Skip to main content

Laser Ablation of Solid Materials, Laser Ablation Propulsion

  • Chapter
  • First Online:
High Power Laser Propulsion

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 116))

  • 832 Accesses

Abstract

The analysis of laser pulse effects on polymers is presented as applied to laser ablation propulsion. Polymers of CHO-chemical composition are considered to use as propellants to increase the efficiency of LAP by burning of polymer vapors and producing such combustion components of this reaction as CO2 and H2O. Theoretical analysis of the ablation effects is considered on the base of polymers burning models.

Moreover, high-temperature oxidation of the ablated CHO-materials as well as release of combustion energy in the ablated vapor are considered as basic chemical reactions resulting from laser ablation of polymers. The first reaction is a chemical oxidation of the vapor components by oxygen entering into the polymer’s composition. The second reaction is a delayed burning of the partially oxidized vapor components in the atmospheric oxygen.

In the case of the laser ablation propulsion based on the ablation of CHO-polymers, the concept of laser-propulsion efficiency is defined more correctly by the analogy with the efficiency of conventional jet engines, namely, as a ratio of exhaust jet power to the total power of the energy sources originated in a combustion chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kantrowitz, A.: Propulsion to orbit by ground-based lasers. Astron. Aeron. 10, 74–76 (1972)

    Google Scholar 

  2. Askaryan, G.A., Moroz, E.M.: Pressure impulse generated at material evaporation under the action of laser beam, light induced pressure. J. Exper. Theor. Phys. 43, 27–25 (1962)

    Google Scholar 

  3. Ablation, L.: Principles and applications. In: Miller, J.C. (ed.) . Springer (1994)

    Google Scholar 

  4. Bunkin, F.V., Prokhorov, A.M.: Laser power source application to produce a thrust. Adv.Phys.Sci. (Rus.) 119, 425-446 (1976)

    Google Scholar 

  5. Phipps, C.R., et al.: Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers. J. Appl. Phys. 64, 1083–1096 (1988). https://doi.org/10.1063/1.341867

    Article  ADS  Google Scholar 

  6. Phipps, C.R., Dreyfus, R.W.: Ch. 4: Laser ablation and plasma formation. In: Vertes, A. (ed.) Laser ionization mass analysis. Wiley (1993)

    Google Scholar 

  7. Phipps, C.R. (ed.): Laser ablation and its applications. Series: Springer Series in Optical Sciences, p. 129 (2007)

    Google Scholar 

  8. Danilychev, V.D., et al.: Investigations on plasma dynamics, generated close by a solid target under CO2-laser pulse of microsecond length. J. Quant. Electron. (Rus.). 7, 2599–2604 (1980)

    Google Scholar 

  9. Protasov, Y.Y., Stepanov, O.G.: Study oh radiative gas-dynamic processes and generation of laser detonation waves. Bull. MSTU. Ser.: Nat. Sci. 4, 69–77 (2004)

    Google Scholar 

  10. Raizer, Y.P.: Laser-ignited spark and development of charges. Nauka, Moscow (1974)

    Google Scholar 

  11. Krokhin, O.N.: Modern physical principles of laser ablation. Proc. SPIE. 4065, 6–16 (2000). https://doi.org/10.1117/12.407344

    Article  ADS  Google Scholar 

  12. Zvorykin, V.D.: Comparative analysis of gas-dynamic regimes of high-power UV and IR gas lasers interaction with solids in atmosphere. Proc. SPIE. 4065, 128–139 (2000). https://doi.org/10.1117/12.407369

    Article  ADS  Google Scholar 

  13. Sinko, J.E., Sasoh, A.: Review of CO2 laser ablation propulsion with Polyoxymethylene. Int. J. Aerosp. Innov. 3, 93–129 (2011). https://doi.org/10.1260/1757-2258.3.2.93

    Article  Google Scholar 

  14. Sinko, J.E., Phipps, C.R.: Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes. Appl. Phys. Lett. 95, 131–105 (2009). https://doi.org/10.1063/1.3234382

    Article  Google Scholar 

  15. Lippert, N., et al.: Fundamentals and applications of polymers designed for laser ablation. Appl. Phys. A Mater. Sci. Process. 77, 259–264 (2003). https://doi.org/10.1007/s00339-003-2111-y

    Article  ADS  Google Scholar 

  16. Urech, L.: Design and characterization of energetic polymers applied in laser space propulsion. For the degree of Doctor of Sciences: DISS.ETH NO. 17068, ETH Zürich (2007)

    Google Scholar 

  17. Salvador, I.I.: Static and hypersonic experimental analysis of impulse generation in air-breathing laser-thermal propulsion. A Thesis Submitted Rensselaer Polytechnic Institute. Troy, New York (2010)

