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Abstract. Existing proof-generating quantified Boolean formula (QBF) solvers
must construct a different type of proof depending on whether the formula is
false (refutation) or true (satisfaction). We show that a QBF solver based on or-
dered binary decision diagrams (BDDs) can emit a single dual proof as it oper-
ates, supporting either outcome. This form consists of a sequence of equivalence-
preserving clause addition and deletion steps in an extended resolution frame-
work. For a false formula, the proof terminates with the empty clause, indicating
conflict. For a true one, it terminates with all clauses deleted, indicating tautology.
Both the length of the proof and the time required to check it are proportional to
the total number of BDD operations performed. We evaluate our solver using a
scalable benchmark based on a two-player tiling game.

1 Introduction

Adding quantifiers to Boolean formulas, yielding the logic of quantified Boolean for-
mulas (QBFs), greatly extends their expressive power [11], but it presents several chal-
lenges, including verifying the output of a QBF solver. Unlike a satisfiable Boolean
formula, there is no satisfying assignment for a QBF—the formula is simply false or
true. Instead, a proof-generating QBF solver must provide a full proof in either case: a
refutation proof if the formula is false, or a satisfaction proof if the formula is true.

Currently, there is little standardization of the proof capabilities or the proof sys-
tems supported by different QBF solvers [21]. Some solvers can generate syntactic
certificates—ones that can be directly checked by a proof checker. For a false formula,
these can be expressed in clausal proof frameworks that augment resolution with rules
for universal quantification [18]. For a true formula, several QBF solvers can generate
term resolution proofs [12], effectively reasoning about a negated version of the input
formula represented in disjunctive form. These require the proof checker to support an
entirely different set of proof rules.

An even larger number of solvers can generate semantic certificates in the form of
Herbrand functions for false formulas and Skolem functions for true ones, describing
how to instantiate either the universal or the existential variables [21]. These can be
used to expand the original formula into a (often much larger) Boolean formula that is
checked with a SAT solver [22] or with a high-degree polynomial algorithm [25]. Per-
forming the check often requires far more effort than does running the solver. These ap-
proaches, along with others involving syntactic certificates, require at least two passes—
one to determine whether the formula is true or false and one to generate the proof.
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This paper describes a new approach to proof generation for QBF, where the solver
generates a dual proof, serving as either a refutation or a satisfaction proof depending
on whether the solver determines the formula to be false or true. A dual proof consists
of a sequence of clause addition and deletion steps, each preserving equivalence to the
original formula. If the proof terminates with the addition of the empty clause, then it
demonstrates that the original formula was contradictory and therefore false. If the proof
terminates with all clauses removed, then it demonstrates that the original formula was
equivalent to a tautology and is therefore true. The proofs are expressed in a clausal
proof framework that incorporates extended resolution, as well as rules for universal
and existential quantification [13, 14].

We have implemented a QBF solver PGBDDQ based on ordered binary decision di-
agrams (BDDs) that can generate dual proofs as it operates. As optimizations, PGBDDQ
can be directed to generate refutation or satisfaction proofs, and these can be somewhat
shorter and take less time to check than dual proofs. Refutation proofs follow the tradi-
tional format of a series of truth-preserving steps leading to an empty clause. Satisfac-
tion proofs follow the novel format of a series of falsehood-preserving steps leading to
an empty set of clauses. This approach for satisfaction proofs has been previously used
as part of a QBF preprocessor [13, 14], but, to the best of our knowledge, ours is the
first use in a complete QBF solver. Whether dual, refutation, or satisfaction, the proofs
generated by PGBDDQ have length proportional to the number of BDD operations and
can readily be validated by a simple proof checker.

For the case of refutation proofs, PGBDDQ builds on the work of Jussila, et al. [17],
whose BDD-based QBF solver EBDDRES could generate refutation proofs in an ex-
tended resolution framework. Whereas their solver, as well as all other published BDD-
based QBF solvers [23, 24], require the BDD variable ordering to be the inverse of the
quantification ordering, PGBDDQ allows independent choices for the two orderings. As
will be shown, this can lead to an exponential advantage on some benchmarks.

We evaluate the performance of PGBDDQ using a scalable benchmark based on a
two-player tiling game. We show that, with the right combination of Tseitin variable
placement, BDD variable ordering and elimination variable ordering, a BDD-based
QBF solver can achieve performance that scales polynomially with the problem size.
In these cases, PGBDDQ can readily outperform state-of-the-art search-based solvers,
while having the added benefit that it generates a checkable proof.

2 Background Preliminaries

A literal l is either a variable y or its complement y. We denote the underlying variable
for literal l as Var(l), while l denotes the complement of literal l.

