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Abstract. The material presented in this paper contributes to estab-
lishing a basis deemed essential for substantial progress in Automated
Deduction. It identifies and studies global features in selected problems
and their proofs which offer the potential of guiding proof search in a
more direct way. The studied problems are of the wide-spread form of “ax-
iom(s) and rule(s) imply goal(s)”. The features include the well-known
concept of lemmas. For their elaboration both human and automated
proofs of selected theorems are taken into a close comparative considera-
tion. The study at the same time accounts for a coherent and comprehen-
sive formal reconstruction of historical work by Łukasiewicz, Meredith
and others. First experiments resulting from the study indicate novel
ways of lemma generation to supplement automated first-order provers
of various families, strengthening in particular their ability to find short
proofs.

1 Introduction

Research in Automated Deduction, also known as Automated Theorem Proving
(ATP), has resulted in systems with a remarkable performance. Yet, deep math-
ematical theorems or otherwise complex statements still withstand any of the
systems’ attempts to find a proof. The present paper is motivated by the thesis
that the reason for the failure in more complex problems lies in the local orient-
edness of all our current methods for proof search like resolution or connection
calculi in use.

In order to find out more global features for directing proof search we start
out here to study the structures of proofs for complex formulas in some detail
and compare human proofs with those generated by systems. Complex formulas
of this kind have been considered by Łukasiewicz in [19]. They are complex in the
sense that current systems require tens of thousands or even millions of search
steps for finding a proof if any, although the length of the formulas is very short
indeed. How come that Łukasiewicz found proofs for those formulas although
he could never carry out more than, say, a few hundred search steps by hand?
Which global strategies guided him in finding those proofs? Could we discover
such strategies from the formulas’ global features?

By studying the proofs in detail we hope to come closer to answers to those
questions. Thus it is proofs, rather than just formulas or clauses as usually in
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ATP, which is in the focus of our study. In a sense we are aiming at an ATP-
oriented part of Proof Theory, a discipline usually pursued in Logic yet under
quite different aspects. This meta-level perspective has rarely been taken in ATP
for which reason we cannot rely on the existing conceptual basis of ATP but have
to build an extensive conceptual basis for such a study more or less from scratch.

This investigation thus analyzes structures of, and operations on, proofs for
formulas of the form “axiom(s) and rule(s) imply goal(s)”. It renders condensed
detachment, a logical rule historically introduced in the course of studying these
complex proofs, as a restricted form of the Connection Method (CM) in ATP. All
this is pursued with the goal of enhancing proof search in ATP in mind. As noted,
our investigations are guided by a close inspection into proofs by Łukasiewicz
and Meredith. In fact, the work presented here amounts at the same time to a
very detailed reconstruction of those historical proofs.

The rest of the paper is organized as follows: In Sect. 2 we introduce the
problem and a formal human proof that guides our investigations and compare
different views on proof structures. We then reconstruct in Sect. 3 the historical
method of condensed detachment in a novel way as a restricted variation of the
CM where proof structures are represented as terms. This is followed in Sect. 4 by
results on reducing the size of such proof terms for application in proof shortening
and restricting the proof search space. Section 5 presents a detailed feature table
for the investigated human proof, and Sect. 6 shows first experiments where the
features and new techniques are used to supplement the inputs of ATP systems
with lemmas. Section 7 concludes the paper. Supplementary technical material
including proofs is provided in the report [37]. Data and tools to reproduce the
experiments are available at http://cs.christophwernhard.com/cd.

2 Relating Formal Human Proofs with ATP Proofs

In 1948 Jan Łukasiewicz published a formal proof of the completeness of his
shortest single axiom for the implicational fragment (IF), that is, classical propo-
sitional logic with implication as the only logic operator [19]. In his notation the
implication p → q is written as Cpq . Following Frank Pfenning [27] we formal-
ize IF on the meta-level in the first-order setting of modern ATP with a single
unary predicate P to be interpreted as something like “provable” and represent
the propositional formulas by terms using the binary function symbol i for im-
plication. We will be concerned with the following formulas.

Nickname [28][29, p. 319] Łukasiewicz’s notation First-order representation

Simp CpCqp ∀pq P(i(p, iqp))
Peirce CCCpqpp ∀pq P(i(i(ipq), p), p)
Syll CCpqCCqrCpr ∀pqr P(i(ipq, i(iqr, ipr)))
Syll Simp CCCpqrCqr ∀pqr Pi(i(ipq, r), iqr)
Łukasiewicz CCCpqrCCrpCsp ∀pqrsP(i(i(ipq, r), i(irp, isp)))

IF can be axiomatized by the set of the three axioms Simp, Peirce and Syll ,
known as Tarski-Bernays Axioms. Alfred Tarski in 1925 raised the problem to

http://cs.christophwernhard.com/cd
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Pi(i(ipq, r), i(irp, isp)) ∧ (Px ∧ Pixy → Py) → Pi(ipq, i(iqr, ipr))
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Fig. 1. ŁDS along with its five unifiable connections.

characterize IF by a single axiom and solved it with very long axioms, which led
to a search for the shortest single axiom, which was found with the axiom nick-
named after him in 1936 by Łukasiewicz [19]. In 1948 he published his derivation
that Łukasiewicz entails the three Tarski-Bernays Axioms, expressed formally by
the method of substitution and detachment. Detachment is also familiar as modus
ponens. Łukasiewicz’s proof involves 34 applications of detachment. Among the
Tarski-Bernays axioms Syll is by far the most challenging to prove, hence his
proof centers around the proof of Syll , with Peirce and Simp spinning off as
side results. Carew A. Meredith presented in [24] a “very slight abridgement” of
Łukasiewicz’s proof, expressed in his framework of condensed detachment [28],
where the performed substitutions are no longer explicitly presented but implic-
itly assumed through unification. Meredith’s proof involves only 33 applications
of detachment. In our first-order setting, detachment can be modeled with the
following meta-level axiom.

