalently, 〈M,w〉 |= ψ or 〈M,w〉 |= 2¬2ψ. This is
expressed by the formula η(ψ) ∨ t2¬t2ψ . For PK5 , the formula t3t2ψ → 2t3t2ψ
expresses an instance of axiom schema 5 , 3ϕ → 23ϕ, with ϕ = 2ψ, i.e.,
32ψ → 232ψ. The contrapositive of axiom schema 5 is 32ϕ→ 2ϕ, equivalent
to ¬32ϕ ∨ 2ϕ. For ϕ = ψ this is expressed by the formula ¬t3t2ψ ∨ t2ψ. For
the formula ¬t3t2ψ → 2¬t2ψ, consider ¬32ψ. By duality of 2 and 3, this is
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L PL(S : t2ψ → 2ψ) ∆L(S : t2ψ → 2ψ)

K S : t2ψ → 2η(ψ) δL(S+, ψ)

KT S : t2ψ → 2η(ψ), S : ¬t2ψ ∨ η(ψ) δL(S ∪ S+, ψ)

KD S : t2ψ → 2η(ψ), S : t2ψ → 3η(ψ) δL(S+, ψ)

KB S : t2ψ → 2η(ψ),

S− : η(ψ) ∨ t2¬t2ψ , S
− : t2¬t2ψ → 2¬t2ψ

δL(S− ∪ S+, ψ)

K4 S≥ : t2ψ → 2η(ψ), S≥ : t2ψ → 2t2ψ δL((S+)≥, ψ)

K5 ? : t2ψ → 2η(ψ),

? : ¬t3t2ψ ∨ t2ψ, ? : t3t2ψ → 3t2ψ,

? : ¬t3t2ψ → 2¬t2ψ, ? : t3t2ψ → 2t3t2ψ

δL(?, ψ)

Table 3. Transformation of 2-formulae in modal logic L

equivalent to ¬¬2¬2ψ and 2¬2ψ. So, ¬32ψ → 2¬2ψ in every normal modal
logic, not only K5. The remaining labelled formulae introduced by PKB and PK5
ensure that supplementary propositional symbols are defined. For the remaining
logics the additional clauses are also based directly on the axiom schemata.

To simplify presentation in the following, we define a function ηf as follows:

ηf (ϕ1 ∧ ϕ2) = η(ϕ1) ∧ η(ϕ2) ηf (ϕ1 ∨ ϕ2) = η(ϕ1) ∨ η(ϕ2)

ηf (2ϕ) = 2η(ϕ) ηf (3ϕ) = 3η(ϕ)

and we treat the two clauses S : ¬tψ1∧ψ2
∨ η(ψ1) and S : ¬tψ1∧ψ2

∨ η(ψ2)
resulting from the normal form transformation of ψ1 ∧ ψ2 as a single ‘clause’
S : ¬tψ1∧ψ2 ∨ ηf (ψ1 ∧ ψ2). We also interchangeably write S : ¬t2ψ ∨ ηf (2ψ) for
S : t2ψ → ηf (2ψ) and, analogously, S : ¬t3ψ ∨ ηf (3ψ) for S : t3ψ → ηf (3ψ).
We then call any clause of the form S : ¬tψ ∨ ηf (ψ) a definitional clause.

Definition 1. Let Φ be a set of SNFsml clauses. We say tψ ∈ T occurs at level
ml in Φ iff either

(a) there exists a clause S : ϑ in Φ with ml ∈ S such that ϑ is a propositional
formula and tψ occurs positively in ϑ, or

(b) there exists a clause S : t2ψ → 2tψ in Φ with ml − 1 ∈ S, or
(c) there exists a clause S : t3ψ → 3tψ in Φ with ml − 1 ∈ S.

Definition 2. Let Φ be a set of SNFsml clauses. Then Φ is definition-complete
iff for every tψ ∈ T and every level ml, if tψ occurs at level ml in Φ then there
exists a clause S : ¬tψ ∨ ηf (ψ) in Φ with ml ∈ S.