A clause is a set of literals, representing the disjunction of a set of complemented
and uncomplemented variables. The empty clause, indicating logical falsehood, is writ-
ten⊥. We consider only proper clauses, where a literal can only occur once in a clause,
and a clause cannot contain both a variable and its complement. Logical truth, or tau-
tology, is denoted > and represented by an empty set of clauses. For clarity, we write
clauses as Boolean formulas, such as x ∧ y → z for the clause {x, y, z}. As a special
case, the unit clause consisting of literal l is simply written as l.
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ITE: For Boolean values a, b, and c, the ITE operation (short for “If-Then-Else”) is
defined as: ITE(a, b, c) = (a∧b)∨(¬a∧c). This can be also be written as a conjunction
of clauses: ITE(a, b, c) = (a→ b) ∧ (¬a→ c).
QBF: We consider quantified formulas in prenex normal form over a set of input vari-
ables X , with input formula ΦI having the form ΦI = Q1X1Q2X2 · · · QmXm ψI .
The quantifier prefix QI = Q1X1Q2X2 · · · QmXm consists of a series of quantifier
blocks. Each block j has an associated quantifier Qj ∈ {∀, ∃} and a set of variables
Xj ⊆ X , such that the sets X1, X2, . . . , Xm form a partitioning of X . The formula
matrix ψI is given as a set of clauses referred to as the input clauses. An input variable
x occurring in some partition Xj is said to be universal (respectively, existential) when
Qj = ∀ (resp., Qj = ∃) and is said to be at quantification level j. The type and level of
each literal l matches that of its underlying variable Var(l).
Resolution: Let C and D be clauses, where C contains variable y and D contains its
complement y. We also require that there can be no literal l ∈ C, with l 6= y, such
that l ∈ D. The resolvent clause is then defined as Res(C,D) = C ∪ D − {y, y}.
When C and D do not satisfy the above requirements, then Res(C,D) is undefined.
This definition does not allow the resolvent to be a tautology.

The resolution operation extends to linear chains and sets of clauses, as well. For a
clause sequence C1, C2, . . . , Ck, we define its resolvent as:

Res(C1, C2, . . . , Ck) = Res(C1,Res(C2, · · · ,Res(Ck−1, Ck) · · · ))

The sequence C1, C2, . . . , Ck is termed the antecedent. Again, the operation is unde-
fined if any individual application of the operation is undefined. For a set of clauses
ψ, we define Res(ψ) as the set of all resolvents that can be generated from sequences
comprised of clauses from ψ with each clause used at most once per sequence.

As a separate notation, for a set of clauses ψ, we let Resy(ψ) be the set of all defined
resolvents Res(C,D) with C,D ∈ ψ, y ∈ C, and y ∈ D.
Extension: Extended resolution [28] allows the introduction of extension variables to
serve as a shorthand notation for other formulas. Generalizing extended resolution to
quantified formulas requires additional considerations regarding 1) the distinction be-
tween existentially and universally quantified variables, and 2) the position of the ex-
tension variables within the quantification ordering. In particular, as extension variables
are generated, they must be classified as existential and be inserted into intermediate
positions in the ordering [3, 17]. To support this capability, we associate a quantifica-
tion level λ(y) with each input and extension variable y. For input variable x, where
x ∈ Xj , we define λ(x) = 2j − 1. Input variables will therefore have odd values for
λ. Each extension variable e will be assigned an even value for λ(e) according to rules
defined below. For literal l, we define λ(l) = λ(Var(l)).

As clauses are added and deleted, and as extension variables are introduced, a for-
mula will be maintained with an overall form

Φ = Q1X1 ∃E1Q2X2 ∃E2 · · · QmXm ∃Em ψ (1)

where E1, E2, . . . , Em is a partitioning of the set of extension variables. The quantifier
prefix Q in (1) is therefore an alternation of input and extension variables, with all
extension variables being existentially quantified. We can also view the quantifier prefix
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as simply being a set of variables y, being ordered by the values of λ(y), and where y
is universal when λ(y) = 2j − 1 with Qj = ∀. Otherwise, y is existential. We use
set notation when referring to the quantifier prefix, recognizing that the partitioning of
variables into quantifier blocks and the associated quantifier types, are defined implicitly
by the function λ.

Two quantifier prefixes Q and Q′, each with m input variable blocks, are said to be
compatible when Qj = Q′j for 1 ≤ j ≤ m, and λ(y) = λ′(y) for all y ∈ Q ∩ Q′,
where the unprimed and primed symbols correspond to Q and Q′, respectively.

Extension introduces existential variable e by adding a set of defining clauses θ to
the matrix and adding e to the quantifier prefix. Consider QBF Φ = Qψ. Let e be a
fresh variable (i.e., e 6∈ Q) and let θ be a set of clauses that are blocked on e [5]. That
is, each clause in θ must contain either e or e, and for any clauses C,D ∈ θ for which
e ∈ C and e ∈ D, there must be some other literal l ∈ C such that l ∈ D, and therefore
Rese(θ) = ∅. Define Φ′ = Q′ ψ′ as follows. Variable e is assigned quantification level
λ(e) = max{Even(λ(y))|y ∈ Var(θ), y 6= e}, where Var(θ) is defined to be the
set of all variables occurring in the clauses in θ. Function Even rounds a number up
to the next higher even value, i.e., Even(a) = 2 da/2e. This definition guarantees that
λ(e) is even and that every variable y occurring in θ will have λ(y) ≤ λ(e). Letting
Q′ = Q∪{e} and ψ′ = ψ∪θ, it can be shown that Φ′ is true if and only if Φ is true [17].
Boolean Functions: The restriction of Boolean function f with respect to variable x,
denoted f |x is defined as the function that results when variable x is assigned value 1.
Similarly, f |x is defined as the function that results when x is assigned value 0.

The Shannon expansion relates a Boolean function to its restrictions with respect to
a variable and its complement. For a function f and variable x:

f = ITE
(
x, f |x, f |x

)
=

(
x→ f |x

)
∧
(
x→ f |x

)
(2)

We will find clausal form (2) to be of use in generating satisfaction proofs.
For Boolean function f and variable x we can define the existential and universal

quantifications of f with respect to x as projection operations that eliminate the depen-
dency on x through either disjunction or conjunction:

∃x f = f |x ∨ f |x (3)
∀x f = f |x ∧ f |x (4)

BDDs: A reduced, ordered binary decision diagram (BDD) provides a canonical form
for representing a set of Boolean functions, and an associated set of algorithms for
constructing them and testing their properties [1, 7, 8]. A set of functions is represented
as a directed acyclic graph, with each function indicated by a pointer to its root node.
We will therefore use the symbol u to refer at times to 1) a node in the BDD, 2) the
subgraph of the BDD having u as its root, 3) the function represented by this subgraph,
and 4) an extension variable associated with the node.