Det def= ∀xy (Px ∧ Pixy → Py).

In Det the atom Px is called the minor premise, Pixy the major premise, and
Py the conclusion. Let us now focus on the following particular formula.

ŁDS def= Łukasiewicz ∧Det → Syll .

“Problem ŁDS ” is then the problem of determining the validity of the first order
formula ŁDS . In view of the CM [1,2,3], a formula is valid if there is a spanning
and complementary set of connections in it. In Fig. 1 ŁDS is presented again,
nicknames dereferenced and quantifiers omitted as usual in ATP, with the five
unifiable connections in it. Observe that p, q, r, s on the left side of the main
implication are variables, while p, q, r on the right side are Skolem constants. Any
CM proof of ŁDS consists of a number of instances of the five shown connections.
Meredith’s proof, for example, corresponds to 491 instances of Det , each linked
with three instances of its five incident connections.

Figure 2 compares different representations of a short formal proof with
the Det meta axiom. There is a single axiom, Syll Simp, and the theorem
is ∀pqrstuPi(p, i(q, i(r, i(s, i(t, ius))))). Figure 2a shows the structure of a CM
proof. It involves seven instances of Det , shown in columns D1, . . . , D7. The
major premise Pixiyi is displayed there on top of the minor premise Pxi, and
the (negated) conclusion ¬Pyi, where xi, yi are variables. Instances of the ax-
iom appear as literals ¬Pai, with ai a shorthand for the term i(i(ipiqi, ri), iqiri).
The rightmost literal Pg is a shorthand for the Skolemized theorem. The clause
instances are linked through edges representing connection instances. The edge
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Fig. 2. A proof in different representations.

labels identify the respective connections as in Fig. 1. An actual connection proof
is obtained by supplementing this structure with a substitution under which all
pairs of literals related through a connection instance become complementary.

Figure 2b represents the tree implicit in the CM proof. Its inner nodes corre-
spond to the instances of Det , and its leaf nodes to the instances of the axiom.
Edges appear ordered to the effect that those originating in a major premise of
Det are directed to the left and those from a minor premise to the right. The
goal clause Pg is dropped. The resulting tree is a full binary tree, i.e., a binary
tree where each node has 0 or 2 children. We observe that the ordering of the
children makes the connection labeling redundant as it directly corresponds to
the tree structure.

Figure 2c presents the proof in Meredith’s notation. Each line shows a for-
mula, line 1 the axiom and lines 2–4 derived formulas, with proofs annotated in
the last column. Proofs are written as terms in Polish notation with the binary
function symbol D for detachment where the subproofs of the major and minor
premise are supplied as first and second, resp., argument. Formula 4, for exam-
ple, is obtained as conclusion of Det applied to formula 2 as major premise and
as minor premise another formula that is not made explicit in the presentation,
namely the conclusion of Det applied to formula 3 as both, major and minor,
premises. An asterisk marks the goal theorem.
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1.CCCpqrCCrpCsp
2.CCCpqpCrp = DDD1D111n
3.CCCpqrCqr = DDD1D1D121n
4.CpCCpqCrq = D31
5.CCCpqCrsCCCqtsCrs = DDD1D1D1D141n
6.CCCpqCrsCCpsCrs = D51
7.CCpCqrCCCpsrCqr = D64
8.CCCCCpqrtCspCCrpCsp = D71
9.CCpqCpq = D83

10.CCCCrpCtpCCCpqrsCuCCCpqrs = D18
11.CCCCpqrCsqCCCqtsCpq = DD10.10.n
12.CCCCpqrCsqCCCqtpCsq = D5.11
13.CCCCpqrsCCsqCpq = D12.6
14.CCCpqrCCrpp = D12.9
15.CpCCpqq = D3.14
16.CCpqCCCprqq = D6.15
*17.CCpqCCqrCpr = DD13.D16.16.13
*18.CCCpqpp = D14.9
*19.CpCqp = D33

Fig. 3. Proof MER, Meredith’s refinement [24] of
Łukasiewicz’s proof [19].

Figure 2d is like Fig. 2b, but
with a different labeling: Node
labels now refer to the line in
Fig. 2c that corresponds to the
subproof rooted at the node.
The blank node represents the
mentioned subproof of the for-
mula that is not made explicit in
Fig. 2b. An inner node represents
a condensed detachment step ap-
plied to the subproof of the ma-
jor premise (left child) and minor
premise (right child).

Figure 2e shows a DAG (di-
rected acyclic graph) representa-
tion of Figure 2d. It is the unique
maximally factored DAG repre-
sentation of the tree, i.e., it has
no multiple occurrences of the
same subtree. Each of the four
proof line labels of Fig. 2c appears exactly once in the DAG.

We conclude this introductory section with reproducing Meredith’s refine-
ment of Łukasiewicz’s completeness proof in Fig. 3, taken from [24]. Since we
will often refer to this proof, we call it MER. There is a single axiom (1), which is
Łukasiewicz . The proven theorems are Syll (17), Peirce (18) and Simp (19). In
addition to line numbers also the symbol n appears in some of the proof terms.
Its meaning will be explained later on in the context of Def. 19. For now, we can
read n just as “1”. Dots are used in the Polish notation to disambiguate numeric
identifiers with more than a single digit.

