
Multi-Dimensional Interpretations for
Termination of Term Rewriting

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Interpretation methods constitute a foundation of termina-
tion analysis for term rewriting. From time to time remarkable instances
of interpretation methods appeared, such as polynomial interpretations,
matrix interpretations, arctic interpretations, and their variants. In this
paper we introduce a general framework, the multi-dimensional interpre-
tation method, that subsumes these variants as well as many previously
unknown interpretation methods as instances. Employing the notion of
derivers, we prove the soundness of the proposed method in an elegant
way. We implement the proposed method in the termination prover NaTT
and verify its significance through experiments.

1 Introduction

Term rewriting [2] is a formalism for reasoning about function definitions or func-
tional programs. For instance, a term rewrite system (TRS) Rfact [7] consisting
of the following rewrite rules defines the factorial function:

fact(0)→ s(0) fact(s(x))→ mul(s(x), fact(p(s(x)))) p(s(x))→ x

assuming that s, p, and mul are interpreted respectively as the successor, pre-
decessor, and multiplication functions.

Analyzing whether a TRS terminates, meaning that the corresponding
functional program responds or the function is well defined, has been an
active research area for decades. Consequently, several fully automatic termi-
nation provers have been developed, e.g., AProVE [10], TTT2 [20], CiME [5],
MU-TERM [23], and NaTT [34], and have been competing in the annual Ter-
mination Competitions (TermCOMP) [11].

Throughout their history, interpretation methods [25] have been foundational
in termination analysis. They are categorized by the choice of well-founded car-
riers and the class of functions as which symbols are interpreted. Polynomial
interpretations [22] use the natural numbers N as the carrier and interpretations
are monotone polynomials, i.e., every variable has coefficient at least 1. Weakly
monotone polynomials, i.e., zero coefficients, are allowed in the dependency pair
method [1]. Negative constants are allowed using the max operator [15]. Gen-
eral combinations of polynomials and the max operator are proposed in both the
standard [37] and the dependency pair settings [9]. Negative coefficients and thus

c© The Author(s) 2021
A. Platzer and G. Sutcliffe (Eds.): CADE 2021, LNAI 12699, pp.
https://doi.org/10.1007/978-3-030-79876-5_16

Akihisa Yamada

273–290, 2021.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79876-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-79876-5_16
http://orcid.org/0000-0001-8872-2240

274 Akihisa Yamada

non-monotone polynomials are also allowed, but in a more elaborated theoretical
framework [15,9].

These methods share the common carrier N. In contrast, matrix interpre-
tations [16,8] choose vectors over N as the carrier, and interpret symbols as
affine maps over it. Although the carrier is generalized, matrix interpretations
do not properly generalize polynomial interpretations, since not all polynomi-
als are affine. This gap can be filled by improved matrix interpretations, that
further generalize the carrier to square matrices [6], so that natural polynomial
interpretations can be subsumed by matrix polynomials over 1 × 1 matrices.
In arctic interpretations [19], the carrier consists of vectors over arctic naturals
(N∪{−∞}) or integers (Z∪{−∞}), and interpretations are affine maps over it,
where affinity is with respect to the max/plus semiring.

Having this many variations would be welcome if you are a user of a ter-
mination tool in which someone else has already implemented all of them. It
would not be so if you are the developer of a termination tool in which you
will have to implement all of them. Also, to ultimately trust termination tools,
one needs to formalize proof methods using proof assistants and obtain trusted
certifier that validates outputs of termination tools, see, e.g., IsaFoR/CeTA [31]
or CoLoR/Rainbow [4] frameworks. Although some interpretation methods have
already been formalized [28,30], adding missing variants one by one would cost
a significant effort.

In this paper, we introduce a general framework for interpretation methods,
which subsumes most of the above-mentioned methods as instances, namely,
(max-)polynomial interpretations (with negative constants), (improved) matrix
interpretations, and arctic interpretations, as well as a syntactic method called
argument filtering [1,21]. Moreover, we obtain a bunch of previously unexplored
interpretation methods as other instances.

After preliminaries, we start with a convenient fact about reduction pairs, a
central tool in termination proving with dependency pairs (Section 3).

The first step to the main contribution is the use of derivers [24,33], which
allow us to abstract away the mathematical details of polynomials or max-
polynomials. We will obtain a key soundness result that derivers derive monotone
interpretations from monotone interpretations (Section 4).

The second step is to extend derivers to multi-dimensional ones. This setting
further generalizes (improved) matrix interpretations, so that max-polynomials,
negative constants, and negative entries are allowed (Section 5). It will also
be hinted that multi-dimensional derivers can emulate the effect of negative
coefficients, although theoretical comparison is left for future work. We also show
that our approach subsumes arctic interpretations by adding a treatment for −∞
(Section 6). Although the original formulation by Koprowski and Waldmann [19]
has some trickiness, we will show that our simpler formulation is sufficient.

As strict monotonicity is crucial for proving termination without dependency
pairs, and is still useful with dependency pairs, we will see how to ensure strict
monotonicity (Section 7). At this point, the convenient fact we have seen in
Section 3 becomes crucial.

Multi-Dimensional Interpretations for Termination of Term Rewriting 275

Finally, the proposed method is implemented in the termination prover NaTT,
and experimental results are reported (Section 8). We evaluate various instances
of our method, some corresponding to known interpretation methods and many
others not. We choose two new instances to integrate to the NaTT strategy. The
new strategy proved the termination of 20 more benchmarks than the old one,
and five of them were not proved by any tool in TermCOMP 2020.

2 Preliminaries

We start with order-sorted algebras. Let S = 〈S,v〉 be a partially ordered set,
where elements in S are called sorts and v is called the subsort relation. An
S-sorted set is an S-indexed family A = {Aσ}σ∈S such that σ v τ implies
Aσ ⊆ Aτ . We write A(σ1,...,σn) for the set Aσ1×· · ·×Aσn . A sorted map between
S-sorted sets X and A is a mapping f , written f : X → A, such that x ∈ Xσ

implies f(x) ∈ Aσ.
An S-sorted signature is an S∗ × S-indexed family F = {F~σ,τ}〈~σ,τ〉∈S∗×S of

function symbols.1 When f ∈ F(σ1,...,σn),τ , we say f has rank (σ1, . . . , σn) → τ
and arity n in F . We may also view sorted sets and signatures as sets: having
a : σ ∈ A means a ∈ Aσ, and f : ~σ → τ ∈ F means f ∈ F~σ,τ .

