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Abstract. Lean 4 is a reimplementation of the Lean interactive theo-
rem prover (ITP) in Lean itself. It addresses many shortcomings of the
previous versions and contains many new features. Lean 4 is fully extensi-
ble: users can modify and extend the parser, elaborator, tactics, decision
procedures, pretty printer, and code generator. The new system has a hy-
gienic macro system custom-built for ITPs. It contains a new typeclass
resolution procedure based on tabled resolution, addressing significant
performance problems reported by the growing user base. Lean 4 is also
an efficient functional programming language based on a novel program-
ming paradigm called functional but in-place. Efficient code generation
is crucial for Lean users because many write custom proof automation
procedures in Lean itself.

1 Introduction

The Lean project3 started in 2013 [9] as an interactive theorem prover based on
the Calculus of Inductive Constructions [4] (CIC). In 2017, using Lean 3, a com-
munity of users with very different backgrounds started the Lean mathematical
library project mathlib [13]. At the time of this writing, mathlib has roughly half
a million lines of code, and contains many nontrivial mathematical objects such
as Schemes [2]. Mathlib is also the foundation for the Perfectoid Spaces in Lean
project [1], and the Liquid Tensor challenge [11] posed by the renowned mathe-
matician Peter Scholze. Mathlib contains not only mathematical objects but also
Lean metaprograms that extend the system [5]. Some of these metaprograms
implement nontrivial proof automation, such as a ring theory solver and a de-
cision procedure for Presburger arithmetic. Lean metaprograms in mathlib also
extend the system by adding new top-level command and features not related
to proof automation. For example, it contains a package of semantic linters that
alert users to many commonly made mistakes [5]. Lean 3 metaprograms have
3 http://leanprover.github.io
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been also instrumental in building standalone applications, such as a SQL query
equivalence checker [3].

We believe the Lean 3 theorem prover’s success is primarily due to its exten-
sibility capabilities and metaprogramming framework [6]. However, users cannot
modify many parts of the system without changing Lean 3 source code written
in C++. Another issue is that many proof automation metaprograms are not
competitive with similar proof automation implemented in programming lan-
guages with an efficient compiler such as C++ and OCaml. The primary source
of inefficiency in Lean 3 metaprograms is the virtual machine interpretation
overhead.

Lean 4 is a reimplementation of the Lean theorem prover in Lean itself4.
It is an extensible theorem prover and an efficient programming language. The
new compiler produces C code, and users can now implement efficient proof au-
tomation in Lean, compile it into efficient C code, and load it as a plugin. In
Lean 4, users can access all internal data structures used to implement Lean
by merely importing the Lean package. Lean 4 is also a platform for developing
efficient domain-specific automation. It has a more robust and extensible elab-
orator, and addresses many other shortcomings of Lean 3. We expect the Lean
community to extend and add new features without having to change the Lean
source code. We released Lean 4 at the beginning of 2021, it is open source, the
community is already porting mathlib, and the number of applications is quickly
growing. It includes a translation verifier for Reopt5, a package for supporting
inductive-inductive types6, and a car controller7.

2 Lean by Example

In this section, we introduce the Lean language using a series of examples. The
source code for the examples is available at https://github.com/leanprover/
lean4/blob/cade2021/doc/BoolExpr.lean. For additional details and instal-
lation instructions, we recommend the reader consult the online manual8.

We define functions by using the def keyword followed by its name, a pa-
rameter list, return type, and body. The parameter list consists of successive
parameters that are separated by spaces. We can specify an explicit type for
each parameter. If we do not specify a specific argument type, the elaborator
tries to infer the function body’s type. The Boolean or function is defined by
pattern-matching as follows

def or (a b : Bool) :=
match a with
| true => true
| false => b

4 http://github.com/leanprover/lean4
5 https://github.com/GaloisInc/reopt-vcg
6 https://github.com/javra/iit
7 https://github.com/GaloisInc/lean4-balance-car
8 http://leanprover.github.io/lean4/doc
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We can use the command #check <term> to inspect the type of term, and #eval
<term> to evaluate it.