3 Condensed Detachment and a Formal Basis

Following [4], the idea of condensed detachment can be described as follows:
Given premises F → G and H, we can conclude G′, where G′ is the most general
result that can be obtained by using a substitution instance H ′ as minor premise
with the substitution instance F ′ → G′ as major premise in modus ponens.
Condensed detachment was introduced by Meredith in the mid-1950s as an evo-
lution of the earlier method of substitution and detachment, where the involved
substitutions were explicitly given. The original presentations of condensed de-
tachment are informal by means of examples [28,17,29,25], formal specifications
have been given later [16,13,4]. In ATP, the rendering of condensed detachment
by hyperresolution with the clausal form of axiom Det is so far the prevalent
view. As overviewed in [23,31], many of the early successes of ATP were based
on condensed detachment. Starting from the hyperresolution view, structural as-
pects of condensed detachment have been considered by Robert Veroff [34] with
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the use of term representations of proofs and linked resolution. Results of ATP
systems on deriving the Tarski-Bernays axioms from Łukasiewicz are reported
in [27,39,22,23,11]. Our goal in this section is to provide a formal framework
that makes the achievements of condensed detachment accessible from a mod-
ern ATP view. In particular, the incorporation of unification, the interplay of
nested structures with explicitly and implicitly associated formulas, sharing of
structures through lemmas, and the availability of proof structures as terms.

Our notation follows common practice [6] (e.g., s ≥· t expresses that t sub-
sumes s, and s � t that t is a subterm of s) with some additions [37]. For
formulas F we write the universal closure as ∀F , and for terms s, t, u we use
s[t 7→ u] to denote s after simultaneously replacing all occurrences of t with u.

3.1 Proof Structures: D-Terms, Tree Size and Compacted Size

In this section we consider only the purely structural aspects of condensed de-
tachment proofs. Emphasis is on a twofold view on the proof structure, as a tree
and as a DAG (directed acyclic graph), which factorizes multiple occurrences
of the same subtree. Both representation forms are useful: the compacted DAG
form captures that lemmas can be repeatedly used in a proof, whereas the tree
form facilitates to specify properties in an inductive manner. We call the tree
representation of proofs by terms with the binary function symbol D D-terms.

Definition 1. (i) We assume a distinguished set of symbols called primitive
D-terms. (ii) A D-term is inductively specified as follows: (1.) Any primitive
D-term is a D-term. (2.) If d1 and d2 are D-terms, then D(d1, d2) is a D-term.
(iii) The set of primitive D-terms occurring in a D-term d is denoted by Prim(d).
(iv) The set of all D-terms that are not primitive is denoted by D.

A D-term is a full binary tree (i.e, a binary tree in which every node has either 0
or 2 children), where the leaves are labeled with symbols, i.e., primitive D-terms.
An example D-term is

d def= D(D(1, 1),D(D(1,D(1, 1)),D(1,D(1, 1)))), (i)

which represents the structure of the proof shown in Fig. 2 and can be visualized
by the full binary tree of Fig. 2d after removing all labels with exception of the
leaf labels. The proof annotations in Fig. 2c and Fig. 3 are D-terms written in
Polish notation. The expression D2D33 in line 4 of Fig. 2, for example, stands
for the D-term D(2,D(3, 3)). Prim(D(2,D(3, 3))) = {2, 3}.

A finite tree and, more generally, a finite set of finite trees can be represented
as DAG, where each node in the DAG corresponds to a subtree of a tree in the
given set. It is well known that there is a unique minimal such DAG, which
is maximally factored (it has no multiple occurrences of the same subtree) or,
equivalently, is minimal with respect to the number of nodes, and, moreover,
can be computed in linear time [7]. The number of nodes of the minimal DAG
is the number of distinct subtrees of the members of the set of trees. There are
two useful notions of measuring the size of a D-term, based directly on its tree
representation and based on its minimal DAG, respectively.
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Definition 2. (i) The tree size of a D-term d, in symbols t-size(d), is the number
of occurrences of the function symbol D in d. (ii) The compacted size of a D-term
d is defined as c-size(d) def= |{e ∈ D | d � e}|. (iii) The compacted size of a finite
set D of D-terms is defined as c-size(D) def= |{e ∈ D | d ∈ D and d � e}|.
The tree size of a D-term can equivalently be characterized as the number of
its inner nodes. The compacted size of a D-term is the number of its distinct
compound subterms. It can equivalently be characterized as the number of the
inner nodes of its minimal DAG. As an example consider the D-term d defined
in formula (i), whose minimal DAG is shown in Fig. 2e. The tree size of d is
t-size(d) = 7 and the compacted size of d is c-size(d) = 4, corresponding to
the cardinality of the set {e ∈ D | d � e} of compound subterms of d, i.e.,
{D(1, 1), D(1,D(1, 1)), D(D(1,D(1, 1)),D(1,D(1, 1))), d}.

As will be explicated in more detail below, each occurrence of the function
symbol D in a D-term corresponds to an instance of the meta-level axiom Det
in the represented proof. Hence the tree size measures the number of instances
of Det in the proof. Another view is that each occurrence of D in a D-term
corresponds to a condensed detachment step, without re-using already proven
lemmas. The compacted size of a D-term is the number of its distinct compound
subterms, corresponding to the view that the size of the proof of a lemma is
only counted once, even if it is used multiply. Tree size and compacted size of
D-terms appear in [34] as CDcount and length, respectively.

3.2 Proof Structures, Formula Substitutions and Semantics

We use a notion of unifier that applies to a set of pairs of terms, as convenient
in discussions based on the CM [1,9,8].

Definition 3. LetM be a set of pairs of terms and let σ be a substitution. (i) σ
is said to be a unifier of M if for all {s, t} ∈ M it holds that sσ = tσ. (ii) σ is
called a most general unifier of M if σ is a unifier of M and for all unifiers σ′
of M it holds that σ′ ≥· σ. (iii) σ is called a clean most general unifier of M
if it is a most general unifier of M and, in addition, is idempotent and satisfies
Dom(σ) ∪ VRng(σ) ⊆ Var(M).