Example 1. Consider sort Nat. We define the following {Nat}-sorted signatures:

– N := {0 : ()→ Nat, 1 : ()→ Nat, 2 : ()→ Nat, . . . }
– N* := N ∪ {* : (Nat, Nat)→ Nat}
– N+ := N ∪ {+ : (Nat, Nat)→ Nat}
– Nmax := N ∪ {max : (Nat, Nat)→ Nat}

Let us abbreviate unions of signatures by concatenations of subscripts: for in-
stance N*+max denotes N* ∪ N+ ∪ Nmax. Next consider sorts Neg and Int with
Nat, Neg v Int. We define the following {Nat, Neg, Int}-sorted signatures:

– Z := N ∪ {0 : ()→ Neg, -1 : ()→ Neg, -2 : ()→ Neg, . . . }
– Z* := Z ∪N* ∪ {* : (Neg, Neg)→ Nat, * : (Int, Int)→ Int}
– Z+ := Z ∪N+ ∪ {+ : (Neg, Neg)→ Neg, + : (Int, Int)→ Int}
– Zmax := Z ∪Nmax ∪
{max : (Nat, Int)→ Nat, max : (Int, Nat)→ Nat, max : (Int, Int)→ Int}
For an S-sorted signature F , an F-algebra 〈A, [·]〉 consists of an S-sorted set

A called the carrier and a family [·] of mappings called the interpretation such
that [f] : A~σ → Aτ whenever f ∈ F~σ,τ .

Example 2. We consider the following standard interpretation J·K:

· · · J-2K := −2 J-1K := −1 J0K := 0 J1K := 1 J2K := 2 · · ·
J*K(a, b) := a · b J+K(a, b) := a+ b JmaxK(a, b) := max(a, b)

Notice that 〈N, J·K〉 is an N*+max-algebra and 〈Z, J·K〉 is a Z*+max-algebra. Here,
the {Nat}-sorted set N is defined by NNat := N and the {Nat, Neg, Int}-sorted
set Z is defined by ZNat := N, ZNeg := {0,−1,−2, . . . } and ZInt := Z.
1 In the literature, sorted signatures are given more assumptions such as monotonicity

or regularity. For the purpose of this paper, these assumptions are not necessary.

276 Akihisa Yamada

Sorted Terms: Given an S-sorted signature F and an S-sorted set V of variables,
the S-sorted set T (F ,V) of terms is inductively defined as follows:

– v ∈ T (F ,V)σ if v ∈ Vσ;
– f(s1, . . . , sn) ∈ T (F ,V)ρ if f ∈ F~σ,τ , (s1, . . . , sn) ∈ T (F ,V)~σ, and τ v ρ.

An interpretation [·] is extended over terms as follows: given α : V → A,
[x]α := α(x) if x ∈ Vσ, and [f(s1, . . . , sn)]α := [f]([s1]α, . . . , [sn]α). The F -
algebra 〈T (F ,V), ·〉 (which interprets f as the mapping that takes (s1, . . . , sn)
and returns f(s1, . . . , sn)) is called the term algebra, and a sorted map θ : V →
T (F ,V) is called a substitution. The term obtained by replacing every variable
x by θ(x) in s is thus sθ.

Term Rewriting: This paper is concerned with termination analysis for plain
term rewriting. In this setting, there is only one sort 1, and we may identify a
{1}-sorted set A and the set A1. The set of variables appearing in a term s is
denoted by Var(s). A context C is a term with a special variable � occurring
exactly once. We denote by C[s] the term obtained by substituting � by s in
C. A rewrite rule is a pair of terms l and r, written l → r, such that l /∈ V
and Var(l) ⊇ Var(r). A term rewrite system (TRS) is a set R of rewrite rules,
which induces the root rewrite step ε−→

R
and the rewrite step −→

R
as the least

relations such that lθ ε−→
R

rθ and C[lθ] −→
R

C[rθ], for any rule l → r ∈ R,

substitution θ, and context C. A TRS R is terminating iff no infinite rewriting
s1 −→R s2 −→R s3 −→R · · · is possible.

The dependency pair (DP) framework [1,14,13] is a de facto standard among
automated termination provers for term rewriting. Here we briefly recapitulate
its essence. The root symbol of a term s = f(s1, . . . , sn) is f and is denoted by
root(s). The set of defined symbols in R is DR := {root(l) | l→ r ∈ R}. We
assume a fresh marked symbol f] for every f ∈ DR, and write s] to denote the
term f](s1, . . . , sn) for s = f(s1, . . . , sn). A dependency pair of a TRS R is a
rule l] → r] such that root(r) ∈ DR and l → C[r] ∈ R for some context C. The
set of all dependency pairs of R is denoted by DP(R). A DP problem 〈P ,R〉 is
just a pair of TRSs.

Theorem 1 ([1]). A TRS R is terminating iff the DP problem 〈DP(R),R〉 is
finite, i.e., there is no infinite chain s0

ε−−−−→
DP(R)

t0 −→R
∗ s1

ε−−−−→
DP(R)

t1 −→R
∗ · · · .

A number of techniques called DP processors that simplify or decompose DP
problems are proposed; see [13] for a list of such processors. Among them, the
central technique for concluding the finiteness of DP problems is the reduction
pair processor, which will be reformulated in the next section.

3 Notes on Reduction Pairs

A reduction pair is a pair 〈%,�〉 of order-like relations over terms with some con-
ditions. Here we introduce two formulations of reduction pairs, one demanding

Multi-Dimensional Interpretations for Termination of Term Rewriting 277

natural assumptions of orderings, and the other, reduction pair seed, demanding
only essential requirements. The first formulation is useful when proving prop-
erties of reduction pairs, while the latter is useful when devising new reduction
pairs. We will show that the two notions are essentially equivalent: one can al-
ways extend a reduction pair seed into a reduction pair of the former sense.
Existing formulations of reduction pairs lie strictly in between the two.

Definition 1 (reduction pair). A (quasi-)order pair 〈%,�〉 is a pair of a
quasi-order % and an irreflexive relation � ⊆ % satisfying compatibility:
%;�;% ⊆ �. The order pair is well-founded if � is well-founded.

A reduction pair is a well-founded order pair 〈%,�〉 on terms, such that both
% and � are closed under substitutions, and % is closed under contexts. Here, a
relation A is closed under substitutions (resp. contexts) iff s A t implies sθ A tθ
for every substitution θ (resp. C[s] A C[t] for every context C).