#check or true false -- Bool (this is a comment in Lean)
#eval or true false -- true

Lean has a hygienic macro system and comes equipped with many macros for
commonly used idioms. For example, we can also define the function or using

def or : Bool → Bool → Bool
| true, _ => true
| false, b => b

The notation above is a macro that expands into a match-expression. In Lean,
a theorem is a definition whose result type is a proposition. For an example,
consider the following simple theorem about the definition above

theorem or_true (b : Bool) : or true b = true :=
rfl

The constant rfl has type ∀ {α : Sort u} {a : α}, a = a, the curly braces
indicate that the parameters α and a are implicit and should be inferred by
solving typing constraints. In the example above, the inferred values for α and a
are Bool and or true b, respectively, and the resulting type is or true b = or
true b. This is a valid proof because or true b is definitionally equal to b. In
dependent type theory, every term has a computational behavior, and supports
a notion of reduction. In principle, two terms that reduce to the same value are
called definitionally equal. In the following example, we use pattern matching to
prove that or b b = b

theorem or_self : ∀ (b : Bool), or b b = b
| true => rfl
| false => rfl

Note that or b b does not reduce to b, but after pattern matching we have that
or true true (or false false) reduces to true (false).

In the following example, we define the recursive datatype BoolExpr for rep-
resenting Boolean expressions using the command inductive.

inductive BoolExpr where
| var (name : String)
| val (b : Bool)
| or (p q : BoolExpr)
| not (p : BoolExpr)

This command generates constructors BoolExpr.var, BoolExpr.val, BoolExpr.or,
and BoolExpr.not. The Lean kernel also generates an inductive principle for the
new type BoolExpr. We can write a basic “simplifier” for Boolean expressions as
follows

def simplify : BoolExpr → BoolExpr
| BoolExpr.or p q => mkOr (simplify p) (simplify q)
| BoolExpr.not p => mkNot (simplify p)
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| e => e
where

mkOr : BoolExpr → BoolExpr → BoolExpr
| p, BoolExpr.val true => BoolExpr.val true
| p, BoolExpr.val false => p
| BoolExpr.val true, p => BoolExpr.val true
| BoolExpr.val false, p => p
| p, q => BoolExpr.or p q

mkNot : BoolExpr → BoolExpr
| BoolExpr.val b => BoolExpr.val (not b)
| p => BoolExpr.not p

The function simplify is a simple bottom-up simplifier. We use the where clause
to define two local auxiliary functions mkOr and mkNot for constructing “simplified”
or and not expressions respectively. Their global names are simplify.mkOr and
simplify.mkNot.

Given a context that maps variable names to Boolean values, we define a “de-
notation” function (or evaluator) for Boolean expressions. We use an association
list to represent the context.

abbrev Context := AssocList String Bool

def denote (ctx : Context) : BoolExpr → Bool
| BoolExpr.or p q => denote ctx p || denote ctx q
| BoolExpr.not p => !denote ctx p
| BoolExpr.val b => b
| BoolExpr.var x => if let some b := ctx.find? x then b else false

In the example above, p || q is notation for or p q, !p for not p, and if let
p := t then a else b is a macro that expands into match t with | p => a | _
=> b. The term ctx.find? x is syntax sugar for AssocList.find? ctx x.

As in previous versions, we can use tactics for constructing proofs and terms.
We use the keyword by to switch into tactic mode. Tactics are user-defined or
built-in procedures that construct various terms. They are all implemented in
Lean itself. The simp tactic implements an extensible simplifier, and is one of
the most popular tactics in mathlib. Its implementation 9 can be extended and
modified by Lean users.

. . .
@[simp] theorem denote_mkOr (ctx : Context) (p q : BoolExpr)

: denote ctx (simplify.mkOr p q) = denote ctx (or p q) :=
. . .

def denote_simplify (ctx : Context) (p : BoolExpr)
: denote ctx (simplify p) = denote ctx p :=

by induction p with
| or p q ih1 ih2 => simp [ih1, ih2]

9 https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/Tactic/
Simp/Main.lean.

https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/Tactic/Simp/Main.lean
https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/Tactic/Simp/Main.lean


The Lean 4 Theorem Prover and Programming Language 629

| not p ih => simp [ih]
| _ => rfl

In the example above, we use the induction tactic, its syntax is similar to a match-
expression. The variables ih1 and ih2 are the induction hypothesis for p and q in
the first alternative for the case p is a BoolExpr.or. The simp tactic uses any theo-
rem marked with the @[simp] attribute as a rewriting rule (e.g., denote_mkOr). We
explicitly provide the induction hypotheses as additional rewriting rules inside
square brackets.

