Skip to main content

Serious Games in Robot-Assisted Rehabilitation Therapy for Neurological Patients

  • Chapter
  • First Online:
Interfacing Humans and Robots for Gait Assistance and Rehabilitation

Abstract

Robot-assisted rehabilitation has been shown to effectively improve the sequelae and restore function for neurological patients. However, repetitive exercise in long-term therapy may cause a lack of interest and demotivation decreasing the therapy success. Serious games in the rehabilitation field have emerged as a promising approach by including an entertainment component during cognitive and motor skill learning. These interactive strategies improve the user–device interaction generating an active commitment during the therapy and contributing to the neuroplasticity induction. Well-designed game mechanics and audiovisual feedback strategies are relevant to provide a pleasant experience and augment patient engagement and adherence. In this sense, this chapter defines serious games and describes the design principles for their implementation in assistance therapy. Besides, it provides evidence about in-game strategies in lower-limb rehabilitation and introduces a serious game prototype for ankle rehabilitation after stroke with a variable stiffness exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Bejarano, S. Maggioni, L. De Rijcke, C. Cifuentes, D. Reinkensmeyer, Robot-Assisted Rehabilitation Therapy: Recovery Mechanisms and Their Implications for Machine Design. Biosystems & Biorobotics (Springer, Berlin, 2016), pp. 197–223

    Google Scholar 

  2. J. Laut, M. Porfiri, P. Raghavan, The present and future of robotic technology in rehabilitation. Curr. Phys. Med. Rehabil. Rep. 4(4), 312–319 (2016)

    Article  Google Scholar 

  3. S. Sierra Marín, L. Arciniegas Maya, F. Ballen Moreno, D. Gomez, M. Munera, C.A. Cifuentes, Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications (Springer, Berlin, 2020), pp. 67–93

    Google Scholar 

  4. L. Bueno, F. Brunetti, A. Frizera, J.L. Pons, J.C. Moreno, E. Rocon, J.M. Carmena, E. Farella, L. Benini, Human–Robot Cognitive Interaction, chap. 4 (Wiley, Hoboken, 2008), pp. 87–125

    Google Scholar 

  5. E.M. Sluijs, G.J. Kok, J. van der Zee, Patient compliance is of considerable cause treatment effects partly depend importance in physical therapy be- on it. The efficacy of therapeutic exer. Phys. Ther. 73(1), 771–786 (1993)

    Google Scholar 

  6. D. Gomez, M. Pinto, F. Ballen Moreno, M. Munera, C. Cifuentes G., Therapy with t-flex ankle-exoskeleton for motor recovery: a case study with a stroke survivor, in The 8th IEEE RAS/EMBS International Conference on Biomedical Robotics & Biomechatronics BIOROB (2020)

    Google Scholar 

  7. R. Colombo, F. Pisano, A. Mazzone, C. Delconte, S. Micera, M.C. Carrozza, P. Dario, G. Minuco, Design strategies to improve patient motivation during robot-aided rehabilitation. J. NeuroEng. Rehabil. 4, 1–12 (2007)

    Article  Google Scholar 

  8. M. Ma, K. Bechkoum, Serious games for movement therapy after stroke, in Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics (2008), pp. 1872–1877

    Google Scholar 

  9. P. Rego, P.M. Moreira, L.P. Reis, Serious games for rehabilitation: a survey and a classification towards a taxonomy, in Proceedings of the 5th Iberian Conference on Information Systems and Technologies, CISTI 2010 (2010)

    Google Scholar 

  10. A. Pino, D. Gomez, M. Munera, C.A. Cifuentes, Visual feedback strategy based on serious games for therapy with t-flex ankle exoskeleton, in The International Symposium on Wearable Robotics (WeRob2020) and WearRAcon Europe (Springer, Berlin, 2020)

    Google Scholar 

  11. N. Barrett, I. Swain, C. Gatzidis, C. Mecheraoui, The use and effect of video game design theory in the creation of game-based systems for upper limb stroke rehabilitation. J. Rehabil. Assist. Technol. Eng. 3, 205566831664364 (2016)

    Google Scholar 

  12. R. Dishman, W. Ickes, Self-motivation and adherence to therapeutic exercise. J. Behav. Med. 4, 421–38 (1982)

    Article  Google Scholar 

  13. K. Lohse, N. Shirzad, A. Verster, N. Hodges, H.F. Van Der Loos, Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J. Neurol. Phys. Ther. 37(4), 166–175 (2013)

    Article  Google Scholar 

  14. S.C. Howes, D.K. Charles, J. Marley, K. Pedlow, S.M. McDonough, Gaming for health: systematic review and meta-analysis of the physical and cognitive effects of active computer gaming in older adults. Phys. Ther. 97(12), 1122–1137 (2017)

    Article  Google Scholar 

  15. M.F. Levin, H. Sveistrup, S.K. Subramanian, Feedback and virtual environments for motor learning and rehabilitation. Schedae 1, 19–36 (2010)

    Google Scholar 

  16. N.C. Nilsson, S. Serafin, R. Nordahl, Gameplay as a source of intrinsic motivation for individuals in need of ankle training or rehabilitation. Presence Teleop. Virt. Environ. 21(1), 69–84 (2012)

    Article  Google Scholar 

  17. M.A. Dimyan, L.G. Cohen, Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7(2), 76–85 (2011)

    Article  Google Scholar 

  18. L. Carey, A. Walsh, A. Adikari, P. Goodin, D. Alahakoon, D. De Silva, K.L. Ong, M. Nilsson, L. Boyd, Finding the intersection of neuroplasticity, stroke recovery, and learning: scope and contributions to stroke rehabilitation. Neural Plast. 2019, 1–15 (2019)

    Google Scholar 

  19. L.M. Muratori, E.M. Lamberg, L. Quinn, S.V. Duff, Applying principles of motor learning and control to upper extremity rehabilitation. J. Hand Ther. 26(2), 94–103 (2013)

    Article  Google Scholar 

  20. A. Kliem, A. Wiemeyer, Comparison of a traditional and a video game based balance training program. Int. J. Comput. Sci. Sport 9(2010), 80–92 (2010)

    Google Scholar 

  21. R.A. Schmidt, T.D. Lee, Motor Learning and Performance. Human Kinetics, 5th edn (2014)

    Google Scholar 

  22. S.C. Cramer, J.D. Riley, Neuroplasticity and brain repair after stroke. Curr. Opin. Neurol. 21(1), 76–82 (2008)

    Article  Google Scholar 

  23. H. Masaki, W. Sommer, Cognitive neuroscience of motor learning and motor control. J. Phys. Fitness Sports Med. 1(3), 369–380 (2012)

    Article  Google Scholar 

  24. A.C.B. Gonçalves, W.M. Dos Santos, L.J. Consoni, A.A. Siqueira, Serious games for assessment and rehabilitation of ankle movements, in SeGAH 2014 - IEEE 3rd International Conference on Serious Games and Applications for Health, Books of Proceedings (2014)

    Google Scholar 

  25. A.M. Salazar, A.B. Ortega, K.G. Velasco, A.A. Pliego, Mechatronic integral ankle rehabilitation system: ankle rehabilitation robot, serious game, and facial expression recognition system, in Advanced Topics on Computer Vision, Control and Robotics in Mechatronics (Springer, Berlin, 2018), pp. 291–320

    Google Scholar 

  26. J. Lobo-Prat, P.N. Kooren, A.H. Stienen, J.L. Herder, B.F. Koopman, P.H. Veltink, Non-invasive control interfaces for intention detection in active movement-assistive devices. J. NeuroEng. Rehabil. 11(168), 1–22 (2014)

    Google Scholar 

  27. A.B. Farjadian, M. Nabian, A. Hartman, S.C. Yen, B. Nasseroleslami, Visuomotor control of ankle joint using position vs. force. Eur. J. Neurosci. 50(8), 3235–3250 (2019)

    Google Scholar 

  28. K. Carr, N. Zachariah, P. Weir, N. McNevin, An examination of feedback use in rehabilitation settings. Crit. Rev. Phys. Rehabil. Med. 23(1–4), 147–160 (2011)

    Article  Google Scholar 

  29. P. van Vliet, G. Wulf, Extrinsic feedback for motor learning after stroke: what is the evidence?. Disabil. Rehabil. 28(13–14), 831–840 (2006)

    Article  Google Scholar 

  30. J.W. Burke, M.D. McNeill, D.K. Charles, P.J. Morrow, J.H. Crosbie, S.M. McDonough, Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25(12), 1085–1099 (2009)

    Article  Google Scholar 

  31. S.T. Smith, D. Schoene, The use of exercise-based videogames for training and rehabilitation of physical function in older adults: current practice and guidelines for future research. Aging Health 8(3), 243–252 (2012)

    Article  Google Scholar 

  32. L. Nacke, A. Drachen, S. Gobel, Methods for evaluating gameplay experience in a serious gaming context. Electron. J. e-Learn. 10(2), 172–184 (2012)

    Google Scholar 

  33. J. Moizer, J. Lean, E. Dell’Aquila, P. Walsh, A.A. Keary, D. O’Byrne, A. Di Ferdinando, O. Miglino, R. Friedrich, R. Asperges, L.S. Sica, An approach to evaluating the user experience of serious games. Comput. Edu. 136, 141–151 (2019)

    Article  Google Scholar 

  34. I. Mayer, G. Bekebrede, C. Harteveld, H. Warmelink, Q. Zhou, T. Van Ruijven, J. Lo, R. Kortmann, I. Wenzler, The research and evaluation of serious games: toward a comprehensive methodology. British J. Edu. Technol. 45(3), 502–527 (2014)

    Article  Google Scholar 

  35. G. Asín-Prieto, A. Martínez-Expósito, F.O. Barroso, E.J. Urendes, J. Gonzalez-Vargas, F.S. Alnajjar, C. González-Alted, S. Shimoda, J.L. Pons, J.C. Moreno, Haptic adaptive feedback to promote motor learning with a robotic ankle exoskeleton integrated with a video game. Front. Bioeng. Biotechnol. 8, 1–15 (2020)

    Article  Google Scholar 

  36. S.N. Jeon, J. H. Choi, The effects of ankle joint strategy exercises with and without visual feedback on the dynamic balance of stroke patients. J. Phys. Ther. Sci. 27(8), 2515–2518 (2015)

    Article  Google Scholar 

  37. N. Arene, J. Hidler, Understanding motor impairment in the paretic lower limb after a stroke: a review of the literature. Top. Stroke Rehabil. 16(5), 346–356 (2009)

    Article  Google Scholar 

  38. A.F. Thilmann, S.J. Fellows, H.F. Ross, Biomechanical changes at the ankle joint after stroke. J. Neurol. Neurosurg. Psychiatry 54(2), 134–139 (1991)

    Article  Google Scholar 

  39. Y. Ren, Y.N. Wu, C.Y. Yang, T. Xu, R.L. Harvey, L.Q. Zhang, Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 589–596 (2017)

    Article  Google Scholar 

  40. Academia de Unity — Escuela de videojuegos — Hektor Profe. https://www.hektorprofe.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cifuentes .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pino, A., Múnera, M., Cifuentes, C.A. (2022). Serious Games in Robot-Assisted Rehabilitation Therapy for Neurological Patients. In: Interfacing Humans and Robots for Gait Assistance and Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-030-79630-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79630-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79629-7

  • Online ISBN: 978-3-030-79630-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics