Skip to main content

Process Design for Human Mesenchymal Stem Cell Products in Stirred-Tank Bioreactors

  • Chapter
  • First Online:
Cell Culture Engineering and Technology

Part of the book series: Cell Engineering ((CEEN,volume 10))

Abstract

Mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) are gaining importance as so-called advanced therapy medicinal products. However, the manufacturing of such products is challenging due to their complexity and sensitivity to intrinsic and environmental parameters, which determine their therapeutic functionality. MSCs respond strongly to their microenvironment, which modulates cell behavior and induces the secretion of EVs. It is therefore necessary to mimic the physiological niche of MSCs in vitro in order to ensure therapeutic efficacy. In this chapter, we discuss the critical quality attributes of MSCs and EVs, and the critical process parameters during in vitro manufacturing. We consider the suitability of different bioreactor types, focusing on stirred-tank bioreactors that are typically used for MSC expansion. For EV production, we also consider hollow-fiber and fixed-bed reactors. We describe how the production of MSCs and EVs can be enhanced by process modifications, and identify topics that require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ad:

Adipose tissue

APIs:

Active pharmaceutical ingredients

ATMPs:

Advanced therapy medicinal products

bm:

Bone marrow

CBMP:

Cell-based medicinal products

CD:

Cluster of differentiation

CPP:

Critical process parameter

CQA:

Critical quality attribute

DO:

Dissolved oxygen

ECM:

Extracellular matrix

EMA:

European medicines agency

EVs:

Extracellular vesicles

FBS:

Fetal bovine serum

FDA:

Food and drug administration

GMP:

Good manufacturing practice

hESC:

Human embryonic stem cell

IL:

Interleukin

INF:

Interferon

ISCT:

International society of cell therapy

MSCs:

Mesenchymal stem cells

PAT:

Process analytical technology

PX:

Passage number X

QbD:

Quality by design

QTPP:

Quality target product profile

R&D:

Research and development

sCTMP:

Somatic cell therapy medicinal products

STR:

Stirred-tank bioreactor

TNF:

tumor necrosis factor

uc:

Umbilical cord

Nc :

Critical agitation rate

dS :

Diameter of the stirrer

dT :

Diameter of the tank

hS :

Height of the stirrer

kLa:

Volumetric mass transfer coefficient

T:

Temperature

p:

Pressure

References

  1. Alliance RM Quarterly regenerative medicine global data report, vol 2019

    Google Scholar 

  2. Iglesias-López C, Agustí A, Obach M et al (2019) Regulatory framework for advanced therapy medicinal products in Europe and United States. Front Pharmacol 10:921. https://doi.org/10.3389/fphar.2019.00921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maciulaitis R, D’Apote L, Buchanan A et al (2012) Clinical development of advanced therapy medicinal products in Europe: evidence that regulators must be proactive. Mol Ther 20:479–482. https://doi.org/10.1038/mt.2012.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olsen TR, Ng KS, Lock LT et al (2018) Peak MSC-are we there yet? Front Med (Lausanne) 5:178. https://doi.org/10.3389/fmed.2018.00178

    Article  PubMed Central  Google Scholar 

  5. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cellular Therapy Position Statement Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  Google Scholar 

  6. Barekzai J, Petry F, Zitzmann J et al (2020) Bioprocess development for human mesenchymal stem cell therapy products. In: María Martínez-Espinosa R (ed) New advances on fermentation processes. IntechOpen

    Google Scholar 

  7. Heathman TRJ, Nienow AW, McCall MJ et al (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10:49–64. https://doi.org/10.2217/rme.14.73

    Article  CAS  PubMed  Google Scholar 

  8. Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6:1445–1451. https://doi.org/10.1002/sctm.17-0051

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murray IR, West CC, Hardy WR et al (2014) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 71:1353–1374. https://doi.org/10.1007/s00018-013-1462-6