The above formulation of reduction pairs is strictly subsumed by standard
definitions (e.g., [1,14,13]), where � is not necessarily a subset of %, and com-
patibility is weakened to either %;� ⊆ � or �;% ⊆ �. Instead, � is required to
be transitive but this follows from our assumptions � ⊆ % and compatibility:
�;� ⊆ %;� ⊆ �. On one hand, this means that we can safely import existing
results of reduction pairs into our formulation.

Theorem 2 (reduction pair processor [14,13]). Let 〈P ,R〉 be a DP problem
and 〈%,�〉 be a reduction pair such that P∪R ⊆ %. Then the DP problem 〈P ,R〉
is finite if and only if 〈P \ �,R〉 is.

Example 3. Consider again the TRS Rfact of the introduction. Proving that
Rfact terminates in the DP framework boils down to finding a reduction pair
〈%,�〉 satisfying (considering usable rules [1]):

p(s(x)) % x fact](s(x)) � fact](p(s(x)))

On the other hand, one may wonder whether Definition 1 might be too
restrictive. We justify our formulation by uniformly extending general “reduction
pairs” into reduction pairs that comply with Definition 1. This is possible for
even more general pairs of relations than standard reduction pairs.

Definition 2 (reduction pair seed). A well-founded order seed is a pair
〈W,S〉 of relations such that S is well-founded and S;W ⊆ S+. A reduction
pair seed is a well-founded order seed on terms such that both W and S are
closed under substitutions, and W is closed under contexts.

Now we show that every reduction pair seed 〈W,S〉 can be extended to a
reduction pair 〈%,�〉 such that W ⊆ % and S ⊆ �. Before that, the assumption
S;W ⊆ S+ of Definition 2 is generalized as follows.

Lemma 1. If 〈W,S〉 is a well-founded order seed, then S;W ∗ ⊆ S+.

Proof. By induction on the number of W steps. ut

278 Akihisa Yamada

Theorem 3. Let 〈W,S〉 be a well-founded order seed. Then 〈%,�〉 is a well-
founded order pair, where % := (W ∪ S)

∗
and � := (W ∗;S)

+
.

Proof. It is trivial that % is a quasi-order and � ⊆ % by definition. We show the
well-foundedness of � as follows: Suppose on the contrary we have an infinite
sequence:

a1 W
∗ b1 S a2 W

∗ b2 S a3 W
∗ b2 S · · ·

Then using Lemma 1 (S;W ∗ ⊆ S+) we obtain a1 W
∗ b1 S

+ b2 S
+ · · · , which

contradicts the well-foundedness of S.
Now we show compatibility. By definition we have %;� ⊆ �, so it suffices to

show �;% ⊆ �. By induction we reduce the claim to �; (W ∪ S) ⊆ �, that is,
both �;W ⊆ � and �;S ⊆ �. Using S;W ⊆ S+ = S;S∗ we have

�;W = (W ∗;S)+;W = (W ∗;S)∗;W ∗;S;W

⊆ (W ∗;S)∗;W ∗;S;S∗ ⊆ �

The other case �;S ⊆ � is easy from the definition. ut

Now we obtain the following corollary of Theorem 2 and Theorem 3.

Corollary 1. Let 〈P ,R〉 be a DP problem and 〈W,S〉 a reduction pair seed such
that P ∪R ⊆W . Then 〈P ,R〉 is finite if and only if 〈P \ S,R〉 is.

Notice that Definition 2 does not demand any order-like property, most no-
tably transitivity. This is beneficial when developing new reduction pairs; for
instance, higher-order recursive path orders [17] are known to be non-transitive,
but form a reduction pair seed with their reflexive closure. Throughout the pa-
per we use Definition 1, since it provides more useful and natural properties of
orderings, which becomes crucial in Section 7.

4 Interpretation Methods as Derivers

Interpretation methods construct reduction pairs from F -algebras, where F is
the {1}-sorted signature of an input TRS or DP problem, and the carrier is a
mathematical structure where a well-founded ordering > is known. In the DP
framework, weakly monotone F -algebras play an important role.

Definition 3 (weakly monotone algebra). A mapping f : A1×· · ·×An → A
is monotone with respect to A if f(a1, . . . , ai, . . . , an) A f(a1, . . . , a

′
i, . . . , an)

whenever a1 ∈ A1, . . . , an ∈ An, a′i ∈ Ai, and ai A a′i. A weakly monotone
F -algebra 〈A, [·],≥, >〉 consists of an F-algebra 〈A, [·]〉 and an order pair 〈≥, >〉
such that every [f] is monotone with respect to ≥.

Example 4. Continuing Example 2, 〈N, J·K,≥, >〉 is a weakly monotone N*+max-
algebra with the standard ordering 〈≥, >〉. Notice that 〈Z, J·K,≥, >〉 is not a
weakly monotone Z*+max-algebra, since multiplication on integers is not neces-
sarily monotone. Nevertheless, it is a weakly monotone Z+max ∪N*-algebra.

Multi-Dimensional Interpretations for Termination of Term Rewriting 279

To ease presentation, from now on we assume that F is a {1}-sorted signature,
while G is an S-sorted signature. It is easy nevertheless to generalize our results
to an arbitrary order-sorted signature F .

Theorem 4 ([14]). Let 〈A, [·],≥, >〉 be a weakly monotone F-algebra such that
> is well-founded in A. Then 〈[≥], [>]〉 is a reduction pair on T (F ,V), where
s [A] t :⇐⇒ ∀α : V → A. [s]α A [t]α.

Moreover, using the term algebra any reduction pair 〈%,�〉 on T (F ,V) can be
seen as a well-founded F -algebra 〈T (F ,V), ·,%,�〉.

Example 5. Continuing Example 4, 〈J≥K, J>K〉 forms a reduction pair for signa-
ture N*+max. Notice that it does not for Z+max ∪ N*, essentially because > is not
well-founded in Z.

In order to prove the finiteness of a given DP problem, we need a weakly
monotone F -algebra for the signature F indicated by this problem, rather than
for a predefined signature like N*+max. We fill the gap by employing the notion
of derivers [24,33] to derive an F -algebra from one of another signature G.

Definition 4 (deriver). An F/G-deriver is a pair of a sort δ ∈ S and a map-
ping d, such that d(f) ∈ T (G, {x1 : δ, . . . , xn : δ})δ when f has arity n in F .
Given a base G-algebra 〈A, [·]〉, we define the derived F-algebra

〈
Aδ, d[·]

〉
by

d[f](a1, . . . , an) := [d(f)](x1 7→ a1, . . . , xn 7→ an)

Example 6. Define a {fact], p, s : 1→ 1}/Z+max-deriver 〈Nat, d〉 by

d(fact]) := x1 d(s) := x1 + 1 d(p) := max(x1 - 1, 0)

Note that d(p) has sort Nat, thanks to the rank (Int, Nat)→ Nat of max in Zmax.
The order pair 〈dJ≥K, dJ>K〉 satisfies the constraints given in Example 3.

Now we show that an F/G-deriver yields a weakly monotone F -algebra if the
base G-algebra is known to be weakly monotone. Thus, Example 6 proves that
Rfact is terminating. The next result about monotonicity is folklore:

Lemma 2. A mapping f : An → A is monotone with respect to a quasi-order ≥
if and only if a1 ≥ b1, . . . , an ≥ bn implies f(a1, . . . , an) ≥ f(b1, . . . , bn).

Proof. The “if” direction is due to the reflexivity of ≥, and the “only if” direction
is easy by induction on n and the transitivity of ≥. ut

Then monotonicity is carried over to the interpretation of terms, in the following
sense. For two sorted maps α : X → A and β : X → A, we write α ≥ β to mean
that α(x) ≥ β(x) for any x ∈ Xσ and sort σ.

Lemma 3. Let 〈A, [·],≥, >〉 be a weakly monotone G-algebra and s ∈ T (G,V)σ.
If α ≥ β then [s]α ≥ [s]β.

280 Akihisa Yamada

Proof. By structural induction on s. The claim is trivial if s is a variable. Con-
sider s = f(s1, . . . , sn). We have [si]α ≥ [si]β for each i ∈ {1, . . . , n} by induction
hypothesis. With Lemma 2 and the monotonicity of [f], we conclude:

[s]α = [f]([s1]α, . . . , [sn]α) ≥ [f]([s1]β, . . . , [sn]β) = [s]β ut

Lemma 4. Let 〈δ, d〉 be an F/G-deriver and 〈A, [·],≥, >〉 a weakly monotone
G-algebra. Then

〈
Aδ, d[·],≥, >

〉
is a weakly monotone F-algebra.

Proof. Suppose that f has arity n in F , and for every i ∈ {1, . . . , n} that ai, bi ∈
Aδ and ai ≥ bi. Then from Lemma 3,

d[f](a1, . . . , an) = [d(f)](x1 7→ a1, . . . , xn 7→ an)

≥ [d(f)](x1 7→ b1, . . . , xn 7→ bn) = d[f](b1, . . . , bn)

With Lemma 2 we conclude that every d[f] is monotone with respect to ≥, and
hence

〈
Aδ, d[·],≥, >

〉
is a weakly monotone F -algebra. ut

Thus we conclude the soundness of the deriver-based interpretation method:

Theorem 5. If 〈δ, d〉 is a F/G-deriver, 〈A, [·],≥, >〉 is a weakly monotone G-
algebra and > is well-founded in Aδ, then 〈d[≥], d[>]〉 is a reduction pair.

Proof. Immediate consequence of Lemma 4 and Theorem 4. ut

It should be clear that Theorem 5 with G = Z+max∪N* subsumes the polyno-
mial interpretation method with negative constants [15, Lemma 4]. Their trick
is to turn integers into naturals by applying max(·, 0), as demonstrated in Ex-
ample 6 in a syntactic manner. Theorem 5 gives a slightly more general fact that
one can mix max and negative constants and still get a reduction pair. As far
as the author knows, this fact has not been reported elsewhere, although nat-
ural max-polynomials without negative constants are known to yield reduction
pairs [9, Section 4.1].

In addition, a syntactic technique known as argument filtering [1,21] is also
a special case of Theorem 5. In the context of higher-order rewriting, Kop and
van Raamsdonk generalized argument filters into argument functions [18, Defi-
nition 7.7], which, in the first-order case, correspond to derivers with G being a
variant of F . In these applications, base signatures and algebras are not a priori
known, but are subject to be synthesized and analyzed.

5 Multi-Dimensional Interpretations

The matrix interpretation method [8] uses a well-founded weakly monotone al-
gebra 〈Nm, [·]Mat ,≥≥,�〉 over natural vectors, with an affine interpretation:

[f]Mat(~a1, . . . ,~an) = C1~a1 + · · ·+ Cn~an + ~c

where C1, . . . , Cn ∈ Nm×m and ~c ∈ Nm, and the following ordering:

Multi-Dimensional Interpretations for Termination of Term Rewriting 281

Definition 5 ([8,19]). Given an order pair 〈≥, >〉 on A and a dimension m ∈
N, we define the order pair 〈≥≥,�〉 on Am as follows:

(a1, . . . , am) ≥≥() (b1, . . . , bm) :⇐⇒ a1 ≥() b1 ∧ a2 ≥ b2 ∧ · · · ∧ am ≥ bm

Improved matrix interpretations [6] consider square matrices instead of vectors,
and thus, in principle, matrix polynomials can be considered. Now we generalize
these methods by extending derivers to multi-dimensional ones.

Definition 6 (multi-dimensional derivers). An m-dimensional F/G-deriver

consists of an m-tuple ~δ ∈ Sm of sorts and a mapping ~d such that ~d(f) ∈
T (G,X)

~δ, where X := {xi,j : (~δ)j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} if f has arity

n in F . Given a G-algebra 〈A, [·]〉, the derived F-algebra
〈
A
~δ, ~d[·]

〉
is defined by

~d[f](~a1, . . . ,~an) :=
([(

~d(f)
)

1

]
α, . . . ,

[(
~d(f)

)
m

]
α
)

where α is defined by α(xi,j) := (~ai)j.

Example 7 ([8, Example 1]). The TRS of the single rule f(f(x)) → f(g(f(x)))
can be shown terminating by the following 2-dimensional matrix interpretation:

[f]Mat(~a) =

(
1 1
0 0

)
~a+

(
0
1

)
[g]Mat(~a) =

(
1 0
0 0

)
~a+

(
0
0

)
The 2-dimensional {f, g}/N+-deriver

〈
(Nat, Nat), ~d

〉
defined by

~d(f) =

(
x11 + x12

1

)
~d(g) =

(
x11

0

)
represents [·]Mat as ~dJ·K, that is, [≥≥]Mat = ~dJ≥≥K and [�]Mat = ~dJ�K.

Now we prove a counterpart of Theorem 5 for multi-dimensional derivers.
The following lemma is one of the main results of this paper, which is somewhat
surprisingly easy to prove.

Lemma 5. For an m-dimensional F/G-deriver
〈
~δ, ~d
〉

and a weakly monotone

G-algebra 〈A, [·],≥, >〉,
〈
A
~δ, ~d[·],≥≥,�

〉
is a weakly monotone F-algebra.

Proof. Let f have arity n in F and ~a1, . . . ,~an,~b1, . . . ,~bn ∈ A
~δ satisfy ~ai ≥≥ ~bi.

Define α and β by α(xi,j) := (~ai)j and β(xi,j) :=
(
~bi
)
j
. By assumption we have

α ≥ β, and with Lemma 3 we have(
~d[f](~a1, . . . ,~an)

)
j

=
[(
~d(f)

)
j

]
α ≥

[(
~d(f)

)
j

]
β =

(
~d[f](~b1, . . . ,~bn)

)
j

for every j ∈ {1, . . . ,m}. Hence ~d[f](~a1, . . . ,~an) ≥≥ ~d[f](~b1, . . . ,~bn), and this
concludes the proof due to Lemma 2. ut

282 Akihisa Yamada

Theorem 6. For a multi-dimensional F/G-deriver
〈
~δ, ~d
〉

and a weakly mono-

tone G-algebra 〈A, [·],≥, >〉 such that > is well-founded in A(~δ)1 ,
〈
~d[≥≥], ~d[�]

〉
is a reduction pair.

Proof. Thanks to Lemma 5 and Theorem 4, it suffices to show that � is well-

founded in A
~δ. Suppose on the contrary that there exists an infinite sequence

~a1 � ~a2 � · · · with ~a1,~a2, . . . ∈ A
~δ. Then we have (~a1)1 > (~a2)1 > · · · and

(~a1)1, (~a2)1, . . . ∈ A(~δ)1 , contradicting the well-foundedness of > in A(~δ)1 . ut

It should be clear that every m-dimensional (improved) matrix interpretation
can be expressed as an m-dimensional (or m2-dimensional) F/N*+-deriver. There
are two more important consequences of Theorem 6: First, we can interpret
symbols as non-affine maps even including max-polynomials; and second, since >

is not required to be well-founded in A(~δ)2 , . . . , A(~δ)m , examples that previously
required non-monotone interpretations—and hence a stronger condition than
Theorem 2—can be handled.

Example 8 (Excerpt of AProVE 08/log). Consider the TRS R/ consisting of

x - 0→ x 0 / y → 0

s(x) - s(y)→ x - y s(x) / s(y)→ (s(x) - s(y)) / s(y)

which defines (for simplicity, rounded up) natural division. Proving R/ termi-
nating using dependency pairs boils down to finding a reduction pair 〈�,�〉 such
that (again considering usable rules)

x - 0 � x s(x) - s(y) � x - y s(x) /] s(y) � (s(x) - s(y)) /] s(y)

A polynomial interpretation [·]Pol with negative coefficients such that

[0]Pol = 0 [s]Pol(x) = x+ 1 [/]]Pol(x, y) = x [-]Pol(x, y) = max(x− y, 0)

satisfies the above constraints, but one must validate the requirements of [15,

Theorem 11]. In our setting, an F/Z+max-deriver 〈(Nat, Neg), ~d〉 such that

~d(0) =

(
0

0

)
~d(s) =

(
x1,1 + 1

x1,2 - 1

)
~d(-) =

(
max(x1,1 + x2,2, 0)

0

)
~d(/]) =

(
x1,1

0

)
yields a reduction pair satisfying the above constraints.

The intuition here is that the two dimensional interpretation of sn(0) records
n in the first coordinate and −n in the second. Hence, one does not have to
reconstruct −n from n using the non-monotonic minus operation.

It seems plausible to the author that negative coefficients can be eliminated
using the above idea; however, the increase of the dimension leads to more free-
dom in variables (the variable introduced to represent −n may take values other
than that) and so the ordering over terms may be different. It is left for future
work to investigate whether this idea always works or not.

Multi-Dimensional Interpretations for Termination of Term Rewriting 283

6 Arctic Interpretations

An arctic interpretation [19] [·]A is a matrix interpretation on the arctic semir-
ing ; that is, every interpretation [f]A(~x1, . . . , ~xn) is of the form

C1 ⊗ ~x1 ⊕ · · · ⊕ Cn ⊗ ~xn ⊕ ~c (1)

where ⊗ and ⊕ denote the matrix multiplication and matrix addition in which
the scalar addition is replaced by the max operation, and the scalar multiplica-
tion by addition; and entries of Ci and ~c are arctic naturals (N−∞ := N∪{−∞})
or arctic integers (Z−∞ := Z ∪ {−∞}). In addition, (1) must be absolute posi-
tive: (~c)1 ≥ 0, so that

〈
N× Nm−1

−∞ , [·]A,≥≥,�
〉

or
〈
N× Zm−1

−∞ , [·]A,≥≥,�
〉

forms
a well-founded weakly monotone algebra.

The above formulation deviates from the original [19] in two ways. First,
we do not introduce the special relation such that −∞ � −∞. Koprowski and
Waldmann demanded this to ensure closure under general substitutions, but
such a comparison cannot occur as we only need to consider substitutions that
respect the carrier N×Zm−1

−∞ . Second, for arctic natural interpretations they relax
absolute positiveness to somewhere finiteness : (~c)1 6= −∞ or (Ci)1,1 6= −∞ for
some i. However, the two assumptions turn out to be equivalent.

Proposition 1. Every arctic natural interpretation of form (1) is absolute pos-
itive iff it is somewhere finite.

Proof. Clearly, absolute positiveness implies somewhere finiteness. For the other
direction, since (~c)1 6= −∞ trivially implies absolute positiveness, suppose that
(~c)1 = −∞ and (Ci)1,1 6= −∞ for some i. We then know (~y)1 ≥ 0, where

~y := C1 ⊗ ~x1 ⊕ · · · ⊕ Cn ⊗ ~xn. Hence, by ~c′ := (0, (~c)2, . . . , (~c)m), we have

[f]A(~x1, . . . , ~xn) = ~y ⊕ ~c′, and this representation is absolute positive. ut

One can easily obtain arctic interpretations via multi-dimensional derivers:
consider a sort ANat with Nat v ANat and {Nat, ANat}-sorted signature N+max-oo,
extending N+max with

-oo : ()→ ANat + : (ANat, ANat)→ ANat

max : (Nat, ANat)→ Nat max : (ANat, Nat)→ Nat max : (ANat, ANat)→ ANat

and extend the standard interpretation J·K accordingly. We omit the easy proof
of the following fact and the counterpart for arctic integer interpretations.