Theorem 2. Let L ∈ {K ,KB ,KD,KT ,K4 ,K5}. Then ΦL = {{0} : tϕ} ∪
ρL({0} : tϕ → ϕ) is definition-complete.
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Proof. By induction over the computation of ΦL. It is straightforward to see that
the transformation of labelled formulae S : t→ (ψ1 ∧ ψ2) and S : t→ (ψ1 ∨ ψ2)
only introduces surrogates at levels in S and ∆L then adds definitional clauses
for those surrogates. The transformation of a labelled formula S : t3ψ → 3ψ may
introduce a surrogate at levels in S+ and δL(S+, ψ) then adds definitional clauses
for those surrogates. The transformation of a labelled formula S : t2ψ → 2ψ
depends on the logic L. We can see that for every level at which a new surrogate
occurs in PL(S : t2ψ → 2ψ), then ∆L(S : t2ψ → 2ψ) contains a definitional
clause for it at that level.

4 Correctness

Due to space constraints we only prove the correctness of the transformation for
KB. We first state several lemmata that are used in the correctness proofs for
all logics.

Lemma 1. Let Φ be a set of definitional clauses such that every tψ occurring
in Φ is an element of T and all other propositional symbols occurring in Φ are
in Q. Let M = 〈W,R, V,w0〉 be a rooted Kripke structure. Let 〈 ~W, ~R〉 be the

unravelling of 〈W,R〉 at w0. Let ~M = 〈 ~W, ~R, ~VΣ , (w0)〉 be a Kripke structure
such that

– ~VΣ(p) = {~w ∈ ~W | trm(~w) ∈ V (p)} for every propositional symbol p ∈ Q, and

– ~VΣ(tψ) = {~w ∈ ~W | 〈 ~M, ~w〉 |= ψ} for every surrogate tψ ∈ T ∩ var(Φ).

Then ~M |= Φ.

Lemma 2. Let ϕ be a L-satisfiable modal formula in simplified NNF where
L is a normal modal logic and let Φ = {{0} : tϕ} ∪ ρK ({0} : tϕ → ϕ). Let

M = 〈W,R, V,w0〉 be a rooted K model of ϕ. Let 〈 ~W, ~R〉 be the unravelling of

〈W,R〉 at w0. Let ~M = 〈 ~W, ~R, ~V , (w0)〉 be a Kripke structure such that

– ~V (p) = {~w ∈ ~W | trm(~w) ∈ V (p)} for every propositional symbol p ∈ var(ϕ),
and

– ~V (tψ) = {~w ∈ ~W | 〈 ~M, ~w〉 |= ψ} for every surrogate tψ ∈ T ∩ var(Φ).

Then ~M |= Φ.

Lemma 3. Let M = 〈W,R, V,w0〉 be a rooted Kripke structure. Let 〈 ~W, ~R〉 be

the unravelling of 〈W,R〉 at w0. Let ~M = 〈 ~W, ~R, ~VΣ , (w0)〉 where ~VΣ(p) = {~w ∈
~W | trm(~w) ∈ V (p)} for every propositional symbol p ∈ Q.

Then for every modal formula ψ over Q and for every world ~w ∈ ~W , 〈 ~M, ~w〉 |=
ψ iff 〈M, trm(~w)〉 |= ψ.

Lemma 4. Let ϕ be a modal formula in simplified NNF. Let ΦK = {{0} :
tϕ}∪ρK ({0} : tϕ → ϕ). Let Φ with ΦK ⊆ Φ be a definition-complete set of SNFsml
clauses, let M = 〈W,R, V,w0〉 be a tree K model of Φ and let M ′ = 〈W,R′, V, w0〉
be such that
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(4a) R ⊆ R′;
(4b) for every modal clause S : t2ψ → 2η(ψ) in Φ and every world w ∈ M [S],

〈M ′, w〉 |= t2ψ → 2η(ψ);
(4c) for every modal clause S : t2ψ → 2tψ in Φ and all worlds v, w ∈ W , if

(i) w ∈M [S] and (ii) wR′v then (iii) there exists a clause S′ : ¬tψ∨ηf (ψ)
in Φ with v ∈M [S′].

