Skip to main content

Impedance Control Strategies for Lower-Limb Exoskeletons

  • Chapter
  • First Online:
Interfacing Humans and Robots for Gait Assistance and Rehabilitation

Abstract

In the last decades, researchers have used the physical-Human–Robot-interaction (pHRI) to develop rehabilitation and assistance wearable robots. The control strategies implementation based on impedance control considers the force/torque generated between the user and the wearable robot such as the lower-limb exoskeleton. In this sense, the development of these control strategies comprises the acquisition of different user’s kinetic and kinematic parameters, a processing module, and a mechanical structure to transmit the system response. This chapter presents the control strategies development for gait rehabilitation implemented in the AGoRA lower-limb exoskeleton covered as follows: (1) Human–Robot interaction (HRI) definition; (2) sensory interface to estimate the user’s lower-limb movements; (3) actuation system; (4) impedance controller; and (5) impedance controller case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.E. Mlinac, M.C. Feng, Assessment of activities of daily living, self-care, and independence. Arch. Clin. Neuropsychol. 31(6), 506–516 (2016)

    Article  Google Scholar 

  2. E. Peter, B. Deb, S. Sukesh, L. Shoshana, Activities of daily living (ADLs) (2021). https://www.ncbi.nlm.nih.gov/books/NBK470404/

  3. A. Balaguer, Actividades de la vida diaria (2016)

    Google Scholar 

  4. C. Blomgren, K. Jood, C. Jern, L. Holmegaard, P. Redfors, C. Blomstrand, L. Claesson, Long-term performance of instrumental activities of daily living (IADL) in young and middle-aged stroke survivors: results from SAHLSIS outcome. Scand. J. Occup. Ther. 25(2), 119–126 (2018)

    Article  Google Scholar 

  5. K. Han, J. Lee, W.K. Song, Application scenarios for assistive robots based on in-depth focus group interviews and clinical expert meetings, in 2013 44th International Symposium on Robotics, ISR 2013 (2013)

    Google Scholar 

  6. J.-M. Belda-Lois, S.M.-d. Horno, I. Bermejo-bosch, J.C. Moreno, J.L. Pons, D. Farina, M. Iosa, M. Molinari, F. Tamburella, A. Ramos, A. Caria, T. Solis-escalante, C. Brunner, M. Rea, Rehabilitation of gait after stroke: a top down approach. J. NeuroEng. Rehabil. 66, 66 (2011)

    Google Scholar 

  7. B. Koopman, E.H.F.V. Asseldonk, H.V.D. Kooij, Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J. NeuroEng. Rehabil. 10, 1–21 (2013)

    Article  Google Scholar 

  8. L.D. da Silva, T.F. Pereira, V.R. Leithardt, L.O. Seman, C.A. Zeferino, Hybrid impedance-admittance control for upper limb exoskeleton using electromyography. Appl. Sci. 10(20), 1–19 (2020)

    Google Scholar 

  9. S.C. Ouriques Martins, C. Sacks, W. Hacke, M. Brainin, F. de Assis Figueiredo, O. Marques Pontes-Neto, P.M. Lavados Germain, M.F. Marinho, A. Hoppe Wiegering, D. Vaca McGhie, S. Cruz-Flores, S.F. Ameriso, W.M. Camargo Villareal, J.C. Durán, J.E. Fogolin Passos, R. Gomes Nogueira, J.J. Freitas de Carvalho, G. Sampaio Silva, C.H. Cabral Moro, J. Oliveira-Filho, R. Gagliardi, E.D. Gomes de Sousa, F. Fagundes Soares, K. de Pinho Campos, P.F. Piza Teixeira, I.P. Gonçalves, I.R. Santos Carquin, M. Muñoz Collazos, G.E. Pérez Romero, J.I. Maldonado Figueredo, M.A. Barboza, M. Celis López, F. Góngora-Rivera, C. Cantú-Brito, N. Novarro-Escudero, M. Velázquez Blanco, C.A. Arbo Oze de Morvil, A.B. Olmedo Bareiro, G. Meza Rojas, A. Flores, J.A. Hancco-Saavedra, V. Pérez Jimenez, C. Abanto Argomedo, L. Rodriguez Kadota, R. Crosa, D.L. Mora Cuervo, A.C. de Souza, L.A. Carbonera, T.F. Álvarez Guzmán, N. Maldonado, N.L. Cabral, C. Anderson, P. Lindsay, A. Hennis, V.L. Feigin, Priorities to reduce the burden of stroke in Latin American countries. Lancet Neurol. 18(7), 674–683 (2019)