Proposition 2. Every absolute positive arctic natural interpretation [·]A is rep-

resented as ~dJ·K via an F/N+max-oo-deriver
〈
(Nat, ANat, . . . , ANat), ~d

〉
.

Notice that, in practice, this requires us to deal with −∞ by ourselves since
there is no standard SMT theory [3] that supports arithmetic with −∞.

284 Akihisa Yamada

7 Strict Monotonicity

Before the invention of dependency pairs [1], strictly monotone algebras were
necessary for proving termination by interpretation methods, and they constitute
a sound and complete method for proving termination of TRSs.

Definition 7. A strictly monotone F-algebra is a weakly monotone F-algebra
〈A, [·],≥, >〉 such that 〈A, [·]〉 is monotone with respect to both ≥ and >.

Theorem 7 (cf. [36]). A TRS R is terminating if and only if there is a strictly
monotone well-founded F-algebra 〈A, [·],≥, >〉 such that R ⊆ [>].

Moreover, strict monotonicity is a desirable property in the DP framework as it
allows one to remove not only dependency pairs but also rewrite rules.

Theorem 8 ([12]). A DP problem 〈P ,R〉 is finite if 〈P \ [>],R \ [>]〉 is, where
〈A, [·],≥, >〉 is a strictly monotone well-founded F-algebra such that P∪R ⊆ [≥].

We now state a criterion that ensures the strict monotonicity of multi-
dimensional interpretation obtained via derivers. Below we write di to mean
the mapping defined by di(f) :=

(
~d(f)

)
i
.

Theorem 9. Let
〈
~δ, ~d
〉

be an m-dimensional F/G-deriver and 〈A, [·],≥, >〉 a
weakly monotone G-algebra. Suppose that when f has arity n in F and i ∈
{1, . . . , n}, α(xi,1) > a implies [d1(f)]α > [d1(f)]α(xi,1 7→ a) for any α : X → A

and a ∈ A. Then
〈
A
~δ, ~d[·],≥≥,�

〉
is a strictly monotone F-algebra.

Proof. We only prove strict monotonicity as we already know weak monotonicity

by Lemma 5. So suppose that f has arity n in F , ~a1, . . . ,~ai, . . . ,~an,~a
′
i ∈ A

~δ and
~ai � ~a′i. For the first coordinate, define α by α(xk,j) := (~ak)j . Then, first using
the assumption, and then Lemma 3, we conclude

d1[f](~a1 . . . ,~ai, . . . ,~an) = [d1(f)]α

> [d1(f)]α(xi,1 7→ (~a′i)1)

≥ [d1(f)]α(xi,1 7→ (~a′i)1, xi,2 7→ (~a′i)2, . . . , xi,m 7→ (~a′i)m)

= d1[f](~a1, . . . ,~a
′
i, . . . ,~an)

For the other coordinates, thanks to the “new” assumption > ⊆ ≥ in Definition 1
we have ~ai ≥≥ ~a′i. Then the weak monotonicity ensures ~d[f](~a1, . . . ,~ai, . . .~an) ≥≥
~d[f](~a1, . . . ,~a

′
i, . . . ,~an), from which we deduce for each j ∈ {2, . . . ,m},

dj [f](~a1, . . . ,~ai, . . . ,~an) ≥ dj [f](~a1, . . . ,~a
′
i, . . . ,~an) ut

Although the above result and proof do not look surprising, it would be worth
noticing that the statement is false in the standard formulation allowing > 6⊆ ≥
(as even in [8]).

Multi-Dimensional Interpretations for Termination of Term Rewriting 285

Example 9. Consider the following apparently monotone matrix interpretation:

[f]

((
a1

a2

))
:=

(
1 0
1 0

)(
a1

a2

)
=

(
a1

a1

)
If one had a1 > b1 but a1 � b1, then

[f]

((
a1

a2

))
=

(
a1

a1

)
>
�

(
b1
b1

)
= [f]

((
b1
a2

))
even though

(
a1

a2

)
�
(
b1
a2

)
.

So [f] would not be monotone with respect to �.

8 Implementation and Experiments

Multi-dimensional interpretations are implemented in the termination prover
NaTT version 2.02, using a template-based approach.

Definition 8. An m-dimensional F/G-deriver template
〈
~δ, ~d
〉

with S-sorted

set W of template variables is defined as in Definition 6, but allowing ~d(f) ∈
T (G,W ∪ X)

~δ. Its instance according to a substitution θ : W → T (G, ∅) is the

F/G-deriver
〈
~δ, ~dθ

〉
, defined by ~dθ(f) := (d1(f)θ, . . . , dm(f)θ).

In the implementation, we fix G = Z+max ∪N* and the base weakly monotone
G-algebra 〈Z, J·K,≥, >〉. Given an m-dimensional deriver template

〈
~δ, ~d
〉

with

W, our interest is now to find θ : W → Z such that ~dθ[s] ≥ ~dθ[t] for every
(s, t) ∈ P ∪ R for the DP problem 〈P ,R〉 of concern, thanks to Theorem 6.
NaTT reduces this problem into an SMT problem and passes it to a backend
SMT solver. The page limit is not enough to detail the reduction; in short, the
constraint ~dθ[s] ≥≥ ~dθ[t] is reduced into a Boolean formula over atoms of form
a * 〈v1, i1〉 * · · · * 〈vn, in〉 ≥ b * 〈v1, i1〉 * · · · * 〈vn, in〉, where a, b ∈ T (G,W),
and 〈v1, i1〉 . . . , 〈vn, in〉 ∈ (Var(s) ∪ Var(t)) × {1, . . . ,m} are seen as variables.
Internally NaTT uses a distribution approach [30], whose soundness crucially
relies on the fact that the only rank of * is (Nat, Nat) → Nat in the signature

G. Then each atom is further reduced to (1) a = b if (~δ)ij = Int for some

j, (2) a ≥ b if
∣∣{j | (~δ)ij = Neg}

∣∣ is even, and (3) a ≤ b otherwise. Due
to the last step, having coordinates of sort Int leads to a stronger constraint
when ordering terms. Finally, the resulting formula, containing only template
variables, is passed to the SMT solver Z3 4.8.10 [26] and a satisfying solution
θ :W → Z is a desired substitution.

To verify the practical significance of the method, we evaluated various tem-
plates in a simple dependency pair setting. For a function symbol f of arity
n ≥ 2, the k-th coordinate of template ~d(f) is chosen from

– sum: w +
∑n
i=1(b * xi,k),

2 Available at https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

286 Akihisa Yamada

Table 1. Evaluation of 2-dimensional templates.

Coordinate 1 Coordinate 2 YES New Time Known as

1 sum Nat - - 512 - 00:36:12 polynomial [1]
2 sum Int - - 559 - 00:52:37 negative constant [15]
3 sum-sum Nat sum-sum Nat 636 - 04:18:05 matrix [8]
4 sum-sum Int sum Neg 602 10 04:00:05 new
5 sum-sum Int sum-sum Int 542 0 25:07:04 new
6 sum-sum Int max Neg 585 8 14:58:41 new
7 max Int - - 560 - 00:58:58 max-polynomial [9]3

8 max-max Nat max-max Nat 552 3 12:33:43 arctic natural [19]4

9 max-max Int max-max Int 580 2 22:35:29 arctic integer [19]4

10 max-max Nat sum Nat 577 0 03:48:46 new
11 max-max Int sum Neg 584 2 06:53:34 new
12 max-sum Int sum Neg 592 4 06:59:22 new
13 heuristic Int sum Neg 648 9 04:55:43 new

– max: maxni=1 b * (w + xi,k),
– sum-sum: w +

∑n
i=1

∑m
j=1 b * xi,j ,

– max-max: maxni=1 max
m
j=1 b * (w + xi,j),

– sum-max:
∑n
i=1 max

m
j=1 b * (w + xi,j),

– max-sum: maxni=1(w +
∑m
j=1 b * xi,j), and

– a heuristic choice [35] between sum-sum and max-sum,

where b and w introduce fresh template variables, b ranges over {0, 1} and the
sort of w is up to further choice. The sort of the first coordinate is turned to Nat

by applying max(·, 0) if necessary.
Experiments are run on the StarExec environment [29], with timeout of 300

seconds. The benchmarks are the 1507 TRSs from the TRS Standard category
of the termination problem database 11 [32]. Due to the huge search space, we
evaluate templates of dimensions up to 2. A part of the results are summarized
in Table 1. Full details of the experiments are made available at http://www.

trs.cm.is.nagoya-u.ac.jp/NaTT/multi/.
In the table, each coordinate is represented by the template and the sort

of w. In terms of the number of successful termination proofs indicated in the
“YES” column, the classical matrix interpretations (row #3) are impressively
strong. Nevertheless, it is worth considering a negative coordinate (#4) as it
gives 10 termination proofs that the previous version of NaTT could not find,
indicated in the “New” column. In contrast, considering whole integers in the
second coordinate (#5) does not look promising as the runtime grows signifi-
cantly. Concerning “max”, we observe that its use in the second coordinate (#6)

3 This template is a subset of integer max-polynomials [9], although the fact that it
yields a reduction pair is new.

4 In our implementation, negative infinity is not supported. Instead, similar effect is
emulated by zero coefficients.

http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/multi/
http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/multi/

Multi-Dimensional Interpretations for Termination of Term Rewriting 287

Table 2. Experiments with combined strategies

Strategy YES New to NaTT New to TermCOMP Time

Old Strategy 861 0 0 3:46:12
With #4 874 13 3 4:14:09
With #13 871 10 1 4:26:14

With #4 and #13 881 20 5 4:49:50

degrades the performance. Using “max” in both coordinates a la arctic inter-
pretations (#8, #9) gives a few new termination proofs, but the impact in the
runtime is significant in the current implementation. The runtime improves by
replacing some occurrences of “max” by “sum” (#10–12), while the power does
not seem defected. In terms of the number of termination proofs, the heuristic
choice of “sum-sum” and “max-sum” in the first coordinate (#13) performed
the best among the evaluated templates.

From these experiments, we pick templates #4 and #13 to incorporate in the
NaTT default strategy. The final results are summarized in Table 2. Although the
runtime noticeably increases, adding both #4 and #13 gives 20 more examples
solved, and five of them (AProVE_09_Inductive/log and four in Transformed_

CSR_04/) were not solved by any tool in the TermCOMP 2020.

9 Conclusion

In this paper we introduced a deriver-based multi-dimensional interpretation
method. The author expects that the result makes the relationships between
existing interpretation methods cleaner, and eases the task of developing and
maintaining termination tools. Moreover, it yields many previously unknown
interpretation methods as instances, proving the termination of some standard
benchmarks that state-of-the-art termination provers could not.

Theoretical comparison with negative coefficients is left for future work, and
the use of −∞ is not implemented yet. Also since this work broadens the search
space, it is interesting to heuristically search for derivers rather than fixing some
templates. Derivers of higher dimensions seem also interesting to explore. Finally,
although the proposed method is implemented in the termination prover NaTT,
there is no guarantee that the implementation is correct. In order to certify
termination proofs that use multi-dimensional derivers, one must formalize the
proofs in this paper, extend the certifiable proof format [27], and implement a
verified function to validate such proofs.

Acknowledgments The author would like to thank Aaron Stump and his team
for StarExec environment that ran experiments taking 40 days of node within a
day. The author also thanks the anonymous reviewers of previous versions of the
paper. This work was partly supported by the Austrian Science Fund (FWF)
projects Y757 and P27502, and the Japan Science and Technology Agency (JST)
project ERATO MMSD.