Then 〈M ′, w0〉 |= ϕ.

Theorems 3 and 4 now state the correctness of our transformation for KB.

Theorem 3. Let ϕ be a modal formula in simplified NNF. Let ΦB = {{0} :
tϕ} ∪ ρKB({0} : tϕ → ϕ). If ϕ is KB-satisfiable, then ΦB is K -satisfiable.

Proof. The main idea is to show that given a rooted KB model of ϕ, then a small
variation of its unravelling is a rooted tree K model of ΦB .

Let M = 〈W,R, V,w0〉 be a rooted KB model of ϕ with 〈M,w0〉 |= ϕ and

symmetric relationship R. Let 〈 ~W, ~R〉 be the unravelling of 〈W,R〉 at w0. Let
~MB = 〈 ~W, ~R, ~VB , (w0)〉 where

– ~VB(p) = {~w ∈ ~W | trm(~w) ∈ V (p)} for every propositional symbol p ∈ var(ϕ),

– ~VB(tψ) = {~w ∈ ~W | 〈 ~MB , ~w〉 |= ψ} for every surrogate tψ ∈ var(ΦB) \ var(ϕ)
introduced by rewriting, and

– ~VB(t2¬t2ψ ) = {~w ∈ ~W | 〈 ~MB , ~w〉 |= 2¬2ψ} for every supplementary propo-
sitional symbol t2¬t2ψ introduced in the normal form transformation of a
labelled formula S : t2ψ → 2ψ.

Note that ~VB is well-defined as for every surrogate tψ ∈ T , ψ only contains
propositional symbols in Q. Let ΦK = {{0} : tϕ} ∪ ρK ({0} : tϕ → ϕ).

We now consider the clauses occurring in ΦB and show that they hold in ~MB .
By Lemma 2 it follows that ~MB |= ΦK . Also, all definitional clauses in ΦB \ ΦK

are true in ~MB by Lemma 1.
Next consider clauses of the form

(1) S′ : η(ψ) ∨ t2¬t2ψ (2) S′ : t2¬t2ψ → 2¬t2ψ

where t2ψ is a surrogate for 2ψ. These are not in ΦK . We show both are true in
~MB . We do so by first considering that t2¬t2ψ is true at a world and then that

it is false.
Case (a): Let ~w ∈ ~MB [S′] with 〈 ~MB , ~w〉 |= t2¬t2ψ . Clearly, 〈 ~MB , ~w〉 |= η(ψ) ∨
t2¬t2ψ . Also, by definition of ~MB , 〈MB , ~w〉 |= 2¬2ψ. So, for every ~v ∈ ~W

with ~w ~R ~v, 〈 ~MB , ~v〉 |= ¬2ψ. As t2ψ is a surrogate for 2ψ, by definition of
~VB , ~v 6∈ ~VB(t2ψ) and 〈 ~MB , ~v〉 |= ¬t2ψ. Thus, 〈 ~MB , ~w〉 |= 2¬t2ψ and, by the

semantics of implication, 〈 ~MB , ~w〉 |= t2¬t2ψ → 2¬t2ψ.

Case (b): Let ~w ∈ ~MB [S′] with 〈 ~MB , ~w〉 6|= t2¬t2ψ . Clearly, by the semantics

of implication, 〈 ~MB , ~w〉 |= t2¬t2ψ → 2¬t2ψ. Also, by definition of ~VB , ~w 6∈
~VB(t2¬t2ψ ) implies 〈 ~MB , ~w〉 6|= 2¬2ψ which in turn implies 〈 ~MB , ~w〉 |= 32ψ. So,

there exists ~v ∈ ~W with ~w ~R~v and 〈 ~MB , ~v〉 |= 2ψ. Since trm is a p-morphism from
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~MB to M , trm(~w)R trm(~v). Since R is symmetric, we also have trm(~v)R trm(~w)