    Article  CAS  PubMed  Google Scholar 

  10. Andrzejewska A, Lukomska B, Janowski M (2019) Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37:855–864. https://doi.org/10.1002/stem.3016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rennerfeldt DA, van Vliet KJ (2016) Concise review: when colonies are not clones: evidence and implications of Intracolony heterogeneity in mesenchymal stem cells. Stem Cells 34:1135–1141. https://doi.org/10.1002/stem.2296

  12. Calle A, Barrajón-Masa C, Gómez-Fidalgo E et al (2018) Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation. Stem Cell Res Ther 9:178. https://doi.org/10.1186/s13287-018-0933-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petrenko Y, Vackova I, Kekulova K et al (2020) A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on Neuroregenerative potential. Sci Rep 10:4290. https://doi.org/10.1038/s41598-020-61167-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Donders R, Bogie JFJ, Ravanidis S et al (2018) Human Wharton’s jelly-derived stem cells display a distinct immunomodulatory and Proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells Dev 27:65–84. https://doi.org/10.1089/scd.2017.0029

    Article  CAS  PubMed  Google Scholar 

  15. Ménard C, Dulong J, Roulois D et al (2020) Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells. Stem Cells 38:146–159. https://doi.org/10.1002/stem.3077

    Article  CAS  PubMed  Google Scholar 

  16. Vieira Paladino F, de Moraes Rodrigues J, da Silva A et al (2019) The immunomodulatory potential of Wharton’s jelly mesenchymal stem/stromal cells. Stem Cells Int 2019:3548917. https://doi.org/10.1155/2019/3548917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinto DS, Ahsan T, Serra J et al (2020) Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. J Cell Physiol 235:7224–7238. https://doi.org/10.1002/jcp.29622

    Article  CAS  PubMed  Google Scholar 

  18. Dostert G, Mesure B, Menu P et al (2017) How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol 5:6. https://doi.org/10.3389/fcell.2017.00006

    Article  PubMed  PubMed Central  Google Scholar 

  19. Takeda YS, Xu Q (2015) Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS One 10:e0135111. https://doi.org/10.1371/journal.pone.0135111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lozito TP, Tuan RS (2014) Endothelial and cancer cells interact with mesenchymal stem cells via both microparticles and secreted factors. J Cell Mol Med 18:2372–2384. https://doi.org/10.1111/jcmm.12391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Omar OM, Granéli C, Ekström K et al (2011) The stimulation of an osteogenic response by classical monocyte activation. Biomaterials 32:8190–8204. https://doi.org/10.1016/j.biomaterials.2011.07.055

    Article  CAS  PubMed  Google Scholar 

  22. Kim N, Cho S-G (2016) Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications. Int J Hematol 103:129–137. https://doi.org/10.1007/s12185-015-1918-6

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Wang S, Zhu R et al (2016) Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol 9:42. https://doi.org/10.1186/s13045-016-0269-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindoso RS, Collino F, Camussi G (2015) Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells. Oncotarget 6:7959–7969. https://doi.org/10.18632/oncotarget.3503

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pramotton FM, Robotti F, Giampietro C et al (2019) Optimized topological and topographical expansion of epithelia. ACS Biomater Sci Eng 5:3922–3934. https://doi.org/10.1021/acsbiomaterials.8b01346

    Article  CAS  PubMed  Google Scholar 

  26. Ragelle H, Naba A, Larson BL et al (2017) Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 128:147–159. https://doi.org/10.1016/j.biomaterials.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marinkovic M, Block TJ, Rakian R et al (2016) One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix Biol 52-54:426–441. https://doi.org/10.1016/j.matbio.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Donnelly H, Salmeron-Sanchez M, Dalby MJ (2018) Designing stem cell niches for differentiation and self-renewal. J R Soc Interface 15. https://doi.org/10.1098/rsif.2018.0388

  29. Pittenger MF, Discher DE, Péault BM et al (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4:22. https://doi.org/10.1038/s41536-019-0083-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akhmanova M, Osidak E, Domogatsky S et al (2015) Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int 2015:167025. https://doi.org/10.1155/2015/167025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Argentati C, Morena F, Tortorella I et al (2019) Insight into Mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions. Int J Mol Sci 20. https://doi.org/10.3390/ijms20215337