The ordered BDD representation requires defining a total ordering of the variables.
Unlike other BDD-based QBF solvers [17, 23, 24], PGBDDQ allows this ordering to be
independent of the ordering of variables in the quantifier prefix. The two leaf nodes



437

are denoted L0 and L1, representing the constant functions 0 and 1, respectively. Each
nonterminal node u has an associated variable and two children indicating branches for
the two possible values of the variable.

BDD packages support multiple operations for constructing and testing the prop-
erties of Boolean functions represented by a BDD. A number of these are based on
the Apply algorithm [6]. Given root nodes u and v representing functions f and g, re-
spectively, and a Boolean operation (e.g., AND), the algorithm generates a root node
w representing the result of applying the operation to those functions (e.g., f ∧ g).
It operates by traversing its arguments via a series of recursive calls, using a table to
cache previously computed results. Variants of the Apply algorithm can also perform
restriction and quantification.
QBF Solving with a BDD: With the ability to perform disjunction, conjunction, and
quantification of Boolean functions, there is a straightforward algorithm for solving a
QBF with a BDD. It starts by computing a representation of the formula matrix using
the Apply algorithm with operation ∨ for each clause and conjuncting these using the
Apply algorithm with operation ∧. Then, quantifiers are eliminated by working from
the innermost quantifier block Xm and working outward, using either universal or exis-
tential quantifier operations. At the end, the BDD will be reduced to either L0 indicating
that the formula is false, or L1 indicating that the formula is true. This basic algorithm
can be improved by deferring some of the conjunctions and by carefully selecting the
order of quantification within each quantifier block [23, 24].

3 Logical Foundations

A clausal proof consists of a sequence of steps starting with the clauses in the input
formula ΦI . Each step either adds a set of clauses, and possibly an extension variable,
or it removes a set of clauses. These additions and removals define a sequence of QBFs
Φ1, Φ2, . . . , Φt, with Φ1 = ΦI and each Φi of the form Qi ψi.

For a refutation proof, each step i must preserve truth, i.e., Φi → Φi+1, and it must
end with ⊥ ∈ ψt. This construction serves as a proof that ΦI = Φ1 → Φ2 → · · · →
Φt = ⊥, and therefore the input formula is false. A satisfaction proof follows the same
general format, except that it requires each step i to preserve falsehood: Φi+1 → Φi, and
it reaches a final result with ψt = ∅. This construction serves as a proof that > = Φt →
Φt−1 → · · · → Φ1 = ΦI , and therefore the input formula is true. A dual proof requires
that each step preserves equivalence: Φi ↔ Φi+1, i.e., it is both truth and falsehood
preserving. Only the final step with ψt ∈ {⊥,>} determines whether it is a refutation
or a satisfaction proof.

3.1 Inference Rules

Table 1 shows the equivalence-preserving inference rules we use in our proofs. These
are based on redundant clauses—cases where there are two sets of clauses ψ and θ such
that Qψ ↔ Q′ (ψ ∪ θ), for compatible prefixes Q and Q′. Thus, adding clauses θ to
the matrix ψ defines an equivalence-preserving addition rule, while deleting them from
the matrix ψ ∪ θ defines an equivalence-preserving removal rule.

Dual Proof Generation for QBF with a BDD-based Solver
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Table 1. Inference rules where clause set θ is redundant with respect to the clauses in ψ.

Addition Removal Requirements

Resolution addition Resolution deletion θ ⊆ Res(ψ).

Universal reduction — θ = {C}. l universal. λ(l′) < λ(l) for all existential
l′ ∈ C. C ∪ {l} ∈ ψ.

Extension Existential
elimination

y existential. y 6∈ Var(ψ). y ∈ Var(C) for all C ∈
θ.Resy(θ) ⊆ ψ. λ(y′) ≤ λ(y) for all y′ ∈ Var(θ).

We have already described resolution in Section 2. Universal reduction (also known
as “forall reduction” [4,17]) is the standard rule for eliminating universal variables in a
QBF refutation proof [18].

The extension rule forms the basis for adding extension variable y = e and its
defining clauses θ. For this case, the clauses in θ are blocked with respect to y, and
therefore Resy(θ) = ∅. As a deletion rule, the existential elimination rule is used to
remove extension variables and their defining clauses, as well as to remove the existen-
tial input variables. It is a generalization of blocked clause elimination [5] in that the
clauses in θ need not be blocked, as long as ψ contains all of the resolvents with respect
to variable y. The redundancies used by the resolution, extension, and existential elimi-
nation rules are special cases of the quantified resolution asymmetric tautology (QRAT)
property [13, 14].

3.2 Integrating Proof Generation into BDD Operations

As described in [16, 17, 26] and [9], we use a BDD to represent Boolean functions
defined by applying Boolean operations to the input variables X . When creating node
u, we introduce an extension variable, also referred to as u, with up to four defining
clauses. For node u with variable x, and children nodes u1 and u0, these clauses encode
the formula u ↔ ITE(x, u1, u0). As described in Section 2, we will have λ(u) =
max{λ(x) + 1, λ(u1), λ(u0)}.