and by construction of ~MB , for ~u = ~v ◦ trm(~w) we have ~v ~R ~u. Since 〈 ~MB , ~v〉 |=
2ψ, 〈 ~MB , ~u〉 |= ψ. As trm is a p-morphism and 〈M, trm(~u)〉 |= ψ and since
trm(~w) = trm(~u), 〈M, trm(~w)〉 |= ψ. By Lemma 3, from 〈M, trm(~w)〉 |= ψ we

obtain 〈 ~MB , ~w〉 |= ψ. If ψ is a literal, then η(ψ) = ψ and 〈M, ~w〉 |= η(ψ). If

ψ is not a literal, then η(ψ) = tψ and from 〈 ~MB , ~w〉 |= ψ, by definition of ~VB ,

~w ∈ ~VB(tψ) and 〈 ~MB , ~w〉 |= tψ. So, 〈M, ~w〉 |= η(ψ) ∨ t2¬t2ψ .

Thus, in both cases, for arbitrary ~w ∈ ~MB [S′], η(ψ)∨t2¬t2ψ and t2¬t2ψ → 2¬t2ψ
and therefore Clauses (1) and (2) are true in ~MB .

Theorem 4. Let ϕ be a modal formula in simplified NNF. Let ΦB = {{0} :
tϕ} ∪ ρKB({0} : tϕ → ϕ). If ΦB is K -satisfiable, then ϕ is KB-satisfiable.

Proof. The main idea is to show that given a rooted tree K model of ΦB , its
symmetric closure is a rooted KB model of ϕ.

Let M = 〈W,R, V,w0〉 be a rooted tree K model of ΦB . Let MB = 〈W,RB ,
V B , w0〉 be a structure such that

(a) RB is the symmetric closure of R, that is, RB is the smallest relation on W
such that R ⊆ RB and for every v, w ∈W , v RB w implies w RB v;

(b) V B(p) = V (p) for every propositional symbol.

Let ΦK = {{0} : tϕ} ∪ ρK ({0} : tϕ → ϕ). We show that MB |= ΦB satisfies the
three preconditions of Lemma 4. By Lemma 4 this in turn implies that MB |= ϕ.

– Condition (4a) holds as R ⊆ RB .

– For Condition (4b) let (3) S : t2ψ → 2η(ψ) be a modal clause in ΦB .
Then ΦB also contains the additional clauses (4) S− : η(ψ) ∨ t2¬t2ψ and

(5) S− : t2¬t2ψ → 2¬t2ψ. Let w ∈M [S]. We have to show that (6) 〈MB , w〉 |=
t2ψ → 2η(ψ). Assume 〈MB , w〉 |= t2ψ. As V B(t2ψ) = V (t2ψ) this implies
〈M,w〉 |= t2ψ. Let v ∈W such that w RB v.

Case (a): Assume w R v. As 〈M,w〉 |= t2ψ and 〈M,w〉 |= t2ψ → 2η(ψ), we
have 〈M,w〉 |= 2η(ψ). As w R v, 〈M, v〉 |= η(ψ). As η(ψ) is a literal and
V B = V we obtain 〈MB , v〉 |= η(ψ). So, 〈MB , w〉 |= t2ψ → 2η(ψ).

Case (b): Assume v is not reachable from w viaR. Then wRBv was introduced
by the symmetric closure operation on R and we must have v R w. That is,
v is a R-predecessor of w and from w ∈ M [S] it follows that v ∈ M [S−].
So, (7) 〈M,v〉 |= η(ψ) ∨ t2¬t2ψ and (8) 〈M, v〉 |= t2¬t2ψ → 2¬t2ψ. From
v Rw, 〈M,w〉 |= t2ψ and (8), it follows that 〈M,v〉 |= ¬t2¬t2ψ . This together

with (7) implies 〈M, v〉 |= η(ψ). As η(ψ) is a literal and V B = V we obtain
〈MB , v〉 |= η(ψ). So, 〈MB , w〉 |= t2ψ → 2η(tψ).

Case (a) and Case (b) together show that Property (6) holds.

– For Condition (4c) let (9) S : t2ψ → 2tψ be in ΦB , v, w ∈W , mlM (w) = ml ∈
S (i.e., w ∈ M [S]) and w RB v. We need to show that there exists a clause
S′ : ¬tψ ∨ ηf (ψ) in ΦB with v ∈M [S′].

As in the previous case wRB v implies either wR v or v Rw. In the first case
mlM (v) = ml + 1 while in the second case mlM (v) = ml − 1.



86 F. Papacchini et al.

As ΦB contains Clause (9), tψ occurs at level ml+1 in ΦB . By definition of ρKB ,
ΦB also contains the clause (10) S− : tψ∨ t2¬t2ψ . As ml ∈ S, ml−1 ∈ S− and
therefore tψ also occurs at level ml−1 in ΦB . By Theorem 2, ΦB is definition-
complete, so there must be a clause S′ : ¬tψ ∨ ηf (ψ) in ΦB such that ml + 1
and ml − 1 in S′.

Theorem 5. Let ϕ be a modal formula in simplified NNF, L ∈ {K ,KB ,KD,KT ,
K4 ,K5}, and ΦL = {{0} : tϕ} ∪ ρL({0} : tϕ → ϕ). Then ϕ is L-satisfiable iff ΦL
is K -satisfiable.

5 Comparison With Related Work

The approaches most closely related to ours are Kracht’s reductions of normal
modal logics to basic modal logic [11,12], the global modal resolution calcu-
lus [14], and Schmidt and Hustadt’s axiomatic translation principle for transla-
tions of normal modal logics to first-order logic [24].

The first significant difference to our approach is that Kracht’s reductions
and the axiomatic translation exclude the modal operator 3 from the language
and only consider the modal operator 2.

In order to present Kracht’s approach, we need some additional notions.
Let sf(ϕ), dg(ϕ), and |S| denote the set of all subformulae of ϕ, the maximum
nesting of modal operators in ϕ, and the cardinality of the set S, respectively.
Let 30ψ = 20ψ = 2<1ψ = ψ, 2<n+1ψ = (ψ ∧ 22<nψ), 2n+1ψ = 22nψ, and
3n+1ψ = 33nψ. We can then define a reduction function ρKL for a normal modal
logic L in {KB,KD,KT,K4} as follows:

ρK
L (ϕ) =

ϕ ∧2<|sf(ϕ)|+1PK
K4 (ϕ), for L = K4

ϕ ∧2<dg(ϕ)+1PK
L (ϕ) otherwise

where PK
KB(ϕ)= {¬ψ → 2¬2ψ | 2ψ ∈ sf(ϕ)} PK

KD(ϕ)= {¬2false}
PK

K4 (ϕ)= {2ψ → 22ψ | 2ψ ∈ sf(ϕ)} PK
KT (ϕ)= {2ψ → ψ | 2ψ ∈ sf(ϕ)}

Kracht shows that ϕ is L-satisfiable iff ρKL(ϕ) is K-satisfiable. There are three
differences to our approach. First, PK

L (ϕ) will include an axiom instance for
every occurrence of a subformula ¬2ψ, equivalent to 3¬ψ, in ϕ. In contrast,
our approach requires no logic specific treatment of such subformulae. Second,
the use of 2<nPK

L (ϕ) in ρKL means that the axiom instance is available at every
modal level. This means, for example, that for ϑ1 = 3100(¬p∧2p), the formula
ρKKT (ϑ1) contains the axiom instance 2p→ p over 100 times, although it is only
required at the level at which 2p occurs. Third, this is further compounded if
the formula ψ in 2ψ is itself a complex formula. We try to avoid that by using
a surrogate propositional symbol tψ instead, but this will only have a positive
effect if the definitional clauses for tψ do not have to be repeated.

The global modal resolution (GMR) calculus operates on SNFK clauses, that
is, clauses of the form

2∗(start→
∨r
b=1 lb) 2∗(true→

∨r
b=1 lb) 2∗(l′ → 2l) 2∗(l′ → ¬2l)
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[EUC1] 2∗(l1 → ¬2¬l)

2∗(true → ¬l1 ∨ t3l) 2∗(t3l → ¬2¬l)
2∗(¬t3l → 2¬l) 2∗(t3l → 2t3l)

[EUC2] 2∗(l → 2l2)

2∗(t3l → 2l2) 2∗(t3l → ¬2¬l)
2∗(¬t3l → 2¬l) 2∗(t3l → 2t3l)

Table 4. Inference rules in [14] for K5 (EUC1 and EUC2).

where l, l′, lb are propositional literals with 1 ≤ b ≤ r, r ∈ N, and 2∗ is the uni-
versal operator. The calculus has specific inference rules for normal modal logics
such as KB, KD, KT, K4, K5. Table 4 shows the two additional rules for K5, the
only logic for which there are rules for both 2 and ¬2¬, i.e., 3. These inference
rules can be seen to perform an ‘on-the-fly’ computation of a transformation.
Note that the clauses produced by PK5 differ from those produced by GMR for
K5. Implicitly, our results here also show that it should be possible to eliminate
EUC1 from the GMR calculus.

For the axiomatic translation, we only present the function PRS
L that com-

putes the logic dependent first-order clausal formulae that are part of the overall
translation.

PRS
KB(2ψ) = {∀x(¬Q2ψ(y) ∨ ¬R(x, y) ∨Qψ(x)) | 2ψ ∈ sf(ϕ)}

PRS
KD(2ψ) = {∀x(¬Q2ψ(x) ∨Q¬2¬ψ(x)) | 2ψ ∈ sf(ϕ)}
PRS
KT(2ψ) = {∀x(¬Q2ψ(x) ∨Qψ(x)) | 2ψ ∈ sf(ϕ)}
PRS
K4 (2ψ) = {∀xy(¬Q2ψ(x) ∨ ¬R(x, y) ∨Q2ψ(y)) | 2ψ ∈ sf(ϕ)}

PRS
K5 (2ψ) = {∀xy(¬Q2ψ(y) ∨ ¬R(x, y) ∨Q2ψ(x)),

∀xy(¬Q2¬2ψ(y) ∨ ¬R(x, y) ∨Q2¬2ψ(x)) | 2ψ ∈ sf(ϕ)}

The predicate symbols Qψ correspond to our surrogate symbols tψ. The clausal
formulae used in the treatment of KT and K4 are translations of the SNFml
clauses we use (or vice versa). KB and K5 are handled in a different way as the
first-order clausal formulae refer directly the accessibility relation and can there-
fore more easily express the transfer of information to a predecessor world. The
universal quantification over worlds also means that the constraints expressed
by the formulae hold at all modal levels without the need of any repetition.

In Section 6 we will also use the relational and semi-functional translation
of modal logics to first-order logic combined with structural transformation to
clause normal form. In both approaches 2ψ is translated as ∀xy(¬Q2ψ(x) ∨
¬R(x, y)∨Qψ, while 3ψ becomes ∀x∃y(¬Q3ψ(x)∨R(x, y)) and ∀x∃α(¬Q3ψ(x)∨
R(x, [xα])) in the relational and semi-functional translation, respectively. Then,
depending on the modal logics, further formulae representing the semantic prop-
erties of the accessibility R are added. For the relational translation these will
simply be the formulae in the fourth column of Table 1. The semi-functional
translation uses collections of partial accessibility function in addition to the ac-
cessibility relation. A predicate def is used to represent on which worlds a partial
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accessibility function is defined. For each modal logic there is then again a back-
ground theory consisting of formulae over def and R that represents the prop-
erties of the underlying accessibility relation which is added to the translation
of a formula. For example, for K5 the background theory is: ∀xy∀αβ((¬def(x)∨
def(y))∧ (¬def(w0)∨R(w0, [w0α]))∧ (¬def(x)∨¬def(y)∨R([xα], [yβ]))), where
w0 is a constant representing the root world in a rooted Kripke structure.