The additional properties required for clean most general unifiers do not hold for
all most general unifiers.3 However, the unification algorithms known from the
literature produce clean most general unifiers [9, Remark 4.2]. If a set of pairs
of terms has a unifier, then it has a most general unifier and, moreover, also a
clean most general unifier.

Definition 4. (i) IfM is a set of pairs of terms that has a unifier, then mgu(M)
denotes some clean most general unifier of M .M is called unifiable and mgu(M)
is called defined in this case, otherwise it is called undefined. (ii) We make the
convention that proposition, lemma and theorem statements implicitly assert
their claims only for the case where occurrences of mgu in them are defined.
3 The inaccuracy observed by [13] in early formalizations of condensed detachment
can be attributed to disregarding the requirement Dom(σ) ∪ VRng(σ) ⊆ Var(M).
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Since we definemgu(M) as a clean most general unifier, we are permitted to make
use of the assumption that it is idempotent and that all variables occurring in
its domain and range occur in M . Convention 4.ii has the purpose to reduce
clutter in proposition, lemma and theorem statements.

The structural aspects of condensed detachment proofs represented by
D-terms, i.e., full binary trees, will now be supplemented with associated for-
mulas. Condensed detachment proofs, similar to CM proofs, involve different
instances of the input formulas (viewed as quantifier-free, e.g., clauses), which
may be considered as obtained in two steps: first, “copies”, that is, variants with
fresh variables, of the input formulas are created; second a substitution is applied
to these copies. Let us consider now the first step. The framework of D-terms
permits to give the variables in the copies canonical designators with an index
subscript that identifies the position in the structure, i.e., in the D-term, or tree.

Definition 5. For all positions p and positive integers i let xip and yp denote
pairwise different variables.

Recall that positions are path specifiers. For a given D-term d and leaf position p
of d the variables xip are for use in a formula associated with p which is the copy of
an axiom. Different variables in the copy are distinguished by the upper index i.
If p is a non-leaf position of d, then yp denotes the variable in the conclusion of
the copy of Det that is represented by p. In addition, yp for leaf positions p may
occur in the antecedents of the copies of Det . The following substitution shiftp
is a tool to systematically rename position-associated variables while preserving
the internal relationships between the index-referenced positions.

Definition 6. For all positions p define the substitution shiftp as follows: shiftp
def= {yq 7→ yp.q | q is a position} ∪ {xiq 7→ xip.q | i ≥ 1 and q is a position}.

The application of shiftp to a term s effects that p is prepended to the position
indexes of all the position-associated variables occurring in s. The association of
axioms with primitive D-terms is represented by mappings which we call axiom
assignments, defined as follows.

Definition 7. An axiom assignment α is a mapping whose domain is a set
of primitive D-terms and whose range is a set of terms whose variables are in
{xiε | i ≥ 1}. We say that α is for a D-term d if Dom(α) ⊇ Prim(d).

We define a shorthand for a form of Łukasiewicz that is suitable for use as a
range element of axiom assignments. It is parameterized with a position p.

Łukasiewicz p def= i(i(i(x1p, x
2
p), x

3
p), i(i(x

3
p, x

1
p), i(x

4
p, x

1
p))). (ii)

The mapping {1 7→ Łukasiewicz ε} is an axiom assignment for all D-terms d with
Prim(d) = {1}. The second step of obtaining the instances involved in a proof
can be performed by applying the most general unifier of a pair of terms that
constrain it. The tree structure of D-terms permits to associate exactly one such
pair with each term position. Inner positions represent detachment steps and
leaf positions instances of an axiom according to a given axiom assignment. The
following definition specifies these constraining pairs.
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Definition 8. Let d be a D-term and let α be an axiom assignment for d. For all
positions p ∈ Pos(d) define the pair of terms pairingα(d, p)

def= {yp, α(d|p)shiftp}
if p ∈ Leaf Pos(d) and {yp.1, i(yp.2, yp)} if p ∈ InnerPos(d).

A unifier of the set of pairings of all positions of a D-term d equates for a leaf
position p the variable yp with the value of the axiom assignment α for the
primitive D-term at p, after “shifting” variables by p. This “shifting” means that
the position subscript ε of the variables in the axiom argument term α(d|p) is
replaced by p, yielding a dedicated copy of the axiom argument term for the leaf
position p. For inner positions p the unifier equates yp.1 and i(yp.2, yp), reflecting
that the major premise of Det is proven by the left child of p.

The substitution induced by the pairings associated with the positions of a
D-term allow to associate a specific formula with each position of the D-term,
called the in-place theorem (IPT). The case where the position is the top posi-
tion ε is distinguished as most general theorem (MGT).

Definition 9. For D-terms d, positions p ∈ Pos(d) and axiom assignments
α for d define the in-place theorem (IPT) of d at p for α, Iptα(d, p), and
the most general theorem (MGT) of d for α, Mgtα(d), as (i) Iptα(d, p)

def=
P(ypmgu({pairingα(d, q) | q ∈ Pos(d)})). (ii) Mgtα(d)

def= Iptα(d, ε).

Since Ipt and Mgt are defined on the basis of mgu, they are undefined if the set
of pairs of terms underlying the respective application of mgu is not unifiable.
Hence, we apply the convention of Def. 4.ii for mgu also to occurrences of Ipt
and Mgt . If Ipt and Mgt are defined, they both denote an atom whose variables
are constrained by the clean property of the underlying application of mgu. The
following proposition relates IPT and MGT with respect to subsumption.

Proposition 10. For all D-terms d, positions p ∈ Pos(d) and axiom assign-
ments α for d it holds that Iptα(d, p) ≥· Mgtα(d|p).

By Prop. 10, the IPT at some position p of a D-term d is subsumed by the MGT
of the subterm d|p of d rooted at position p. An intuitive argument is that the
only constraints that determine the most general unifier underlying the MGT
are induced by positions of d|p, that is, below p (including p itself). In contrast,
the most general unifier underlying the IPT is determined by all positions of d.

The following lemma expresses the core relationships between a proof struc-
ture (a D-term), a proof substitution (accessed via the IPT) and semantic en-
tailment of associated formulas.

Lemma 11. Let d be a D-term and let α be an axiom assignment for d. Then for
all p ∈ Pos(d) it holds that: (i) If p ∈ Leaf Pos(d), then ∀P(α(d|p)) |= Iptα(d, p).
(ii) If p ∈ InnerPos(d), then Det ∧ Iptα(d, p.1) ∧ Iptα(d, p.2) |= Iptα(d, p).

Based on this lemma, the following theorem shows how Detachment together
with the axioms in an axiom assignment entail the MGT of a given D-term.

Theorem 12. Let d be a D-term and let α be an axiom assignment for d. Then
Det ∧

∧
p∈LeafPos(d) ∀P(α(d|p)) |= ∀Mgtα(d).
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Theorem 12 states that Det together with the axioms referenced in the proof,
that is, the values of α for the leaf nodes of d considered as universally closed
atoms, entail the universal closure of the MGT of d for α. The universal closure
of the MGT is the formula exhibited in Meredith’s proof notation in the lines
with a trailing D-term, such as lines 2–19 in Fig. 3.

4 Reducing the Proof Size by Replacing Subproofs

The term view on proof trees suggests to shorten proofs by rewriting subterms,
that is, replacing occurrences of subproofs by other ones, with three main aims:
(1) To shorten given proofs, with respect to the tree size or the compacted
size. (2) To investigate given proofs whether they can be shortened by certain
rewritings or are closed under these. (3) To develop notions of redundancy for
use in proof search. A proof fragment constructed during search may be rejected
if it can be rewritten to a shorter one.

It is obvious that if a D-term d′ is obtained from a D-term d by replacing an
occurrence of a subterm e with a D-term e′ such that t-size(e) ≥ t-size(e′), then
also t-size(d) ≥ t-size(d′). Based on the following ordering relations on D-terms,
which we call compaction orderings, an analogy for reducing the compacted size
instead of the tree size can be stated.

Definition 13. For D-terms d, e define (i) d ≥c e
def= {f ∈ D | d � f} ⊇ {f ∈

D | e � f}. (ii) d >c e
def= d ≥c e and e 6≥c d.

The relations d ≥c e and d >c e compare D-terms d and e with respect to the su-
perset relationship of their sets of those strict subterms that are compound terms.
For example, D(D(D(1, 1), 1), 1) >c D(1,D(1, 1)) because {D(1, 1), D(D(1, 1), 1)}
⊇ {D(1, 1)}.

Theorem 14. Let d, d′, e, e′ be D-terms such that e occurs in d, and d′ = d[e 7→
e′]. It holds that (i) If e ∈ D and e ≥c e

′, then c-size(d) ≥ c-size(d′). (ii) If e >c e
′,

then sc-size(d) > sc-size(d′), where, for all D-terms d sc-size(d) def=
∑
d�e c-size(e).

Theorem 14.i states that if d′ is the D-term obtained from d by simultaneously
replacing all occurrences of a compound D-term e with a “c-smaller” D-term e′,
i.e., e ≥c e

′, then the compacted size of d′ is less or equal to that of d. As stated
with the supplementary Theorem 14.ii, the sc-size is a measure that strictly
decreases under the strict precondition e >c e

′, which is useful to ensure ter-
mination of rewriting. The following proposition characterizes the number of
D-terms that are smaller than a given D-term w.r.t the compaction ordering ≥c.

Proposition 15. For all D-terms d it holds that |{e | d ≥c e and Prim(e) ⊆
Prim(d)}| = (c-size(d)− 1 + |Prim(d)|)2 + |Prim(d)|.

By Prop. 15, for a given D-term d, the number of D-terms e that are smaller
than d with respect to ≥c is only quadratically larger than the compacted size
of d and thus also than the tree size of d. Hence techniques that inspect all these
smaller D-terms for a given D-term can efficiently be used in practice.
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According to Theorem 12, a condensed detachment proof, i.e., a D-term d
and an axiom assignment α, proves the MGT of d for α along with instances of
the MGT. In general, replacing subterms of d should yield a proof of at least
these theorems. That is, a proof whose MGT subsumes the original one. The
following theorem expresses conditions which ensure that subterm replacements
yield a proof with a MGT that subsumes original one.

Theorem 16. Let d, e be D-terms, let α be an axiom assignment for d and
for e, and let p1, . . . , pn, where n ≥ 0, be positions in Pos(d) such that for all
i, j ∈ {1, . . . , n} with i 6= j it holds that pi 6≤ pj. If for all i ∈ {1, . . . , n} it holds
that Iptα(d, pi) ≥· Mgtα(e), then Mgtα(d) ≥· Mgtα(d[e]p1 [e]p2 . . . [e]pn).

Theorem 16 states that simultaneously replacing a number of occurrences of
possibly different subterms in a D-term by the same subterm with the property
that its MGT subsumes each of the IPTs of the original occurrences results in an
overall D-term whose MGT subsumes that of the original overall D-term. The
following theorem is similar, but restricted to a single replaced occurrence and
with a stronger precondition. It follows from Theorem 16 and Prop. 10.

Theorem 17. Let d, e be D-terms and let α be an axiom assignment for d and
for e. For all positions p ∈ Pos(d) it then holds that if Mgtα(d|p) ≥· Mgtα(e),
then Mgtα(d) ≥· Mgtα(d[e]p).

Simultaneous replacements of subterm occurrences are essential for reducing the
compacted size of proofs according to Theorem 14. For replacements according
to Theorem 17 they can be achieved by successive replacements of individual
occurrences. In Theorem 16 simultaneous replacements are explicitly considered
because the replacement of one occurrence according to this theorem can in-
validate the preconditions for another occurrence. Theorem 17 can be useful in
practice because the precondition Mgtα(d|p) ≥· Mgtα(e) can be evaluated on
the basis of α, e and just the subterm d|p of d, whereas determining Iptα(d, p)
for Theorem 16 requires also consideration of the context of p in d. Based on
Theorems 16 and 14 we define the following notions of reduction and regularity.

Definition 18. Let d be a D-term, let e be a subterm of d and let α be an
axiom assignment for d. For D-terms e′ the D-term d[e 7→ e′] is then obtained
by C-reduction from d for α if e >c e

′, Mgtα(e
′) is defined, and for all positions

p ∈ Pos(d) such that d|p = e it holds that Iptα(d, p) ≥· Mgtα(e
′). The D-term d is

called C-reducible for α if and only if there exists a D-term e′ such that d[e 7→ e′]
is obtained by C-reduction from d for α. Otherwise, d is called C-regular.

If d′ is obtained from d by C-reduction, then by Theorem 16 and 14 it follows
that Mgtα(d) ≥· Mgtα(d

′), c-size(d) ≥ c-size(d′) and sc-size(d) > sc-size(d′). C-
regularity differs from well known concepts of regularity in clausal tableaux (see,
e.g., [14]) in two respects: (1) In the comparison of two nodes on a branch (which
is done by subsumption as in tableaux with universal variables) for the upper
node the stronger instantiated IPT is taken and for the lower node the more
weakly instantiated MGT. (2) C-regularity is not based on relating two nested
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subproofs, but on comparison of all occurrences of a subproof with respect to all
proofs that are smaller with respect to the compaction ordering.

Proofs may involve applications of Det where the conclusion Py is actually
independent from the minor premise Px. Any axiom can then serve as a trivial
minor premise. Meredith expresses this with the symbol n as second argument
of the respective D-term. Our function simp-n simplifies D-terms by replacing
subterms with n accordingly on the basis of the preservation of the MGT.

Definition 19. If d is a D-term and α is an axiom assignment for d, then
the n-simplification of d with respect to α is the D-term simp-nα(d), where
simp-n is the following function: simp-nα(d)

def= d, if d is a primitive D-term;
simp-nα(D(d1, d2))

def= D(simp-nα′(d1), n) if Mgtα′D(d1, n) = MgtαD(d1, d2),
where α′ = α ∪ {n 7→ k} for a fresh constant k; simp-nα(D(d1, d2))

def=
D(simp-nα(d1), simp-nα(d2)), else.

5 Properties of Meredith’s Refined Proof

Our framework renders condensed detachment as a restricted form of the CM.
This view permits to consider the expanded proof structures as binary trees or
D-terms. On this basis we obtain a natural characterization of proof properties
in various categories, which seem to be the key towards reducing the search space
in ATP. Table 1 shows such properties for each of the 34 structurally different
subproofs of proof MER (Fig. 3). Column M gives the number of the subproof
in Fig. 3. We use the following short identifiers for the observed properties:
Structural Properties of the D-Term. These properties refer to the respec-
tive subproof as D-term or full binary tree. DT, DC, DH: Tree size, compacted
size, height. DKL, DKR: “Successive height”, that is, the maximal number of
successive edges going to the left (right, resp.) on any path from the root to a
leaf. DP: Is “prime”, that is, DT and DC are equal. DS: Relationship between
the subproofs of major and minor premise. Identity is expressed with =, the
subterm and superterm relationships with � and �, resp., and the compaction
ordering relationship (if none of the other relationships holds) with <c and >c.
In addition it is indicated if a subproof is an axiom or n. DD: “Direct sharings”,
that is, the number of incoming edges in the DAG representation of the overall
proof of all theorems. DR: “Repeats”, that is, the total number of occurrences
in the set of expanded trees of all roots of the DAG.
Properties of the MGT. These properties refer to the argument term of the
MGT of the respective subproof. TT, TH: Tree size (defined as for D-terms) and
height.TV: Number of different variables occurring in the term. TO: Is “organic”
[21], that is, the argument term has no strict subterm s such that P(s) itself is
a theorem. We call an atom weakly organic (indicated by a gray bullet) if it is
not organic and the argument term is of the form i(p, t) where p is a variable
that does not occur in the term t and P(t) is organic. For axiomatizations of
fragments of propositional logic, organic can be checked by a SAT solver.
Regularity. RC: The respective subproof as D-term is C-regular (see Def. 18).
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M DT DC DH DKL DKR DP DS DD DR TT TC TH TV TO RC MT MC ITU ITM IHU IHM

1. 1 1 0 0 0 0 0 • – 17 554 6 6 3 4 • • 0 0 4451 203 18 11
2.D11 1 1 1 1 1 • 1=1 1 45 8 7 4 5 • • 1 1 1640 220 17 12
3.D12 2 2 2 1 2 • 1� 1 45 11 8 4 6 • • 2 2 1881 252 17 12
4.D31 3 3 3 2 2 • �1 1 45 5 5 4 4 • • 3 3 689 92 16 11
5.D4n 2 4 4 4 3 2 • �n 1 45 4 4 3 3 • • 4 4 688 91 15 10
6.D15 5 5 5 3 2 • 1� 1 45 6 5 3 4 • • 5 5 1667 198 15 10
7.D16 6 6 6 3 3 • 1� 1 45 7 6 4 5 • • 6 6 1802 208 16 11
8.D17 7 7 7 3 4 • 1� 1 45 9 7 4 6 • • 7 7 2648 303 16 11
9.D81 8 8 8 3 4 • �1 1 45 5 5 4 4 • • 8 8 1032 119 15 10

10.D9n 3 9 9 9 3 4 • �n 5 45 4 4 3 3 • • 9 9 1031 118 14 9
11.D10.1 4 10 10 10 4 4 • �1 2 37 4 4 3 3 • • 10 10 448 60 13 9
12.D1.11 11 11 11 4 4 • 1� 1 23 7 7 5 5 • • 11 11 498 73 14 10
13.D1.12 12 12 12 4 4 • 1� 1 23 12 8 5 6 • • 12 12 1157 168 14 10
14.D1.13 13 13 13 4 4 • 1� 1 23 10 9 6 7 • • 13 [[12,13]] 1050 159 15 11
15.D1.14 14 14 14 4 5 • 1� 1 23 15 10 6 8 • • 14 [[12,14]] 1657 246 15 11
16.D15.1 15 15 15 4 5 • �1 1 23 9 8 5 6 • • 15 [[12,15]] 684 100 14 10
17.D16.n 5 16 16 16 4 5 • �n 2 23 8 7 4 5 • • 16 [[12,16]] 683 99 13 9
18.D17.1 6 17 17 17 4 5 • �1 3 18 7 6 3 4 • • 17 [[12,17]] 395 56 12 8
19.D18.11 7 28 18 18 5 5 – � 1 14 7 6 4 4 • • 14 [[12,14]] 209 61 11 9
20.D19.1 8 29 19 19 6 5 – �1 2 14 9 8 5 5 • • 15 [[12,15]] 132 38 10 8
21.D1.20 10 30 20 20 6 5 – 1� 2 10 12 9 5 6 • • 16 [[12,16]] 158 47 10 8
22.D21.21 61 21 21 6 5 – = 1 5 10 9 5 6 • • [[23,33]] [[12,17]] 53 16 9 7
23.D22.n 11 62 22 22 6 5 – �n 1 5 9 8 4 5 • • [[23,34]] [[12,18]] 52 15 8 6
24.D17.23 12 79 23 23 6 5 – � 2 5 9 8 4 5 • • [[23,51]] [[12,23]] 57 16 7 5
25.D24.18 13 97 24 24 6 5 – � 2 2 7 6 4 4 • • [[23,69]] [[12,24]] 27 17 6 5
26.D20.10 9 39 20 20 7 5 – � 2 4 3 2 2 2 • – 8 6 27 7 6 4
27.D24.26 14 119 25 24 7 5 – >c 2 3 5 5 3 3 • • [[23,91]] [[12,25]] 24 7 6 4
28.D10.27 15 129 26 25 7 5 – � 1 2 3 3 3 2 • • [[23,101]] [[12,26]] 19 12 6 5
29.D18.28 16 147 27 26 7 5 – � 2 2 5 5 4 3 • • [[23,36]] [[12,26]] 19 12 6 5
30.D29.29 295 28 27 7 6 – = 1 1 10 7 5 4 • • [[23,239]] [[12,27]] 13 13 5 5
31.D25.30 393 30 28 7 7 – <c 1 1 7 7 5 4 • • [[23,121]] [[12,29]] 13 13 5 5
32.D31.25 17 491 31 29 7 7 – � 0 1 5 5 3 3 • • [[23,191]] [[12,30]] 5 5 3 3
33.D27.26 18 159 26 25 7 5 – � 0 1 3 3 3 2 • • 15 11 3 3 3 3
34.D10.10 19 19 10 10 4 4 – = 0 1 2 2 2 2 • • 7 6 2 2 2 2

Table 1. Properties of all subproofs of the proof MER [24] shown in Fig. 3.

Comparisons with all Proofs of the MGT. These properties relate to the
set of all proofs (as D-terms) of the MGT of the respective subproof. MT,
MC: Minimal tree size and minimal compacted size of a proof. These values
can be hard to determine such that in Table 1 they are often only narrowed
down by an integer interval. To determine them, we used the proof MER, proofs
obtained with techniques described in Sect. 6, and enumerations of all D-terms
with defined MGT up to a given tree size or compacted size.
Properties of Occurrences of the IPTs. The respective subproof has DR
occurrences in the set of expanded trees of the roots of the DAG, where each
occurrence has an IPT. The following properties refer to the multiset of argu-
ment terms of the IPTs of these occurrences. ITU , ITM : Maximal tree size and
rounded median of the tree size. IHU , IHM : Maximal height and rounded me-
dian of the height. In Table 1 these values are much larger than those of the
corresponding columns for the MGT, i.e, TT and TH, illustrating Prop. 10.

6 First Experiments

First experiments based on the framework developed in the previous sections
are centered around the generation of lemmas where not just formulas but, in
the form of D-terms, also proofs are taken into account. This leads in general
to preference of small proofs and to narrowing down the search space by re-
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Lemmas # Time Prover Time DC DT DH

1. Łukasiewicz∗ 32 435 29
2. Meredith 31 491 29
3. Prover9 37 s 94 304,890 40
4. Prover9∗ 37 s 83 8,217 38
5. Prover9∗ depth ≤ 7 6 s 102 19,113 48
6. PrimeCore(17) 17 Prover9∗ 30 s 44 763 28
7. ProofSubproof (93,7) 291 78 s Prover9∗ 3 s 51 1,405 31
8. ProofSubproof (93,7) 291 78 s CMProver 2 s 30 394 29
9. ProofSubproof (100,8) 330 94 s CMProver 4 s 30 535 29

10. Reduction of (8.) 48 191 24
Table 2. Proof dimensions of various proofs of problem ŁDS .

stricted structuring principles to build proofs. The experiments indicate novel
potential calculi which combine aspects from lemma-based generative, bottom-
up, methods such as hyperresolution and hypertableaux with structure-based
approaches that are typically used in an analytic, goal-directed, way such as the
CM. In addition, ways to generate lemmas as preprocessing for theorem proving
are suggested, in particular to obtain short proofs. This resulted in a refinement
of Łukasiewicz’s proof [19], whose compacted size is by one smaller than that of
Meredith’s refinement [24] and by two than Łukasiewicz’s original proof.

Table 2 shows compacted size DC, tree size DT and height DH of various
proofs of ŁDS . Asterisks indicate that n-simplification was applied with reducing
effect on the system’s proof. Proof (1.) is the one by Łukasiewicz [19], translated
into condensed detachment, proof (2.) is proof MER (Fig. 3) [24]. Rows (3.)–(5.)
show results from Prover9 , where in (5.) the value of max_depth was limited
to 7, motivated by column TH of Table 1. Proof (4.) illustrates the effect of n-
simplification.4 For proofs (6.)–(9.) additional axioms were supplied to Prover9
and CMProver [5,35,36], a goal-directed system that can be described by the
CM. Columns indicate the lemma computation method, the number of lem-
mas supplied to the prover and the time used for lemma computation. Method
PrimeCore adds the MGTs of subproof 18 from Table 1 and all its subproofs
as lemmas. Subproof 18 is the largest subproof of proof MER that is prime and
can be characterized on the basis of the axiom – almost uniquely – as a proof
that is prime, whose MGT has no smaller prime proof and has the same number
of different variables as the axiom, i.e., 4, and whose size, given as parameter,
is 17. Method ProofSubproof is based on detachment steps with a D-term and a
subterm of it as proofs of the premises, which, as column DS of Table 1 shows,
suffices to justify all except of two proof steps in MER. It proceeds in some anal-
ogy to the given clause algorithm on lists of D-terms: If d is the given D-term,
then the inferred D-terms are all D-terms that have a defined MGT and are of
the form D(d, e) or D(e, d), where e is a subterm of d. To determine which of the
inferred D-terms are kept, values from Table 1 were taken as guide, including
RC and TO. The first parameter of ProofSubproof is the number of iterations
of the “given D-term loop”. Proof (9.) can be combined with Peirce and Syll to
the overall proof with compacted size 32, one less than MER. The maximal value
of DKL is shown as second parameter, because, when limited to 7, proof (9.)
4 All machine results refer to a system with Intel i7-8550U CPU and 16 GB RAM.
Results for further systems: KRHyper∗ [26]: 1.610 s, DC: 73; E 2.5 [30]: 30 s, proof
length 91; Vampire 5.4.1 [33] –mode casc -t 300: 128 s, proof length 144.
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cannot be found. Proof (10.), which has a small tree size, was obtained from (8.)
by rewriting subproofs with a variation of C-reduction that rewrites single term
occurrences, considering also D-terms from a precomputed table of small proofs.

7 Conclusion

Starting out from investigating Łukasiewicz’s classic formal proof [19], via its
refinement by Meredith [24] we arrived at a formal reconstruction of Meredith’s
condensed detachment as a special case of the CM. The resulting formalism yields
proofs as objects of a very simple and common structure: full binary trees which,
in the tradition of term rewriting, appear as terms, D-terms, as we call them. To
form a full proof, formulas are associated with the nodes of D-terms: axioms with
the leaves and lemmas with the remaining nodes, implicitly determined from the
axioms through the node position and unification. The root lemma is the most
general proven theorem. Lemmas also relate to compressed representations of
the binary trees, for example as DAGs, where the re-use of a lemma directly
corresponds to sharing the structure of its subproof. For future work we intend
to position our approach also in the context of earlier works on proofs, proof
compression and lemma introduction, e.g., [38,12], and think of compressing
D-Terms in forms that are stronger than DAGs, e.g., by tree grammars [18].

The combination of formulas and explicitly available proof structures natu-
rally leads to theorem proving methods that take structural aspects into account,
in various ways, as demonstrated by our first experiments. This goes beyond the
common clausal tableau realizations of the CM, which in essence operate by enu-
merating uncompressed proof structures. The discussed notions of regularity and
lemma generation methods seem immediately suited for further investigations
in the context of first-order theorem proving in general. For other aspects of
the work we plan a stepwise generalization by considering further single axioms
for the implicational fragment IF [21,19,32], single axioms and axiom pairs for
further logics [32], the about 200 condensed detachment problems in the LCL
domain of the TPTP, problems which involve multiple non-unit clauses, and
adapting D-terms to a variation of binary resolution instead of detachment. In
the longer run, our approach aims at providing a basis for approaches to theo-
rem proving with machine learning (e.g. [10,15]). With the reification of proof
structures more information is available as starting point. As indicated with our
exemplary feature table for Meredith’s proof, structural properties are consid-
ered thereby from a global point of view, as a source for narrowing down the
search space in many different ways in contrast to just the common local view
“from within a structure”, where the narrowing down is achieved for example by
focusing on a “current branch” during the construction of a tableau. A general
lead question opened up by our setting is that for exploring relationships between
properties of proof structures and the associated formulas in proofs of meaning-
ful theorems. One may expect that characterizations of these relationships can
substantially restrict the search space for finding proofs.
Acknowledgments. We appreciate the competent comments of all the referees.
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