As in [9], we associate leaf nodes L0 and L1 directly with logical values ⊥ and >.
When constructing node u, if either u1 or u0 is a leaf node, the defining clauses may
be simplified, and some may degenerate to tautologies. By defining λ(⊥) = λ(>) = 0,
we can still use the above formula to define the value of λ(u), such that λ(u1) ≤ λ(u),
λ(u0) ≤ λ(u), and λ(x) < λ(u). This guarantees that the value of λ(u) is greater or
equal to that of any node or variable occurring in the subgraph with root u.

For node u, define its support set S(u) as the set of variables occurring at some node
in the subgraph with root u. Based on our construction, any node u will have λ(u) = 2j
if and only if there is some j and some x for which x ∈ Xj ∩ S(u), and this property
does not hold for any j′ > j.

As a final notation, let θ(u) denote the set consisting of the defining clauses for all
nodes in the subgraph with root u.

The BDD package implements the set of operations shown in the Table 2. Each
generates a result node w, and it also generates sets of clauses forming extended reso-
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Table 2. Required BDD Operations. Each generates a root node plus a set of proofs.

Operation Arguments Result Proved Properties
Truth Preserving Falsehood Preserving

FROMCLAUSE C u =
∨

l∈C l C, θ(u) ` u u, θ(u) ` C
APPLYAND u, v w = u ∧ v u ∧ v → w w → u, w → v
APPLYOR u, v w = u ∨ v u→ w, v → w w → u ∨ v
RESTRICT u, l w = u|l l ∧ u→ w l ∧ w → u

lution proofs of some properties relating the result to the arguments. As shown, some
of these properties are truth preserving, while others are falsehood preserving. In each
of these, C indicates a clause, u, v, and w are BDD nodes (or their associated extension
variables), and l is a literal of an input variable.

These operations serve the following roles:

– FROMCLAUSE generates the BDD representation u of a clause C. It also generates
a set of resolution steps proving that the unit clause u is logically entailed by the
input clause and defining clauses: u ∈ Res({C} ∪ θ(u)), and the converse: C ∈
Res({u} ∪ θ(u)).

– APPLYAND generates the BDD representation w of the conjunction of its argu-
ments. It also generates a proof that the extension variables for the argument and
result nodes satisfy u ∧ v → w, as well as a proof of the converse: w → u and
w → v, and therefore w → u ∧ v.

– APPLYOR generates the BDD representation w of the disjunction of its arguments.
Its generated proofs include u→ w and v → w, implying that u ∨ v → w, as well
as the converse: w → u ∨ v.

– RESTRICT generates the restriction w of argument u with respect to literal l. It
generates proofs that the operation satisfies downward implication: l ∧ u → w,
and also upward implication: l ∧ w → u. This operation has the property that for
x = Var(l), variable x will not occur in the subgraph with root w, i.e., x 6∈ S(w).

4 Integrating Proof Generation into a QBF Solver

PGBDDQ solves a QBF by maintaining a set T of root nodes, which we refer to as
“terms.” Each term is the result of conjuncting and applying elimination operations
to some subset of the input clauses. T initially contains the root nodes for the BDD
representations of the input clauses. The solver repeatedly removes one or two terms
from T , performs a quantification or conjunction operation, and adds the result to T ,
except that terms with value L1 are not added. Quantifiers are eliminated in reverse
order, starting with block Xm and continuing through X1. The process continues until
either some generated term is the leaf value L0, indicating that the formula is false, or
the set becomes empty, indicating that the formula is true. The solver simultaneously
generates proof steps, including ones that add a unit clause u for each node u ∈ T .

Our presentation describes the general requirements for applying conjunction and
elimination operations. These operations can be used to implement the basic method

Dual Proof Generation for QBF with a BDD-based Solver
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described in Section 2, as well as more sophisticated strategies that defer conjunctions
until they are required before performing some of the elimination operations [23, 24].

Universal quantification commutes with conjunction and so can be applied to the
terms independently. Applying existential quantification, on the other hand, requires
performing conjunction operations until the variables to be quantified occur only in a
single term.

4.1 Dual Proof Generation

For both technical and implementation reasons, which we explain below, we require the
input formula to have only a single variable in each quantifier block. This restriction can
be satisfied by rewriting an arbitrary QBF, such that a quantifier block with k variables
is serialized, splitting it into a sequence of k distinct quantification levels.

When generating a dual proof, the solver generates steps proving that each update
to the set of terms T preserves equivalence with the input formula. More formally,
consider a matrix ψ containing the following clauses: 1) unit clause u for each u ∈ T ,
plus 2) all of the defining clauses θ(u) for the subgraph rooted by each node u ∈
T . Let Q be the compatible quantifier prefix formed by augmenting input prefix QI

with the extension variables associated with the nodes in these subgraphs. Then each
update preserves the invariant thatQI ψI ↔ Qψ. Furthermore, the solver takes care to
systematically delete clauses once they are no longer needed, using the removal rules
listed in Table 1. That enables it to finish with an empty set of clauses in the event the
formula is true. The initial set of terms T consists of a root node u for each input clause
C, and the solver uses the proof that C, θ(u) ` u to justify adding unit clause u to the
proof. It then uses this unit clause, plus the proof that u, θ(u) ` C to justify deleting
input clause C.