6 Evaluation

We have compared the performance of the following approaches: (i) the com-
bination of our reductions with the modal-layered resolution (MLR) calculus
for SNFml clauses [15] implemented in the modal theorem prover KSP, with
three different refinements for resolution inferences on labelled propositional
clauses; (ii) the global modal resolution (GMR) calculus, also implemented in
KSP, with three different refinements for resolution inferences on propositional
clauses; (iii) the combinations of the relational and semi-functional translation of
modal logics to first-order logic with ordered first-order resolution implemented
in the first-order theorem prover SPASS. In total this gives us eight different
approaches to compare. The axiomatic translation is currently not implemented
in SPASS. Other provers, such as LEO-III [26], LWB [9], MleanCoP [21], do not
have built-in support for the full range of logics considered here. LoTREC 2.0 [7]
supports all the logics, but is not intended as automatic theorem prover.

The modal-layered resolution calculus operates on SNFml clauses, that is,
clauses of the form

ml :
∨r
b=1 lb ml : l′ → 2l ml : l′ → 3l

where ml ∈ N ∪ {?} and l, l′, lb are propositional literals with 1 ≤ b ≤ r,
r ∈ N. In the implementation of the reductions presented in Section 3, we take
a SNFsml clause S : ψ simply as an abbreviation of the set of SNFml clauses
{ml : ψ | ml ∈ S}. Note that this also means that we will have to repeat similar
resolution inferences for different modal levels.

KSP [13] implements the reductions presented in Section 3 as well as a normal
form transformation of modal formulae to sets of SNFK clauses. It implements
both the MLR and the GMR calculus. Resolution inferences between (labelled)
propositional clauses can either be unrestricted (cplain option), restricted by
an ordering (cord option), that is, clauses can only be resolved on their maximal
literals with respect to an ordering chosen by the prover in such a way to preserve
completeness, restricted to negative resolution (cneg option), that is, one of the
premises in an inference has to be a negative clause, or restricted to positive
resolution. We do not include the last option in our evaluation as it typically
performs worse. KSP also implements a range of simplification rules that are
applied to modal formulae before their transformation to normal form. Of those
we have enabled pure literal elimination (early ple option), simplification using
the Box Normal Form [22] and Prenex Normal Form (bnfsimp and prenex
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Logic Status Total KSP
(GMR
calcu-

lus,
cneg)

KSP
(GMR
calcu-

lus,
cord)

KSP
(GMR
calcu-

lus,
cplain)

KSP
(MLR
calcu-

lus,
cneg)

KSP
(MLR
calcu-

lus,
cord)

KSP
(MLR
calcu-

lus,
cplain)

SPASS
(semi-
func-

tional)

SPASS
(rela-

tional)

K Sat 180 110 139 93 141 155 132 92 97

K Unsat 180 154 156 151 154 156 153 134 122

KD Sat 180 125 143 118 141 155 133 107 103

KD Unsat 180 154 156 151 154 156 153 136 130

KT Sat 100 53 60 37 46 56 26 47 39

KT Unsat 260 233 236 225 230 238 220 222 199

KB Sat 122 28 35 41 49 89 22 31 23

KB Unsat 238 186 196 197 207 211 205 159 169

K4 Sat 161 33 39 38 68 125 36 0 0

K4 Unsat 199 124 112 146 168 165 163 109 35

K5 Sat 60 14 10 9 7 10 4 7 0

K5 Unsat 300 251 246 259 255 254 246 255 124

All Sat 803 363 426 336 452 590 353 284 262

All Unsat 1357 1102 1102 1129 1168 1180 1140 1015 779

Table 5. Experimental results on LWB benchmark collection

options) [17]. For clause processing, unit resolution and pure elimination are
enabled (unit, lhs unit, and ple options).