288 Akihisa Yamada

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Compt. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press
(1998)

3. Barrett, C.W., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E.M., Hen-
zinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–
343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8 11

4. Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded
rewrite relations and its application to the automated verification of ter-
mination certificates. Math. Struct. Comput. Sci. 21(4), 827–859 (2011).
https://doi.org/10.1017/S0960129511000120

5. Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certi-
fied proofs with CiME3. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10,
pp. 21–30. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2011). https://doi.org/10.4230/LIPIcs.RTA.2011.21

6. Courtieu, P., Gbedo, G., Pons, O.: Improved matrix interpretation. In: van
Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010.
LNCS, vol. 5901, pp. 283–295. Springer (2010). https://doi.org/10.1007/978-3-642-
11266-9 24

7. Dershowitz, N.: 33 examples of termination. In: Comon, H., Jounnaud, J.P. (eds.)
Term Rewriting. pp. 16–26. Springer (1995). https://doi.org/10.1007/3-540-59340-
3 2

8. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving
termination of term rewriting. J. Autom. Reason. 40(2-3), 195–220 (2008).
https://doi.org/10.1007/s10817-007-9087-9

9. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl,
H.: Maximal termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp.
110–125. Springer (2008). https://doi.org/10.1007/978-3-540-70590-1 8

10. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker,
M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termi-
nation of programs automatically with AProVE. In: Demri, S., Kapur, D., Wei-
denbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 184–191. Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6 13

11. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termina-
tion and complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Stef-
fen, B. (eds.) TACAS 2019 (3). LNCS, vol. 11429, pp. 156–166. Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3 10

12. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair frame-
work: Combining techniques for automated termination proofs. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 301–331. Springer (2004).
https://doi.org/10.1007/978-3-540-32275-7 21

13. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and
improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006).
https://doi.org/10.1007/s10817-006-9057-7

14. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oost-
rom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer (2004).
https://doi.org/10.1007/978-3-540-25979-4 18

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1017/S0960129511000120
https://doi.org/10.4230/LIPIcs.RTA.2011.21
https://doi.org/10.1007/978-3-642-11266-9_24
https://doi.org/10.1007/978-3-642-11266-9_24
https://doi.org/10.1007/3-540-59340-3_2
https://doi.org/10.1007/3-540-59340-3_2
https://doi.org/10.1007/s10817-007-9087-9
https://doi.org/10.1007/978-3-540-70590-1_8
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/978-3-540-25979-4_18

Multi-Dimensional Interpretations for Termination of Term Rewriting 289

15. Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coeffi-
cients. In: Buchberger, B., Campbell, J.A. (eds.) AISC 2004. LNAI, vol. 3249, pp.
185–198. Springer (2004). https://doi.org/10.1007/978-3-540-30210-0 16

16. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpre-
tations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer
(2006). https://doi.org/10.1007/11805618 25

17. Jouannaud, J., Rubio, A.: The higher-order recursive path order-
ing. In: LICS 1999. pp. 402–411. IEEE Computer Society (1999).
https://doi.org/10.1109/LICS.1999.782635

18. Kop, C., van Raamsdonk, F.: Dynamic dependency pairs for algebraic functional
systems. Log. Methods Comput. Sci. 8(2) (2012). https://doi.org/10.2168/LMCS-
8(2:10)2012

19. Koprowski, A., Waldmann, J.: Max/plus tree automata for termination of term
rewriting. Acta Cybern. 19(2), 357–392 (2009)

20. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer (2009).
https://doi.org/10.1007/978-3-642-02348-4 21

21. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer (1999).
https://doi.org/10.1007/10704567 3

22. Lankford, D.: Canonical algebraic simplification in computational logic. Tech. Rep.
ATP-25, University of Texas (1975)

23. Lucas, S.: MU-TERM: A tool for proving termination of context-sensitive rewrit-
ing. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209. Springer
(2004). https://doi.org/10.1007/978-3-540-25979-4 14

24. Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-
sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018).
https://doi.org/10.1007/s10817-017-9419-3

25. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: the 3rd Hawaii
International Conference on System Science. pp. 789–792 (1970)

26. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer (2008).
https://doi.org/10.1007/978-3-540-78800-3 24

27. Sternagel, C., Thiemann, R.: The certification problem format. In: Benzmüller,
C., Paleo, B.W. (eds.) UITP 2014. EPTCS, vol. 167, pp. 61–72 (2014).
https://doi.org/10.4204/EPTCS.167.8

28. Sternagel, C., Thiemann, R.: Formalizing monotone algebras for certification of
termination and complexity proofs. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS,
vol. 8560, pp. 441–455. Springer (2014). https://doi.org/10.1007/978-3-319-08918-
8 30

29. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR. LNCS,
vol. 8562, pp. 367–373. Springer (2014). https://doi.org/10.1007/978-3-319-08587-
6 28

30. Thiemann, R., Schöpf, J., Sternagel, C., Yamada, A.: Certifying the Weighted
Path Order (Invited Talk). In: Ariola, Z.M. (ed.) FSCD 2020. LIPIcs, vol. 167, pp.
4:1–4:20. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.4

31. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,

https://doi.org/10.1007/978-3-540-30210-0_16
https://doi.org/10.1007/11805618_25
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/10704567_3
https://doi.org/10.1007/978-3-540-25979-4_14
https://doi.org/10.1007/s10817-017-9419-3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1007/978-3-319-08918-8_30
https://doi.org/10.1007/978-3-319-08918-8_30
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.4230/LIPIcs.FSCD.2020.4

290 Akihisa Yamada

vol. 5674, pp. 452–468. Springer (2009). https://doi.org/10.1007/978-3-642-03359-
9 31

32. The termination problem data base, http://termination-portal.org/wiki/TPDB
33. Watson, T., Goguen, J., Thatcher, J., Wagner, E.: An initial algebra approach

to the specification, correctness, and implementation of abstract data types. In:
Current Trends in Programming Methodology. Prentice Hall (1976)

34. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya Termination Tool. In: Dowek,
G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer (2014).
https://doi.org/10.1007/978-3-319-08918-8 32

35. Yamada, A., Kusakari, K., Sakabe, T.: A unified order for ter-
mination proving. Sci. Comput. Program. 111, 110–134 (2015).
https://doi.org/10.1016/j.scico.2014.07.009

36. Zantema, H.: Termination of term rewriting: interpretation and type elimination.
J. Symb. Comput. 17(1), 23–50 (1994). https://doi.org/10.1006/jsco.1994.1003

37. Zantema, H.: The termination hierarchy for term rewriting. Appl. Algebr. Eng.
Comm. Compt. 12(1/2), 3–19 (2001). https://doi.org/10.1007/s002000100061

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1016/j.scico.2014.07.009
https://doi.org/10.1006/jsco.1994.1003
https://doi.org/10.1007/s002000100061
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Multi-Dimensional Interpretations for Termination of Term Rewriting
	1 Introduction
	2 Preliminaries
	3 Notes on Reduction Pairs
	4 Interpretation Methods as Derivers
	5 Multi-Dimensional Interpretations
	6 Arctic Interpretations
	7 Strict Monotonicity
	8 Implementation and Experiments
	9 Conclusion
	References