Each step proceeds by generating new terms and by adding and removing clauses
in the proof. Suppose the step involves computing results with root nodes w1, ..., wn

based on argument terms u1, . . . , uk. If any of the result nodes is BDD leaf L0, then
the formula is false. The solver can use truth-preserving rules generated by the BDD
operations to justify adding an empty clause. Otherwise, the solver removes the argu-
ment terms from T and adds the result nodes, except for any equal to BDD leaf L1. The
solver uses the existing unit clauses plus the truth-preserving rules to justify adding unit
clauses for each newly added term. It then uses the falsehood-preserving rules and the
newly added unit clauses to justify deleting the unit clauses associated with the argu-
ment terms. It must also explicitly generate rules to remove some intermediate clauses
that are added during these proof constructions. Other clauses, including the defining
clauses for the BDD nodes and the clauses added during the BDD operations get re-
moved by a separate process described in Section 4.2. The net effect for each step then
is to replace the argument terms in T by the non-constant result terms, maintaining a
unit clause for each term in T as part of the proof.
Conjunction operations. For u, v ∈ T , the solver computes w = APPLYAND(u, v).
For the case wherew = L0 the generated truth-preserving proof will be the clause u∨v,
which resolves with unit clauses u and v to generate the empty clause—the solver has
proved that the formula is false.
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Otherwise, the solver sets T to be T −{u, v} ∪w. The proof for adding unit clause
w follows by resolving the unit clauses u and v with the generated clause u ∨ v ∨ w,
(i.e., u ∧ v → w). The generated clauses w → u and w → v each resolve with unit
clause w to justify deleting unit clauses u and v.
Universal elimination operation. This operation is performed when Qj = ∀, and by
our restriction, we must have Xj = {x} for some universal variable x. We also require
that the input variables for blocks Xj′ such that j′ > j have already been eliminated.

Since universal quantification commutes with conjunction, the solver can quantify
each term individually and let subsequent conjunction operations perform the conjunc-
tion indicated in (4). That is, for each u ∈ T such that x ∈ S(u), operation RESTRICT
is used to compute the two restrictions wx = u|x and wx = u|x. These will generate
proofs of two downward implications: l ∧ u → wl for l ∈ {x, x}, as well as proofs of
two upward implications: l ∧ wl → u.

If wl equals leaf node L0 for either l = x or l = x, then the corresponding down-
ward implication will be a clause of the form l∧u→ ⊥ = l∨u. Resolving this with the
unit clause u and applying universal reduction generates the empty clause—the solver
has proved that the formula is false.

Consider the general case, where neither wx nor wx is a leaf node. The solver sets
T = T ∪ {wx, wx} − {u}. The downward implications l ∧ u → wl can be resolved
with unit clause u to yield the clause l → wl for l ∈ {x, x}. We can be certain that
λ(wl) < λ(x) for both values of l, since x 6∈ S(wl). Applying universal reduction to
the two generated clauses then yields the unit clauses wx and wx. Resolving each unit
clausewl with the upward implication l∧wl → u gives the clause l→ u, for l ∈ {x, x}.
Resolving these with each other justifies deleting unit clause u. Intermediate clauses
x→ w, x→ w, x→ wx, and x→ wx are removed by resolution deletion.

The case where one of the restrictions is the leaf node L1 is handled similarly to the
general case, except that this node is not added to T .

Our implementation applies the conjunction operation to terms wx and wx imme-
diately after they are generated to avoid causing the number of terms to expand by a
factor of 2k when the formula contains a sequence of k universal quantifiers.
Existential elimination operations. This operation is performed when Qj = ∃. We
can assume that Xj = {x} for some existential variable x. We require that the input
variables for blocks Xj′ such that j′ > j have already been eliminated. We also require
the conjunction operations to have reduced T to contain at most one node u such that
x ∈ S(u). The solver proceeds as follows to existentially quantify x from u yielding a
new term w and creating the justification for adding unit clause w. It also removes unit
clause u, as well as some intermediate clauses. Note that w can equal L1, but not L0.

1. Compute ux = RESTRICT(u, x) and ux = RESTRICT(u, x), generating proofs of
the downward implications x ∧ u → ux and x ∧ u → ux, as well as the upward
implications x∧ux → u and x∧ux → u. Resolving the two downward implications
with the unit clause u justifies adding clauses Cx = x → ux and Cx = x → ux.
These clauses form the Shannon expansions (2) of u with respect to variable x.

2. For l ∈ {x, x}, resolving clause Cl with the upward implication l∧ul → u justifies
adding clauses x→ u and x→ u. Resolving these with each other justifies deleting
unit clause u. This step completes the replacement of u by its Shannon expansion.

Dual Proof Generation for QBF with a BDD-based Solver
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3. Apply clause removal to remove every clause containing a literal l such that λ(l) >
λ(x) = 2j − 1. This is described in Section 4.2.

4. Cx and Cx are the only clauses remaining that contain either x or x. Resolving
these with each other justifies adding clause ux ∨ ux. The existential elimination
rule can now be applied to justify deleting Cx and Cx, with the result that there will
be no further clauses containing any literal l with λ(l) ≥ λ(x).

5. Compute w = APPLYOR(ux, ux), generating three proofs: ux → w, ux → w, and
w → ux ∨ ux.

6. If w is leaf node L1, then the falsehood-preserving proof generated by APPLYOR
derives the clause ux ∨ ux. This proof justifies deleting the instance of this clause
added in step 5. If w is a nonleaf node, then the first two proofs from Step 5 can be
resolved with the clause ux ∨ ux to justify adding unit clause w, and the third can
be resolved with this unit clause to justify deleting clause ux ∨ ux. This completes
the replacement of u by the disjunction of its two restrictions, as in (3).