  32. Heo S-J, Szczesny SE, Kim DH et al (2018) Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. J Orthop Res 36:808–815. https://doi.org/10.1002/jor.23772

    Article  CAS  PubMed  Google Scholar 

  33. Yang C, Tibbitt MW, Basta L et al (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13:645–652. https://doi.org/10.1038/nmat3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Werner M, Blanquer SBG, Haimi SP et al (2017) Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv Sci (Weinh) 4:1600347. https://doi.org/10.1002/advs.201600347

    Article  CAS  Google Scholar 

  35. Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25:1603–1609. https://doi.org/10.1634/stemcells.2007-0127

    Article  CAS  PubMed  Google Scholar 

  36. Weber C, Freimark D, Pörtner R et al (2010) Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier – part B: modeling and scale-up of the system. Int J Artif Organs 33:782–795. https://doi.org/10.1177/039139881003301103

    Article  CAS  PubMed  Google Scholar 

  37. Hanley PJ, Mei Z, Durett AG et al (2014) Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the quantum cell expansion system. Cytotherapy 16:1048–1058. https://doi.org/10.1016/j.jcyt.2014.01.417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Catapano G, Czermak P, Eibl R et al (2009) Bioreactor design and scale-up. In: Eibl R, Eibl D, Pörtner R et al (eds) Cell and tissue reaction engineering, vol 14. Springer, Berlin, Heidelberg, pp 173–259

    Chapter  Google Scholar 

  39. Meuwly F, Ruffieux P-A, Kadouri A et al (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25:45–56. https://doi.org/10.1016/j.biotechadv.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  40. Barckhausen C, Rice B, Baila S et al (2016) GMP-compliant expansion of clinical-grade human mesenchymal stromal/stem cells using a closed hollow Fiber bioreactor. Methods Mol Biol 1416:389–412. https://doi.org/10.1007/978-1-4939-3584-0_23

    Article  CAS  PubMed  Google Scholar 

  41. Salzig D, Schmiermund A, P Grace P et al. (2013) Enzymatic detachment of therapeutic mesenchymal stromal cells grown on glass carriers in a bioreactor. Open Biomed Eng J 7:147–158. https://doi.org/10.2174/1874120701307010147

  42. Petry F, Weidner T, Czermak P et al (2018) Three-dimensional bioreactor Technologies for the Cocultivation of human mesenchymal stem/stromal cells and Beta cells. Stem Cells Int 2018:2547098. https://doi.org/10.1155/2018/2547098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elseberg C, Leber J, Weidner T et al. (2017) The challenge of human mesenchymal stromal cell expansion: current and prospective answers. In: Gowder SJT (ed) New insights into cell culture technology. INTECH

    Google Scholar 

  44. Weber C, Pohl S, Pörtner R et al (2007) Expansion and harvesting of hMSC-TERT. Open Biomed Eng J 1:38–46. https://doi.org/10.2174/1874120700701010038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leber J, Barekzai J, Blumenstock M et al (2017) Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem 59:255–265. https://doi.org/10.1016/j.procbio.2017.03.017

    Article  CAS  Google Scholar 

  46. Cierpka K, Elseberg CL, Niss K et al (2013) hMSC production in disposable bioreactors with regards to GMP and PAT. Chem-Ing-Tech 85:67–75. https://doi.org/10.1002/cite.201200151

    Article  CAS  Google Scholar 

  47. Zitzmann J, Weidner T, Eichner G et al (2018) Dielectric spectroscopy and optical density measurement for the online monitoring and control of recombinant protein production in stably transformed Drosophila melanogaster S2 cells. Sensors (Basel) 18. https://doi.org/10.3390/s18030900

  48. Haraszti RA, Miller R, Stoppato M et al (2018) Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther 26:2838–2847. https://doi.org/10.1016/j.ymthe.2018.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Block TJ, Marinkovic M, Tran ON et al (2017) Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res Ther 8:239. https://doi.org/10.1186/s13287-017-0688-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ng TT, Mak KH-M, Popp C et al. (2020) Murine mesenchymal stromal cells retain biased differentiation plasticity towards their tissue of origin cells 9. https://doi.org/10.3390/cells9030756

  51. Ko E, Lee KY, Hwang DS (2012) Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev 21:1877–1886. https://doi.org/10.1089/scd.2011.0284

    Article  CAS  PubMed  Google Scholar 

  52. Stab BR, Martinez L, Grismaldo A et al (2016) Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs. Front Aging Neurosci 8:299. https://doi.org/10.3389/fnagi.2016.00299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sotiropoulou PA, Perez SA, Salagianni M et al (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471. https://doi.org/10.1634/stemcells.2004-0331

    Article  PubMed  Google Scholar 

  54. Mareschi K, Rustichelli D, Calabrese R et al (2012) Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use. Stem Cells Int 2012:920581. https://doi.org/10.1155/2012/920581

    Article  PubMed  Google Scholar 

  55. Silveira GP, Ishimura ME, Teixeira D et al (2018) Improvement of mesenchymal stem cell immunomodulatory properties by heat-killed Propionibacterium acnes via TLR2. Front Mol Neurosci 11:489. https://doi.org/10.3389/fnmol.2018.00489

    Article  CAS  PubMed  Google Scholar 

  56. Boeri L, Albani D, Raimondi MT et al (2019) Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation. Biophys Rev 11:817–831. https://doi.org/10.1007/s12551-019-00594-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dalloul A (2013) Hypoxia and visualization of the stem cell niche. Methods Mol Biol 1035:199–205. https://doi.org/10.1007/978-1-62703-508-8_17

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Liu X, Zuo B et al (2016) The role of bone marrow microenvironment in governing the balance between Osteoblastogenesis and Adipogenesis. Aging Dis 7:514–525. https://doi.org/10.14336/AD.2015.1206

    Article  PubMed  Google Scholar 

  59. Boregowda SV, Krishnappa V, Chambers JW et al (2012) Atmospheric oxygen inhibits growth and differentiation of marrow-derived mouse mesenchymal stem cells via a p53-dependent mechanism: implications for long-term culture expansion. Stem Cells 30:975–987. https://doi.org/10.1002/stem.1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bader AM, Klose K, Bieback K et al (2015) Hypoxic preconditioning increases survival and pro-Angiogenic capacity of human cord blood mesenchymal stromal cells in vitro. PLoS One 10:e0138477. https://doi.org/10.1371/journal.pone.0138477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ciria M, García NA, Ontoria-Oviedo I et al (2017) Mesenchymal stem cell migration and proliferation are mediated by hypoxia-inducible factor-1α upstream of notch and SUMO pathways. Stem Cells Dev 26:973–985. https://doi.org/10.1089/scd.2016.0331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lv B, Li F, Fang J et al (2017) Hypoxia inducible factor 1α promotes survival of mesenchymal stem cells under hypoxia. Am J Transl Res 9:1521–1529

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Estrada JC, Albo C, Benguría A et al (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 19:743–755. https://doi.org/10.1038/cdd.2011.172

    Article  CAS  PubMed  Google Scholar 

  64. Vertelov G, Kharazi L, Muralidhar MG et al (2013) High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA. Stem Cell Res Ther 4:5. https://doi.org/10.1186/scrt153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Antebi B, Rodriguez LA, Walker KP et al (2018) Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9:265. https://doi.org/10.1186/s13287-018-1007-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grayson WL, Zhao F, Izadpanah R et al (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207:331–339. https://doi.org/10.1002/jcp.20571

    Article  CAS  PubMed  Google Scholar 

  67. Potier E, Ferreira E, Andriamanalijaona R et al (2007) Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 40:1078–1087. https://doi.org/10.1016/j.bone.2006.11.024

    Article  CAS  PubMed  Google Scholar 

  68. Felka T, Schäfer R, Schewe B et al (2009) Hypoxia reduces the inhibitory effect of IL-1beta on chondrogenic differentiation of FCS-free expanded MSC. Osteoarthr Cartil 17:1368–1376. https://doi.org/10.1016/j.joca.2009.04.023