Typeclass Resolution. Typeclasses [16] provide an elegant and effective way of
managing ad-hoc polymorphism in both programming languages and interactive
proof assistants. Then we can declare particular elements of a typeclass to be
instances. These provide hints to the elaborator: any time the elaborator is
looking for an element of a typeclass, it can consult a table of declared instances
to find a suitable element. What makes typeclass inference powerful is that one
can chain instances, that is, an instance declaration can in turn depend on other
instances. This causes class inference to recurse through instances, backtracking
when necessary. The Lean typeclass resolution procedure can be viewed as a
simple λ-Prolog interpreter [8], where the Horn clauses are the user declared
instances.

For example, the standard library defines a typeclass Inhabited to enable
typeclass inference to infer a “default” or “arbitrary” element of types that contain
at least one element.

class Inhabited (α : Sort u) where
default : α

def arbitrary [Inhabited α] : α :=
Inhabited.default

The annotation [Inhabited α] at arbitrary indicates that this implicit parame-
ter should be synthesized from instance declarations using typeclass resolution.
We can define an instance for our BoolExpr type defined earlier as follows

instance : Inhabited BoolExpr where
default := BoolExpr.val false

This instance specifies that the “default” element for BoolExpr is BoolExpr.val
false. The following declaration shows that if two types α and β are inhabited,
then so is their product:

instance [Inhabited α] [Inhabited β] : Inhabited (α × β) where
default := (arbitrary, arbitrary)

The standard library has many builtin classes such as Repr α and DecidableEq
α. The class Repr α is similar to Haskell’s Show α typeclass, and DecidableEq α

is a typeclass for types that have decidable equality. Lean 4 also provides code
synthesizers for many builtin classes. The command deriving instructs Lean to
auto-generate an instance.
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deriving instance DecidableEq for BoolExpr

#eval decide (BoolExpr.val true = BoolExpr.val false) -- false

In the example above, the deriving command generates the instance

(a b : BoolExpr) → Decidable (a = b)

The function decide evaluates decidable propositions. Thus, the last command
returns false since BoolExpr.val true is not equal to BoolExpr.val false.

The increasingly sophisticated uses of typeclasses in mathlib have exposed a
few limitations in Lean 3: unnecessary overhead due to the lack of term indexing
techniques, and exponential running times in the presence of diamonds. Lean 4
implements a new procedure [12], tabled typeclass resolution, that solves these
problems by using discrimination trees10. for better indexing and tabling, which
is a generalization of memoizing introduced initially to address similar limitations
of early logic programming systems11.

The hygienic macro system. In interactive theorem provers (ITPs), Lean in-
cluded, extensible syntax is not only crucial to lower the cognitive burden of
manipulating complex mathematical objects, but plays a critical role in devel-
oping reusable abstractions in libraries. Lean 3 support such extensions in the
form of restrictive “syntax sugar” substitutions and other ad hoc mechanisms,
which are too rudimentary to support many desirable abstractions. As a result,
libraries are littered with unnecessary redundancy. The Lean 3 tactic languages
is plagued by a seemingly unrelated issue: accidental name capture, which often
produces unexpected and counterintuitive behavior. Lean 4 takes ideas from the
Scheme family of programming languages and solves these two problems simul-
taneously by use of a hygienic, i.e. capture-avoiding, macro system custom-built
for ITPs [15].

Lean 3’s “mixfix” notation system is still supported in Lean 4, but based
on the much more general macro system; in fact, the Lean 3 notation keyword
itself has been reimplemented as a macro, more specifically as a macro-generating
macro. By providing such a tower of abstractions for writing syntax sugars, of
which we will see more levels below, we want to enable users to work in the
simplest model appropriate for their respective use case while always keeping
open the option to switch to a lower, more expressive level.

As an example, we define the infix notation Γ ` p, with precedence 50, for
the function denote defined earlier.

infix:50 "`" => denote

The infix command expands to

notation:50 Γ "`" p:50 => denote Γ p

10 https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/
DiscrTree.lean.

11 https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/
SynthInstance.lean.

https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/DiscrTree.lean
https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/DiscrTree.lean
https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/SynthInstance.lean
https://github.com/leanprover/lean4/blob/cade21/src/Lean/Meta/SynthInstance.lean
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which itself expands to the macro declaration

macro:50 Γ:term "`" p:term:50 : term => `(denote $Γ $p)

where the syntactic category (term) of placeholders and of the entire macro is
now specified explicitly, implying that macros can also be written for/using other
categories such as the top-level command. The right-hand side uses an explicit
syntax quasiquotation to construct the syntax tree, with syntax placeholders
(antiquotations) prefixed with $. As suggested by the explicit use of quotations,
the right-hand side may now be an arbitrary Lean term computing a syntax
object, allowing for procedural macros as well.

macro itself is another command-level macro that, for our notation example,
expands to two commands

syntax:50 term "`" term:50 : term
macro_rules

| `($Γ ` $e) => `(denote $Γ $e)

that is, a pair of parser extension and syntax transformer. By separating these
two steps at this abstraction level, it becomes possible to define (mutually) re-
cursive macros and to reuse syntax between macros. Using macro_rules, users
can even extend existing macros with new rules. In general, separating pars-
ing and expansion means that that we can obtain a well-structured syntax tree
pre-expansion, i.e. a concrete syntax tree, and use it to implement source code
tooling such as auto-completion, go-to-definition, and refactorings.

We can use the syntax command for defining embedded domain-specific lan-
guages. In simple cases, we can reuse existing syntactic categories for this but
assign them new semantics, such as in the following notation for constructing
BoolExpr objects.

syntax "`[BExpr|" term "]" : term
macro_rules

| `(`[BExpr| true]) => `(BoolExpr.val true)
| `(`[BExpr| false]) => `(BoolExpr.val false)
| `(`[BExpr| $x:ident]) => `(BoolExpr.var $(quote x.getId.toString))
| `(`[BExpr| $p ∨ $q]) => `(BoolExpr.or `[BExpr| $p] `[BExpr| $q])
| `(`[BExpr| ¬ $p]) => `(BoolExpr.not `[BExpr| $p])

#check `[BExpr| p ∨ true]
-- BoolExpr.or (BoolExpr.var "p") (BoolExpr.val true) : BoolExpr

The macro_rules command above specifies how to convert a subset of the builtin
syntax for terms into constructor applications for BoolExpr. The term $(quote
x.getId.toString) converts the identifier x into a string literal.

As a final example, we modify the notation Γ ` p. In the following version, Γ
is not an arbitrary term anymore, but a comma-separated sequence of entries of
the form var 7→ value, and the right-hand side is now interpreted as a BoolExpr
term by reusing our macro from above.

syntax entry := ident " 7→ " term:max
syntax entry,* "`" term : term
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macro_rules
| `( $[$xs:ident 7→ $vs:term],* ` $p:term ) =>

let xs := xs.map fun x => quote x.getId.toString
`(denote (List.toAssocList [$[( $xs , $vs )],*]) `[BExpr| $p])

#eval a 7→ false, b 7→ true ` b ∨ a -- true

We use the antiquotation splice $[$xs:ident 7→ $vs:term],* to deconstruct the
sequence of entries into two arrays xs and vs containing the variable names and
values, respectively, adjust the former array, and combine them again in a second
splice.

3 The Code Generator

The Lean 4 code generator produces efficient C code. It is useful for building
both efficient Lean extensions and standalone applications. The code genera-
tor performs many transformations, and many of them are based on techniques
used in the Haskell compiler GHC [7]. However, in contrast to Haskell, Lean is a
strict language. We control code inlining and specialization using the attributes
@[inline] and @[specialize]. They are crucial for eliminating the overhead in-
troduced by the towers of abstractions used in our source code. Before emitting
C code, we erase proof terms and convert Lean expressions into an intermediate
representation (IR). The IR is a collection of Lean data structures,12 and users
can implement support for backends other than C by writing Lean programs
that import Lean.Compiler.IR. Lean 4 also comes with an interpreter for the IR,
which allows for rapid incremental development and testing right from inside the
editor. Whenever the interpreter calls a function for which native, ahead-of-time
compiled code is available, it will switch to that instead, which includes all func-
tions from the standard library. Thus the interpretation overhead is negligible
as long as e.g. all expensive tactics are precompiled.

Functional but in-place. Most functional languages rely on garbage collection
for automatic memory management. They usually eschew reference counting in
favor of a tracing garbage collector, which has less bookkeeping overhead at run-
time. On the other hand, having an exact reference count of each value enables
optimizations such as destructive updates [14]. When performing functional up-
dates, objects often die just before creating an object of the same kind. We
observe a similar phenomenon when we insert a new element into a purely func-
tional data structure, such as binary trees, a theorem prover rewrites formulas,
a compiler applies optimizations by transforming abstract syntax trees, or the
function simplify defined earlier. We call it the resurrection hypothesis : many
objects die just before creating an object of the same kind. The Lean mem-
ory manager uses reference counting and takes advantage of this hypothesis,
and enables pure code to perform destructive updates in all scenarios described

12 https://github.com/leanprover/lean4/blob/cade21/src/Lean/Compiler/IR/
Basic.lean

https://github.com/leanprover/lean4/blob/cade21/src/Lean/Compiler/IR/Basic.lean
https://github.com/leanprover/lean4/blob/cade21/src/Lean/Compiler/IR/Basic.lean
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above when objects are not shared. It also allows a novel programming paradigm
that we call functional but in-place (FBIP) [10]. Our preliminary experimental
results demonstrate our new compiler produces competitive code that often out-
performs the code generated by high-performance compilers such as ocamlopt
and GHC [14]. As an example, consider the function map f as that applies a
function f to each element of a list as. In this example, [] denotes the empty
list, and a::as the list with head a followed by the tail as.

def map : (α → β) → List α → List β

| f, [] => []
| f, a::as => f a :: map f as

If the list referenced by as is not shared, the code generated by our compiler does
not allocate any memory. Moreover, if as is a nonshared list of list of integers,
then map (map inc) as will not allocate any memory either. In contrast to
static linearity systems, allocations are also avoided even if only a prefix of the list
is not shared. FBIP also allows Lean users to use data structures, such as arrays
and hashtables, in pure code without any performance penalty when they are not
shared. We believe this is an attractive feature because hashtables are frequently
used to implement decision procedures and nontrivial proof automation.

4 The User Interface

Our system implements the Language Server Protocol (LSP) using the task ab-
straction provided by its standard library. The Lean 4 LSP server is incremental
and is continuously analyzing the source text and providing semantic informa-
tion to editors implementing LSP. Our LSP server implements most LSP features
found in advanced IDEs, such as hyperlinks, syntax highlighting, type informa-
tion, error handling, auto-completion, etc. Many editors implement LSP, but VS
Code is the preferred editor by the Lean user community. We provide extensions
for visualizing the intermediate proof states in interactive tactic blocks, and we
want to port the Lean 3 widget library for constructing interactive visualizations
for their proofs and programs.

5 Conclusion

Lean 4 aims to be a fully extensible interactive theorem prover and functional
programming language. It has an expressive logical foundation for writing mathe-
matical specifications and proofs and formally verified programs. Lean 4 provides
many new unique features, including a hygienic macro-system, an efficient type-
class resolution procedure based on tabled resolution, efficient code generator,
and abstractions for sealing low-level optimizations. The new elaboration proce-
dure is more general and efficient than those implemented in previous versions.
Users may also extend and modify the elaborator using Lean itself. Lean has a
relatively small trusted kernel, and the rich API allows users to export their de-
velopments to other systems and implement their own reference checkers. Lean
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is an ongoing and long-term effort, and future plans include integration with
external SMT solvers and first-order theorem provers, new compiler backends,
and porting the Lean 3 Mathematical Library.
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