SPASS 3.9 [27,28] supports automated reasoning in extended modal logics,
including all logics considered here, PDL-like modal logics as well as descrip-
tion logics. It includes eight different translations of modal logics to first-order
logic. In our evaluation we have used the relational translation and the semi-
functional translation. For the local satisfiability problem in KB to K5, for the
relational translation we have added the first-order frame properties given in
Table 1 while for the semi-functional translation we have added the background
theories devised by Nonnengart [20]. For the transformation to first-order clausal
form, we have enabled renaming of quantified subformulae. The only inference
rules used are ordered resolution and ordered factoring, the reduction rules used
are condensing, backward subsumption and forward subsumption. For the rela-
tional and semi-functional translation for K, KB, KD, and KT we thereby obtain
a decision procedure, while for the other logics we do not. For K4 and K5, the
fragment of first-order clausal logic corresponding to the semi-functional trans-
lation of modal formula and their background theories is decidable by ordered
resolution with selection [25]. However, the non-trivial ordering and selection
function required is not currently implemented in SPASS.

For our evaluation we have chosen the LWB basic modal logic benchmark
collection [2], with 20 formulae in each of 18 parameterised classes. For K, all
formulae in 9 classes are satisfiable while all formulae in the other 9 classes are
unsatisfiable. In their negation normal form, 63% of modal operators are 2 and
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37% are 3 operators. We have used the collection for each of the six logics. If a
formula is unsatisfiable in K then it remains unsatisfiable in the other five logics,
while the opposite is not true. As we move to logics other than K, it is also no
longer the case that all formulae in a class have the same satisfiability status.

The third column in Table 5 indicates the total number of satisfiable and
unsatisfiable formulae for each logic. In the last two lines of the table we sum
up the results for all logics. The last eight columns in the table show how many
formulae each of the approaches were able to solve with a time limit of 100 CPU
seconds for each formula. Benchmarking was performed on a PC with an AMD
Ryzen 5 5600X CPU @ 4.60GHz max and 32GB main memory using Fedora
release 33 as operating system.

As we can see, the new reductions combined with the modal-layered reso-
lution (MLR) calculus and ordered resolution refinement (cord) perform best,
achieving the highest number of solved formulae in 8 out of 12 individual cat-
egories in the table, on two of those equal with the global modal resolution
(GMR) calculus. On 3 categories, GMR outperfoms MLR. On both satisfiable
and unsatisfiable formulae in K5 this can be seen as evidence that ‘on-the-fly’
transformation offers a (slight) advantage over our approach given that the ad-
ditional clauses hold universally in both approaches. For SPASS we see a clear
advantage of the semi-functional translation over the relational one, on both
satisfiable and unsatisfiable formulae.

7 Conclusion and Future Work

We have presented new reductions of propositional modal logics KB, KD, KT,
K4, K5 to Separated Normal Form with Sets of Modal Levels. We have shown
experimentally that these reductions allow us to reason effectively in these logics.

The obvious next step is to consider extensions of the basic modal logic K
with combinations of the axioms B, D, T, 4, and 5. Unfortunately, a simple
combination of the reductions for each of the axioms is not sufficient to obtain a
satisfiability-preserving reduction for the such modal logics. An example is the
simple formula ¬p ∧332p which is KB4-unsatisfiable. If we define

PKB4 (S : t2ψ → 2ψ) = PKB(S : t2ψ → 2ψ) ∪ PK4 (S : t2ψ → 2ψ)

∆KB4 (S : t2ψ → 2ψ) = δKB4 (?, ψ),

that is, PKB4 is the union of PKB and PK4 , then the clause set obtained from
{{0} : t0} ∪ ρKB4 ({0} : t0 → ¬p ∧ 332p) is K-satisfiable. The same issue also
occurs in the axiomatic translation of modal logics to first-order logic where the
translation for KB4 is not simply the combination of the translations for KB and
K4 [24, Theorem 5.6]. We are currently exploring solutions to this problem.

Regarding practical applications, it would be advantageous to have an im-
plementation of a calculus that operates directly SNFsml clauses. This would
greatly reduce the number of inference steps performed on satisfiable formulae
and simplify proof search in general. Again, such an implementation is future
work.
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