7. If w is leaf node L1, then set T to T − {u}. Otherwise, set it to T − {u} ∪ {w}.

Overall Operation: For a false formula, the solver will terminate with the generation
of leaf value L0 during a conjunction or universal quantification operation. These cases
will cause the proof to terminate with the addition of an empty clause. For a true for-
mula, the solver will finish with T equal to the empty set, since it never adds a leaf node
to T . A final clause removal operation with quantification level 0 then yields ψt = ∅.

We can see now why we impose the restriction that any quantifier block Xj with
Qj = ∀ contain only one variable. Without it, the universal variable elimination opera-
tion may not be possible. Suppose Xj = {x, x′}. Attempting to perform the universal
quantification operation on variable x could yield a BDD node wl, with either l = x or
l = x, that depends on x′. That would require that λ(wl) > λ(x′) = λ(x), and so the
universal reduction rule could not be applied. Serializing the universal blocks avoids
this difficulty, without limiting the generality of the solver.

4.2 Clause Removal

As a dual proof proceeds, the BDD operations cause clauses to be added as extension
variables are introduced and as inferences are made via resolution. Other clauses are
added and removed explicitly by the proof steps, including the unit clauses for each
term and the intermediate clauses generated by the steps. In order to support having the
outcome of the solver be true, the defining and resolution clauses must be removed in
order to ultimately end up with an empty set of clauses. The solver must justify their
removal, since clause deletion is not, in general, equivalence preserving.

Clause removal is triggered when performing existential quantification, just before
applying the variable elimination rule with variable x to remove clauses Cx and Cx

(step 3). We must first ensure that there are no other clauses containing x or x.
Our method is to remove any clause C containing a literal l for which λ(l) >

λ(x) = 2j − 1. Clause removal can proceed by stepping through the clauses in the
reverse order from how they were added. If a clause that was added by resolution con-
tains a literal l with λ(l) ≥ 2j, it can be removed via resolution deletion, using the same
antecedent as was used when it was added.
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Suppose the solver encounters the defining clauses for a node u with λ(u) ≥ 2j.
It can be certain that all clauses added by resolution that contain either u or u have
already been removed, since these must have followed the introduction of u in the clause
ordering. Similarly, any parent node v of u must have already had its defining clauses
removed, since the defining clauses for v must occur after those for u. The existential
elimination rule can therefore be used to remove the defining clauses for u.

Working through the set of clauses in reverse order, the solver may encounter clauses
added by resolution and defining clauses containing only literals l with λ(l) < 2j − 1.
These need not be removed, and indeed they can prove useful (clauses added by reso-
lution) or necessary (some defining clauses) for subsequent proof steps. They will be
deleted by clause removal during later phases.

We can see now why we impose the restriction that any quantifier block Xj with
Qj = ∃ contain only one variable. It enables the use of the λ values to determine
which clauses should be removed to eliminate any dependency on existential variable x.
Serializing the existential quantifier blocks allows this scheme to work without limiting
the generality of the solver.

4.3 Specializing to Refutation or Satisfaction Proofs

Dual proofs have the advantage that they can be generated as a single pass, without
knowing in advance whether the formula is true or false. On the other hand, they are,
by necessity, somewhat longer and require more time to generate and to check. Another
approach is to know (or guess) what the outcome will be and then direct the solver to
generate a pure refutation or satisfaction proof. Specializing the proof generation to one
of these forms is straightforward, and it can take advantage of more efficient ways to
perform some of the quantifications.

A refutation proof need only justify that each step preserves truth. This enables sev-
eral optimizations. Observe that deleting a clause always preserves truth, because it can
only cause the set of satisfying solutions for the matrix to expand. Therefore clause
deletion can be performed without any justification and instead be incorporated into
the BDD garbage collection process [9]. Second, the BDD package need not gener-
ate the falsehood-preserving proofs shown in Table 2, reducing the number of clauses
generated. Finally, the existential operation of (3) is inherently truth preserving. BDD
packages can implement the quantification of a function by an entire set of variables via
a variant of the Apply algorithm. If the quantification of root node u generates result
node w, then the solver can run an implication test after the BDD computation has been
performed to prove that u → w, as is done with our SAT solver [9]. This avoids the
need to serialize existential quantifier blocks and to have the solver generate low-level
proof steps for each existential variable.

Conversely, a satisfaction proof need only justify that each step preserves falsehood.
Adding a clause always preserves falsehood, since it can only reduce the set of satis-
fying solutions for the matrix, and therefore clause addition can be performed without
any justification. In addition, the BDD package need not generate the truth-preserving
proofs shown in Table 2. Finally, universal quantification can be performed on an en-
tire block of variables producing node w from argument u. The solver can then run an
implication test to generate a proof that w → u.

Dual Proof Generation for QBF with a BDD-based Solver
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5 Experimental Results

PGBDDQ1 is written entirely in Python and consists of around 3350 lines of code, in-
cluding a BDD package, support for generating extended-resolution proofs, and the
overall QBF solver. By comparison, our proof-generating BDD-based SAT solver re-
quired around 2130 lines of code [9]. PGBDDQ can generate proofs in either the QRAT
format [13, 14] or in a format we call QPROOF that supports just the proof rules given
in Table 1. The latter format requires explicit lists of antecedents, and therefore each
step can be checked without any search.

The overall control of PGBDDQ is based on a form of bucket elimination [10], where
each quantifier block Xj defines a bucket. It starts by generating BDD representations
of the input clauses. The resulting terms are inserted into buckets according to the value
of λ(u) for each root node u. As described in Section 3.2, this value will be 2j when
u contains a variable from block Xj in its support, and it has no variables at higher
quantification levels.

Processing proceeds from the highest numbered bucket downward. For a universal
level, quantification is performed for each bucket element individually with the results
placed into buckets according to their values for λ. For an existential level, the elements
are conjuncted and then existential quantification is performed. The result is placed into
a bucket according to its value of λ.

We can see that this approach defers conjunction as long as possible, only operating
on terms at some quantification level j that truly depend on one or more variables inXj .
Similar techniques have been used in other BDD-based QBF solvers [23,24]. However,
other implementations place terms into buckets according to the BDD level of their root
nodes, requiring the BDD variables to be ordered as the inverse of the quantification
ordering. By labeling each node with its value of λ, we can determine the appropriate
bucket from the root node without regard to the BDD variable ordering.

We have tested PGBDDQ on a number of scalable benchmark problems, finding it
performs well in some cases, scaling polynomially, and poorly in others, scaling expo-
nentially. Here we present results for a problem based on a two-player game. It provides
insights into how polynomial scaling can be achieved, as well as the performance of the
solver and two checkers.

Two-player games provide a rich set of benchmarks for QBF solvers, with each turn
being translated into a quantification level. To encode the game from the perspective
of the first player (Player A), A’s turns are encoded with existential quantifiers, while
the second player’s (Player B) turns are encoded with universal quantifiers. The formula
will be true if the game has a guaranteed winning strategy for A. The encoding of a game
into QBF constrains the two players to only make legal moves. It also expresses the
conditions under which A is the winner, namely that the game consist of t consecutive
moves, for an odd value of t. Conversely, we can encode the formula where B has a
winning strategy by reversing the quantifiers and expressing that the game must consist
of an even number of consecutive moves. For a game where no draws are possible, these
two formulas will be complementary.

1 A demonstration version, complete with solver, checker, and benchmarks, is available at
https://github.com/rebryant/pgbddq-artifact.

https://github.com/rebryant/pgbddq-artifact
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Consider a game played on a 1 ×N grid of squares with a set of dominos, each of
which can cover two squares. Players alternate turns, each placing a domino to cover
two adjacent squares. The game completes when no more moves are possible, taking at
most bN/2c turns. The first player who cannot place a domino loses. This linear domino
placement game is isomorphic to the object-removal game “Dawson’s Kales” [2]. It can
be shown that player B has a winning strategy for N ∈ {0, 1, 15, 35} as well as for all
values of the form 34 i+ c where i ≥ 0 and c ∈ {5, 9, 21, 25, 29} [27].

The game is encoded as a QBF by introducing a set ofN−1 input variables for each
possible move, each corresponding to the boundary between a pair of adjacent squares.
A set of N − 1 Tseitin variables encodes the board state after each move, and sets of
clauses enforce the conditions that 1) each move should cover exactly one boundary,
and 2) neither that boundary nor the two adjacent ones should have been covered pre-
viously. In all, there are around N2/4 universal input variables, N2/4 existential input
variables, and 3N2/2 Tseitin variables. The number of clauses grows as Θ(N3) due
to the quadratic number of clauses to enforce the exactly-one constraints on the input
variables for each move.

To achieve polynomial performance, we found that several problem-specific tech-
niques are required. First, the Tseitin variables for a given move are placed in an exis-
tential quantifier block immediately following the block for the input variables for the
move. This is logically equivalent to the usual convention of placing all Tseitin vari-
ables in an innermost quantifier block, but it enables the bucket elimination algorithm
to process the clauses for each move in sequence, rather than expanding the formulas in
terms of only the input variables at the outset. Second, all variables are ordered for the
BDD in “boundary-major” ordering. That is, all variables, including input and Tseitin
variables, for the first boundary on the board are included from the first quantification
level to the last. The variables for the second boundary follow similarly, and so on for
all N − 1 boundaries. This ordering has the effect that, when processing the clauses for
some move, the variables encoding the next, and previous state for a boundary, as well
as the proposed change to its state, are localized within the ordering. Finally, when split-
ting a quantifier block into a series of single-variable blocks, we ordered them according
to their BDD variable ordering. Since the solver eliminates variables in the reverse of
their quantifier ordering, this convention causes the disjunction and conjunction opera-
tions of Equations (3) and (4) to be performed mainly on subgraphs of the BDD below
the variables being quantified. This enables greater use of previously computed results
via the operation cache.

Table 3 shows the performance of PGBDDQ, two checkers, and two other QBF
solvers on the domino placement game as functions of N . It shows first cases where
the encoded player has a winning strategy, and therefore the formula is true, and then
cases where the encoded player’s opponent has a winning strategy, and therefore the
formula is false. Dual proofs were generated for both cases. For measurements with
sufficient data points, we show the scaling trends, obtained by performing a linear re-
gression on the logarithms of data generated for each value of N in increments of 5.
All measurements were performed on a 4.2 GHz Intel Core i7 (I7-7700K) processor
with 32 GB of memory running the MacOS operating system. Times are measured in
elapsed seconds.

Dual Proof Generation for QBF with a BDD-based Solver
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Table 3. Experimental Results for Dual Proof Generation with Linear Domino Placement Game.
The first data series are for proofs of true formulas, and the second are for false formulas. Entries
shown as “—” indicate cases where the program exceeded a 7200-second time limit.

N Winner/ Input PGBDDQ Other solvers

Player Clauses Total Clauses Solve Qproof QRAT-TRIM DEPQBF GHOSTQ

10 A/A 666 132,138 3.1 3.3 3.4 0.1 0.0
15 B/B 1,725 628,392 15.2 15.7 43.8 3.8 1.3
20 A/A 3,880 2,572,139 67.3 65.5 605.0 1896.6 57.9
25 B/B 6,637 7,098,146 202.6 199.5 4265.6 — —
40 A/A 24,010 83,736,352 3358.6 3479.5 — — —

Trend N2.7 N4.5 N4.8 N4.8

10 A/B 664 132,403 3.1 3.2 7.3 0.1 0.0
15 B/A 1,728 629,530 15.2 15.5 108.7 3.6 1.0
20 A/B 3,885 2,580,284 67.2 66.7 1521.5 — 49.1
25 B/A 6,631 7,083,515 205.1 190.0 — — 6942.2
40 A/B 24,000 83,662,168 3279.2 3457.4 — — —

Trend N2.7 N4.5 N4.8 N4.8

As indicated in the column labeled “Input Clauses,” the number of clauses grows
as N2.7, not quite reaching the asymptotic value of N3. The number of proof clauses
generated by PGBDDQ are nearly the same for both true and false formulas, with growth
rates of N4.5. The time taken by the solver (labeled “Solve”) , and by our own checker
(“Qproof”) scale at about the same rate as the number of proof clauses.

We also benchmarked the QBF proof checker QRAT-TRIM [13, 14]. This program
was already equipped to handle our forms of refutation and satisfaction proofs, and it
can handle dual proofs without modification. The only concession to the idiosyncrasies
of PGBDDQ was to serialize the universal quantifier blocks in the prefix of false formu-
las. This is required to enable application of the universal reduction rule. The existential
blocks can stay intact, since our only reason to serialize these is to guide the clause re-
moval process. Although the scaling of QRAT-TRIM is poor, it is encouraging that the
solver can be verified by a checker that predates it by a number of years.

For comparison, we evaluated the performance of two other QBF solvers on this
benchmark: DEPQBF, version 6.0 [20], and GHOSTQ [15,19]. We found they are both
very fast for smaller values of N but then reach a narrow range of values for which
they transition from running in just a few seconds to exceeding the timeout limit of
7200 seconds. For DEPQBF, this transition occurs as N ranges from 17 to 21, and for
GHOSTQ, as N ranges from 21 to 26. PGBDDQ is much slower for small values of N ,
but it keeps scaling without hitting a sudden cutoff.

Although we did not run EBDDRES [17], we can use PGBDDQ to evaluate the im-
pact of having the BDD variable ordering be the inverse of the quantifier ordering. Our
experiments show that this ordering causes the runtime and proof sizes to scale expo-
nentially in N . With N = 14 and B as the player, PGBDDQ runs for 4100 seconds to
generate a refutation proof with 114,157,025 clauses. By contrast, a boundary-major
ordering requires just 6 seconds and generates a proof with 309,387 clauses.
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Table 4. Experimental Results for Specialized Proof Generation with Linear Domino Placement
Game. The first data series are for satisfaction proofs, and the second are for refutation proofs.

N Winner/Player Input Clauses Total Clauses Solve Qproof

10 A/A 666 90,924 1.8 1.4
20 A/A 3,880 1,516,756 36.4 24.0
30 A/A 11,166 10,466,168 346.0 192.6
40 A/A 24,010 44,874,662 1990.3 1254.8
45 A/A 32,241 74,891,554 4033.4 2760.8

Trend N2.7 N4.4 N4.8 N4.7

10 A/B 664 126,127 2.4 1.8
20 A/B 3,885 1,232,252 27.3 18.6
30 A/B 11,159 7,084,367 180.0 121.6
40 A/B 24,010 26,150,238 773.9 565.0
50 A/B 43,904 85,077,630 2955.4 2151.4

Trend N2.7 N4.0 N4.3 N4.3

Table 4 shows the advantage of generating specialized proofs when the formula is
known in advance to be true or false. Comparing the columns labeled “Total Clauses” in
Tables 3 and 4, we can see especially that refutation proofs are asymptotically shorter.
These can take advantage of the more efficient approach to existential quantification in
handling the large number of Tseitin variables. Again, the solution and checking time
track the proof sizes. These optimizations allowed us to solve larger instances of the
problem—up to N = 45 for true instances and N = 50 for false ones.

6 Conclusions

We have demonstrated that a QBF solver can emit a single proof as it operates, leading
to either an empty clause for a false formula or an empty set of clauses for a true one.
Both the proof and the time required to check it scale as the number of BDD operations
performed. Moreover, a BDD-based QBF solver can allow the choice of BDD variable
ordering to be made independently from the quantifier ordering. This feature can be
critical to obtaining performance that scales polynomially with the problem size.

Our prototype is only a start in implementing a fully automated QBF solver. Such
a solver must be able to choose a BDD variable ordering based on the input formula
structure. It must also be able to identify and move Tseitin variables to earlier positions
in the quantifier ordering, generating proof steps justifying that this transformation is
equivalence preserving.

The underlying operation of PGBDDQ has potential applications beyond QBF solv-
ing. The program could stop the process described in Section 4.1 at any point and gen-
erate a QBF that is provably equivalent to the input formula. PGBDDQ could therefore
be used as a preprocessor for other solvers, and for other applications that require rea-
soning about Boolean formulas with quantifiers.
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