    Google Scholar 

  18. Pakhomov, A.V., Thompson, M.S., Gregory, D.A.: Ablative laser propulsion: a study of specific impulse, thrust and efficiency. AIP Conf. Proc. 664, 194–205 (2002). https://doi.org/10.2514/2.1567

    Article  ADS  Google Scholar 

  19. Phipps, C.R., et al.: Coupling coefficient at low laser flounce with a structured target. High-Power Laser Ablation III. Proc. SPIE. 4065, 931–938 (2000). https://doi.org/10.1117/12.407330

    Article  ADS  Google Scholar 

  20. Yabe, T., Nakagawa, R., Yamaguchi, M.: Simulation and experiments on laser propulsion by water cannon target. 1-st Int. Symp. Beam. Energy Prop. AIP Conf. Proc. 664, 185–193 (2002). https://doi.org/10.1063/1.1582107

    Article  ADS  Google Scholar 

  21. Phipps, C.R., et al.: Overview: laser-ablation propulsion. J. Prop. Pow. 26, 609–649 (2010). https://doi.org/10.2514/1.43733

    Article  Google Scholar 

  22. Remo, J.L., Hammerling, P.: Experimental and computational results for 1054 nm laser induced shock effects in confined meteorite and metallic targets. Proc. SPIE. 4065, 635–643 (2000). https://doi.org/10.1117/12.407384

    Article  ADS  Google Scholar 

  23. Phipps, C.R., et al.: Very high coupling coefficient at low laser fluence with a structured target. Proc. SPIE. 4065, 931–938 (2000). https://doi.org/10.1117/12.407330

    Article  ADS  Google Scholar 

  24. Fabbro, R., et al.: Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775–784 (1990). https://doi.org/10.1063/1.346783

    Article  ADS  Google Scholar 

  25. Yabe, T., et al.: Laser-driven vehicles—from inner-space to outer-space. Proc. SPIE. 4760, 867–878 (2002). https://doi.org/10.1007/s00339-003-2125-5

    Article  ADS  Google Scholar 

  26. Liukonen, R.A.: Efficiency of energy transfer into a recoil impulse for laser propulsion engine. Lett. J. Tech. Phys. (Rus.). 18, 76–79 (1992)

    Google Scholar 

  27. Schall, W.O., et al.: Lightcraft experiments in Germany. Proc. SPIE. 4065, 472–481 (2000)

    Article  ADS  Google Scholar 

  28. Ageichik, A.A., et al.: Laser detonation of CHO-polymers as applied to laser propulsion. J. Tech. Phys. 79, 76–83 (2009). https://doi.org/10.1117/12.407369

    Article  Google Scholar 

  29. Kikoin, I.K. (ed.): Tables of physical parameters. Atomizdat, Moscow (1976)

    Google Scholar 

  30. Schall, W.O., Eckel, H.-A., Bohn, W.L.: Laser propulsion thrusters for space transportation. Phipps, C.R. (ed.) Laser ablation and its applications. Springer (2007)

    Google Scholar 

  31. Loktionov, E.Y., Protasov, Y.Y.: Investigation of the dynamics and microstructure of laser-induced optical discharges with ablating target. High Temp. 48, 766–778 (2010)

    Article  Google Scholar 

  32. Sinko, J.E., et al.: Critical fluence and modeling of CO2 laser ablation of polyoxymethylene from vaporization to the plasma regime. AIP Conf. Proceed. 1230, 395–404 (2010). https://doi.org/10.1063/1.3435456

    Article  ADS  Google Scholar 

  33. Bäuerle, D.: Laser processing and chemistry. Springer-Verlag, Berlin (2000). Ch. 2.2.2: The dimensionality of heat flow, p. 20; and Ch. 11.6: Plasma formation, pp. 206–212

    Google Scholar 

  34. Bulgakova, N.M.: Investigation of the dynamics and processes of laser ablation under the action of milli-, nano-, and femtoseconds pulses. Doct. Thes. Novosibirsk (2002)

    Google Scholar 

  35. Larson, C.W., et al.: Laser propulsion and the constant momentum mission. AIP Conf. Proc. 702, 216–227 (2004). https://doi.org/10.1063/1.1721002

    Article  ADS  Google Scholar 

  36. Srinivasan, R.: Ablation of polymethyl methacrylate films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers: a comparative study by ultrafast imaging. J. Appl. Phys. 73, 2743 (1993). https://doi.org/10.1063/1.353048

    Article  ADS  Google Scholar 

  37. Zeldovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature gas-dynamic processes. Nauka, Moscow (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezunkov, Y.A. (2021). Laser Ablation of Solid Materials, Laser Ablation Propulsion. In: High Power Laser Propulsion. Springer Series on Atomic, Optical, and Plasma Physics, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-79693-8_3

Download citation

Publish with us

Policies and ethics