    Article  CAS  Google Scholar 

  69. Tsai C-C, Chen Y-J, Yew T-L et al (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117:459–469. https://doi.org/10.1182/blood-2010-05-287508

    Article  CAS  PubMed  Google Scholar 

  70. Liu W, Li L, Rong Y et al (2020) Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater 103:196–212. https://doi.org/10.1016/j.actbio.2019.12.020

    Article  CAS  PubMed  Google Scholar 

  71. Ikeda Y, Keese SM, Tanaka K (1985) Molecular heterogeneity of variant isovaleryl-CoA dehydrogenase from cultured isovaleric acidemia fibroblasts. Proc Natl Acad Sci U S A 82:7081–7085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li Y-M, Schilling T, Benisch P et al (2007) Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun 363:209–215. https://doi.org/10.1016/j.bbrc.2007.08.161

    Article  CAS  PubMed  Google Scholar 

  73. Weil BR, Abarbanell AM, Herrmann JL et al (2009) High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. Am J Physiol Regul Integr Comp Physiol 296:R1735–R1743. https://doi.org/10.1152/ajpregu.90876.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deorosan B, Nauman EA (2011) The role of glucose, serum, and three-dimensional cell culture on the metabolism of bone marrow-derived mesenchymal stem cells. Stem Cells Int 2011:429187. https://doi.org/10.4061/2011/429187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liang C, Li H, Tao Y et al (2012) Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. J Transl Med 10:49. https://doi.org/10.1186/1479-5876-10-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wuertz K, Godburn K, Neidlinger-Wilke C et al (2008) Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine (Phila Pa 1976) 33:1843–1849. https://doi.org/10.1097/BRS.0b013e31817b8f53

    Article  Google Scholar 

  77. Wuertz K, Godburn K, Iatridis JC (2009) MSC response to pH levels found in degenerating intervertebral discs. Biochem Biophys Res Commun 379:824–829. https://doi.org/10.1016/j.bbrc.2008.12.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan L, Liu X, Dou H et al (2020) Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment —specific factors involved in the regulation of MSC plasticity. Genes & Diseases. https://doi.org/10.1016/j.gendis.2020.10.006

  79. Tsuji K, Kitamura S, Wada J (2018) Secretomes from mesenchymal stem cells against acute kidney injury: possible heterogeneity. Stem Cells Int 2018:8693137. https://doi.org/10.1155/2018/8693137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. García-Sánchez D, Fernández D, Rodríguez-Rey JC et al (2019) Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells 11:748–763. https://doi.org/10.4252/wjsc.v11.i10.748

    Article  PubMed  PubMed Central  Google Scholar 

  81. Heng BC, Li J, Chen AK-L et al (2012) Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev 21:1701–1715. https://doi.org/10.1089/scd.2011.0509

    Article  CAS  PubMed  Google Scholar 

  82. Buxboim A, Rajagopal K, Brown AEX et al (2010) How deeply cells feel: methods for thin gels. J Phys Condens Matter 22:194116. https://doi.org/10.1088/0953-8984/22/19/194116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tsai A-C, Jeske R, Chen X et al (2020) Influence of microenvironment on mesenchymal stem cell therapeutic potency: from planar culture to microcarriers. Front Bioeng Biotechnol 8:640. https://doi.org/10.3389/fbioe.2020.00640

    Article  PubMed  PubMed Central  Google Scholar 

  84. Penna V, Lipay MV, Duailibi MT et al (2015) The likely role of proteolytic enzymes in unwanted differentiation of stem cells in culture. Future Sci OA 1:FSO28. https://doi.org/10.4155/fso.15.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brindley D, Moorthy K, Lee J-H et al (2011) Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng 2011:620247. https://doi.org/10.4061/2011/620247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cherry RS, Papoutsakis ET (1986) Hydrodynamic effects on cells in agitated tissue culture reactors. Bioprocess Eng 1:29–41. https://doi.org/10.1007/BF00369462

    Article  Google Scholar 

  87. Nienow AW, Rafiq QA, Coopman K et al (2014) A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochem Eng J 85:79–88. https://doi.org/10.1016/j.bej.2014.02.005

    Article  CAS  Google Scholar 

  88. Lawson T, Kehoe DE, Schnitzler AC et al (2017) Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 120:49–62. https://doi.org/10.1016/j.bej.2016.11.020

    Article  CAS  Google Scholar 

  89. Zwietering T (1958) Suspending of solid particles in liquid by agitators. Chem Eng Sci 8:244–253. https://doi.org/10.1016/0009-2509(58)85031-9

    Article  CAS  Google Scholar 

  90. Kraume M (2003) Mischen und Rühren: Grundlagen und moderne Verfahren. Wiley-VCH, Weinheim

    Google Scholar 

  91. Liepe F, Sperling R, Jembere S (eds) (1998) Rührwerke: Theoretische Grundlagen, Auslegung und Bewertung, 1. Aufl. Fachhochschule Anhalt, Köthen

    Google Scholar 

  92. Heathman TR, Nienow AW, Rafiq QA et al (2018) Agitation and aeration of stirred-bioreactors for the microcarrier culture of human mesenchymal stem cells and potential implications for large-scale bioprocess development. Biochem Eng J 136:9–17. https://doi.org/10.1016/j.bej.2018.04.011

    Article  CAS  Google Scholar 

  93. Czermak P, Pörtner R, Brix A (2009) Special engineering aspects. In: Cell and tissue reaction engineering: with a contribution by Martin Fussenegger and Wilfried Weber. Springer, Berlin, Heidelberg, pp 83–172

    Chapter  Google Scholar 

  94. Kanda Y, Hinata T, Kang SW et al (2011) Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 89:250–258. https://doi.org/10.1016/j.lfs.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  95. Pattappa G, Heywood HK, de Bruijn JD et al (2011) The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 226:2562–2570. https://doi.org/10.1002/jcp.22605

    Article  CAS  PubMed  Google Scholar 

  96. Phelps J, Sanati-Nezhad A, Ungrin M et al (2018) Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int 2018:9415367. https://doi.org/10.1155/2018/9415367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y et al (2018) Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep 14:484–499. https://doi.org/10.1007/s12015-018-9817-x

    Article  CAS  PubMed  Google Scholar 

  98. Piffoux M, Nicolás-Boluda A, Mulens-Arias V et al (2019) Extracellular vesicles for personalized medicine: the input of physically triggered production, loading and theranostic properties. Adv Drug Deliv Rev 138:247–258. https://doi.org/10.1016/j.addr.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  99. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  100. Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  101. Varderidou-Minasian S, Lorenowicz MJ (2020) Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 10:5979–5997. https://doi.org/10.7150/thno.40122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gudbergsson JM, Johnsen KB, Skov MN et al (2016) Systematic review of factors influencing extracellular vesicle yield from cell cultures. Cytotechnology 68:579–592. https://doi.org/10.1007/s10616-015-9913-6

    Article  PubMed  Google Scholar 

  103. Patel DB, Santoro M, Born LJ et al (2018) Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: impact of the bioproduction microenvironment. Biotechnol Adv 36:2051–2059. https://doi.org/10.1016/j.biotechadv.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xie L, Mao M, Zhou L et al (2016) Spheroid mesenchymal stem cells and mesenchymal stem cell-derived microvesicles: two potential therapeutic strategies. Stem Cells Dev 25:203–213. https://doi.org/10.1089/scd.2015.0278

    Article  CAS  PubMed  Google Scholar 

  105. Watson DC, Bayik D, Srivatsan A et al (2016) Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205. https://doi.org/10.1016/j.biomaterials.2016.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Whitford W, Ludlow JW, Cadwell JJ (2015) Continuous production of exosomes. Genetic Eng Biotechnol News 35:34. https://doi.org/10.1089/gen.35.16.15

    Article  Google Scholar 

  107. Gobin J, Muradia G, Mehic J et al (2021) Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell. Stem Cell Res Ther 12:127. https://doi.org/10.1186/s13287-021-02190-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. de Almeida Fuzeta M, Bernardes N, Oliveira FD et al (2020) Scalable production of human mesenchymal stromal cell-derived extracellular vesicles under serum-/Xeno-free conditions in a microcarrier-based bioreactor culture system. Front Cell Dev Biol 8:553444. https://doi.org/10.3389/fcell.2020.553444

    Article  PubMed  PubMed Central  Google Scholar 

  109. Secunda R, Vennila R, Mohanashankar AM et al (2015) Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67:793–807. https://doi.org/10.1007/s10616-014-9718-z

    Article  CAS  PubMed  Google Scholar 

  110. Patel DB, Gray KM, Santharam Y et al (2017) Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2:170–179. https://doi.org/10.1002/btm2.10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Izadpanah R, Kaushal D, Kriedt C et al (2008) Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 68:4229–4238. https://doi.org/10.1158/0008-5472.CAN-07-5272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramos L, Sánchez-Abarca LI, Muntión S et al (2016) MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 14:2. https://doi.org/10.1186/s12964-015-0124-8

    Article  CAS  Google Scholar 

  113. Chen TS, Arslan F, Yin Y et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47. https://doi.org/10.1186/1479-5876-9-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Noronha NC, Mizukami A, Caliári-Oliveira C et al (2019) Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 10:131. https://doi.org/10.1186/s13287-019-1224-y

    Article  PubMed  Google Scholar 

  115. Ragni E, Perucca Orfei C, de Luca P et al (2020) Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: the example of joint disease. Stem Cell Res Ther 11:165. https://doi.org/10.1186/s13287-020-01677-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cheng A, Choi D, Lora M et al (2020) Human multipotent mesenchymal stromal cells cytokine priming promotes RAB27B-regulated secretion of small extracellular vesicles with immunomodulatory cargo. Stem Cell Res Ther 11:539. https://doi.org/10.1186/s13287-020-02050-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Di Trapani M, Bassi G, Midolo M et al (2016) Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep 6:24120. https://doi.org/10.1038/srep24120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sundin M, Ringdén O, Sundberg B et al (2007) No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 92:1208–1215. https://doi.org/10.3324/haematol.11446

    Article  CAS  PubMed  Google Scholar 

  119. Shelke GV, Lässer C, Gho YS et al (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.24783

  120. Haraszti RA, Miller R, Dubuke ML et al (2019) Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience 16:230–241. https://doi.org/10.1016/j.isci.2019.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. de Jong OG, Verhaar MC, Chen Y et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles:1. https://doi.org/10.3402/jev.v1i0.18396

  122. Pirkmajer S, Chibalin AV (2011) Serum starvation: caveat emptor. Am J Physiol Cell Physiol 301:C272–C279. https://doi.org/10.1152/ajpcell.00091.2011

    Article  CAS  PubMed  Google Scholar 

  123. Lavrentieva A, Majore I, Kasper C et al (2010) Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal 8:18. https://doi.org/10.1186/1478-811X-8-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Almeria C, Weiss R, Roy M et al (2019) Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol 7:292. https://doi.org/10.3389/fbioe.2019.00292

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bian S, Zhang L, Duan L et al (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) 92:387–397. https://doi.org/10.1007/s00109-013-1110-5

    Article  CAS  Google Scholar 

  126. Salomon C, Ryan J, Sobrevia L et al (2013) Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 8:e68451. https://doi.org/10.1371/journal.pone.0068451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lo Sicco C, Reverberi D, Balbi C et al (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6:1018–1028. https://doi.org/10.1002/sctm.16-0363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Salzig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barekzai, J., Petry, F., Czermak, P., Salzig, D. (2021). Process Design for Human Mesenchymal Stem Cell Products in Stirred-Tank Bioreactors. In: Pörtner, R. (eds) Cell Culture Engineering and Technology. Cell Engineering, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-79871-0_10

Download citation

Publish with us

Policies and ethics