    Google Scholar 

  10. G.D. Whitiana, V. Vitriana, A. Cahyani, Level of activity daily living in post stroke patients. Althea Med. J. 4(2), 261–266 (2017)

    Article  Google Scholar 

  11. G. Colombo, M. Joerg, R. Schreier, V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Develop. 37(6), 693–700 (2000)

    Google Scholar 

  12. J.L. Pons, Human-robot cognitive interaction, in Wearable Robots: Biomechatronic Exoskeletons, chap. 4 (Wiley, Hoboken, 2008)

    Google Scholar 

  13. A. Kilicarslan, S. Prasad, R.G. Grossman, J.L. Contreras-Vidal, High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2013), pp. 5606–5609

    Google Scholar 

  14. A. Costa, R. Salazar-Varas, E. Ianez, A. Ubeda, E. Hortal, J.M. Azorin, Studying cognitive attention mechanisms during walking from EEG signals, in Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015 (2016), pp. 882–886

    Google Scholar 

  15. L.I. Minchala, F. Astudillo-Salinas, K. Palacio-Baus, A. Vazquez-Rodas, Mechatronic design of a lower limb exoskeleton, in Design, Control and Applications of Mechatronic Systems in Engineering (2017)

    Google Scholar 

  16. F.L. Haufe, A.M. Kober, K. Schmidt, A. Sancho-puchades, J.E. Duarte, P. Wolf, R. Riener, User-driven walking assistance: first experimental results using the MyoSuit *, in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) (2019), pp. 944–949

    Google Scholar 

  17. H. Kawamoto, S. Lee, S. Kanbe, Y. Sankai, Power assist method for HAL-3 using EMG-based feedback controller, in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 2 (2003), pp. 1648–1653

    Google Scholar 

  18. C. Castellini, P. Van Der Smagt, Surface EMG in advanced hand prosthetics. Biol. Cybern. 100(1), 35–47 (2009)

    Article  Google Scholar 

  19. S.K. Das, Adaptive physical human-robot interaction (PHRI) with a robotic nursing assistant. Ph.D. Thesis, University of Louisville (2019)

    Google Scholar 

  20. P.D. Labrecque, C. Gosselin, Variable admittance for pHRI: from intuitive unilateral interaction to optimal bilateral force amplification. Robot. Comput.-Integr. Manuf. 52, 1–8 (2018)

    Article  Google Scholar 

  21. A. Bicchi, M.A. Peshkin, J.E. Colgate, Safety for physical human–robot interaction. Springer Handbook of Robotics (Springer, Berlin, 2008) pp. 1335–1348

    Google Scholar 

  22. A.Q. Keemink, H. van der Kooij, A.H. Stienen, Admittance control for physical human–robot interaction. Int. J. Robot. Res. 37(11), 1421–1444 (2018)

    Article  Google Scholar 

  23. S. Haddadin, E. Croft, Physical human-robot interaction, in Springer Handbook of Robotics (Springer, Cham, 2016), pp. 1835–1874

    Book  Google Scholar 

  24. I. Díaz, J.J. Gil, E. Sánchez, Lower-limb robotic rehabilitation: literature review and challenges. J. Robot. 2011(i), 1–11 (2011)

    Google Scholar 

  25. A. Martínez, B.E. Lawson, M. Goldfarb, Preliminary assessment of a lower-limb exoskeleton controller for stroke rehabilitation in overground walking, in IEEE International Conference on Rehabilitation Robotics (2017)

    Google Scholar 

  26. A.C. Villa-Parra, D. Delisle-Rodriguez, J.S. Lima, A. Frizera-Neto, T. Bastos, Knee impedance modulation to control an active orthosis using insole sensors. Sensors 17(12), 2751 (2017)

    Google Scholar 

  27. M. Sanchez-Manchola, D. Gomez-Vargas, D. Casas-Bocanegra, M. Munera, C.A. Cifuentes, Development of a Robotic lower-limb exoskeleton for gait rehabilitation: AGoRA exoskeleton, in 2018 IEEE ANDESCON Conference Proceedings (2018), pp. 1–6

    Google Scholar 

  28. M.D. Sánchez Manchola, L.J. Arciniegas Mayag, M. Múnera, C.A. Garcia, Impedance-based backdrivability recovery of a lower-limb exoskeleton for knee rehabilitation, in 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings, (Medellin, Colombia) (2019), pp. 1–6

    Google Scholar 

  29. T. Poliero, C. Di Natali, M. Sposito, J. Ortiz, E. Graf, C. Pauli, E. Bottenberg, A. De Eyto, D.G. Caldwell, Soft wearable device for lower limb assistance: assessment of an optimized energy efficient actuation prototype, in 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018 (2018), pp. 559–564

    Google Scholar 

  30. J. Schuy, A. Burkl, P. Beckerle, S. Rinderknecht, A new device to measure load and motion in lower limb prosthesis - tested on different prosthetic feet, in 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014 (2014), pp. 187–192

    Google Scholar 

  31. M. Molinari, M. Masciullo, F. Tamburella, N.L. Tagliamonte, I. Pisotta, J.L. Pons, Exoskeletons for over-ground gait training in spinal cord injury. Biosyst. Biorobot. 19, 253–265 (2018)

    Article  Google Scholar 

  32. T. Bacek, M. Moltedo, K. Langlois, G.A. Prieto, M.C. Sanchez-Villamañan, J. Gonzalez-Vargas, B. Vanderborght, D. Lefeber, J.C. Moreno, BioMot exoskeleton - towards a smart wearable robot for symbiotic human-robot interaction, in IEEE International Conference on Rehabilitation Robotics (2017), pp. 1666–1671

    Google Scholar 

  33. A.J. Young, D.P. Ferris, State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 171–182 (2017)

    Article  Google Scholar 

  34. F. El Zahraa Wehbi, W. Huo, Y. Amirat, M.E. Rafei, M. Khalil, S. Mohammed, Active impedance control of a knee-joint orthosis during swing phase, in IEEE International Conference on Rehabilitation Robotics (2017), pp. 435–440

    Google Scholar 

  35. W.M. Dos Santos, A.A.G. Siqueira, Impedance control of a rotary series elastic actuator for knee rehabilitation, in The International Federation of Automatic Control (IFAC), vol. 19 (2014), pp. 4801–4806

    Google Scholar 

  36. A. Taherifar, G. Vossoughi, A.S. Ghafari, Variable admittance control of the exoskeleton for gait rehabilitation based on a novel strength metric. Robotica 36, 427–447 (2018)

    Article  Google Scholar 

  37. V. Grosu, C. Rodriguez-Guerrero, S. Grosu, B. Vanderborght, D. Lefeber, Design of smart modular variable stiffness actuators for robotic-assistive devices. IEEE/ASME Trans. Mechatron. 22(4), 1777–1785 (2017)

    Article  Google Scholar 

  38. L.M. Mooney, H.M. Herr, Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J. NeuroEng. Rehabil. 13(1), 1–12 (2016)

    Article  Google Scholar 

  39. N. Abhayasinghe, I. Murray, Human activity recognition using thigh angle derived from single thigh mounted IMU data, in 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN 2014) (2014), pp. 111–115

    Google Scholar 

  40. D. Micucci, M. Mobilio, P. Napoletano, UniMiB SHAR: a dataset for human activity recognition using acceleration data from smartphones. Appl. Sci. 7(10), 1101 (2017)

    Google Scholar 

  41. B. Barshan, M.C. Yüksek, Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. Comput. J. 57(11), 1649–1667 (2013)

    Article  Google Scholar 

  42. M.N. Victorino, X. Jiang, C. Menon, Wearable Technologies and Force Myography for Healthcare (Elsevier, Amsterdam, 2018)

    Book  Google Scholar 

  43. M.D. Manchola, M.J. Bernal, M. Munera, C.A. Cifuentes, Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals. Sensors 19(13), 2988 (2019)

    Google Scholar 

  44. M. Motor, Maxon flat EC motor. Maxon (2017). https://www.maxongroup.com/medias/sys_master/root/8831018893342/2018EN-270.pdf

  45. J.F. Veneman, R. Kruidhof, E.E.G. Hekman, R. Ekkelenkamp, E.H.F.V. Asseldonk, H. van der Kooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  46. A. Ortlieb, M. Bouri, R. Baud, H. Bleuler, An assistive lower limb exoskeleton for people with neurological gait disorders, in 2017 International Conference on Rehabilitation Robotics (ICORR) (2017), pp. 441–446

    Google Scholar 

  47. S.O. Schrade, K. Dätwyler, M. Stücheli, K. Studer, D.A. Türk, M. Meboldt, R. Gassert, O. Lambercy, Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016 Olivier Lambercy; Roger Gassert. J. NeuroEng. Rehabil. 15(1), 1–18 (2018)

    Article  Google Scholar 

  48. N. Hogan, Impedance control: an approach to manipulation, in 1984 American Control Conference (1984), pp. 304–313

    Google Scholar 

  49. E.S. Barjuei, S. Toxiri, G.A. Medrano-Cerda, D.G. Caldwell, J. Ortiz, Bond graph modeling of an exoskeleton actuator, in 2018 10th Computer Science and Electronic Engineering Conference, CEEC 2018 - Proceedings (2019), pp. 101–106

    Google Scholar 

  50. F.R.O. Andres, A. Lopez-Delis, A.F. da Rocha, Upper and Lower Extremity Exoskeletons (Elsevier, Amsterdam, 2018)

    Google Scholar 

  51. Z. Li, Z. Yin, Position tracking control of mass spring damper system with time-varying coefficients, in Proceedings of the 29th Chinese Control and Decision Conference, CCDC 2017 (2017), pp. 4994–4998

    Google Scholar 

  52. A.A. Nikooyan, A.A. Zadpoor, Mass-spring-damper modelling of the human body to study running and hopping-an overview. Proc. Inst. Mech. Eng H J. Eng. Med. 225(12), 1121–1135 (2011)

    Article  Google Scholar 

  53. C. Bayón, O. Ramírez, F. Mollà, J. Serrano, M. Del Castillo, J. Belda-Lois, R. Poveda, R. Raya, T. Martín Lorenzo, I. Martínez Caballero, S. Lerma Lara, C. Cifuentes, A. Frizera, E. Rocon, CPWalker, robotic platform for gait rehabilitation and training in patients with cerebral palsy, in 2016 IEEE International Conference on Robotics and Automation (ICRA) (2015), pp. 3736–3741

    Google Scholar 

  54. A.C. Villa-Parra, D. Delisle-Rodriguez, T. Botelho, J.J.V. Mayor, A.L. Delis, R. Carelli, A. Frizera Neto, T.F. Bastos, Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG. Res. Biomed. Eng. 34(3), 198–210 (2018)

    Article  Google Scholar 

  55. M.D. Sánchez Manchola, L.J. Arciniegas Mayag, M. Munera, C.A. Garcia, Impedance-based backdrivability recovery of a lower-limb exoskeleton for knee rehabilitation, in 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings (2019), pp. 1–6

    Google Scholar 

  56. J.B. Webster, B.J. Darter, Principles of normal and pathologic gait, in Atlas of Orthoses and Assistive Devices, chap. 4, 5th edn. (Elsevier, Amsterdam, 2019), pp. 49–62.e1

    Google Scholar 

  57. T. Roskilly, R. Mikalsen, Closed-loop stability, in Marine Systems Identification, Modeling and Control (Elsevier, Amsterdam, 2015), pp. 97–122

    Book  Google Scholar 

  58. K. Wen, D. Necsulescu, J. Sasiadek, Haptic force control based on impedance/admittance control. IFAC Proc. Vol. 38(1), 427–432 (2005)

    Article  Google Scholar 

  59. A. Fortin-Coté, P. Cardou, C. Gosselin, An admittance control scheme for haptic interfaces based on cable-driven parallel mechanisms, in Proceedings - IEEE International Conference on Robotics and Automation (2014), pp. 819–825

    Google Scholar 

  60. M. Bortole, A. Del Ama, E. Rocon, J.C. Moreno, F. Brunetti, J.L. Pons, A robotic exoskeleton for overground gait rehabilitation, in Proceedings - IEEE International Conference on Robotics and Automation (2013), pp. 3356–3361

    Google Scholar 

  61. S.K. Banala, S.H. Kim, S.K. Agrawal, J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), in Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, vol. 17 (2008), pp. 653–658

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cifuentes .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arciniegas-Mayag, L., Rodriguez-Guerrero, C., Rocon, E., Múnera, M., Cifuentes, C.A. (2022). Impedance Control Strategies for Lower-Limb Exoskeletons. In: Interfacing Humans and Robots for Gait Assistance and Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-030-79630-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79630-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79629-7

  • Online ISBN: 978-3-030-79630-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics