Skip to main content

A Numerical Study on the Response of the Oscillation Roller-Soil Interaction System

  • Chapter
  • First Online:
Dynamics and Control of Advanced Structures and Machines

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 156))

  • 536 Accesses

Abstract

In this contribution, the influence of the operating speed of a specific oscillation roller on the achieved soil compaction and the resulting response behavior of the roller is examined. The main objective is the further validation of an experimentally found Continuous Compaction Control (CCC) parameter for dynamic rollers with an oscillatory drum. The study is based on a recently developed two-dimensional numerical model of the oscillation roller-granular soil interaction system, in which the intergranular strain enhanced hypoplastic constitutive model is implemented to simulate the compaction process. The effect of one roller pass at standard excitation frequency on an initially very loose soil is investigated for six roller speeds in terms of the reduction of the void ratio. Moreover, the influence of the resulting predicted soil compaction on the drum response is analyzed in the time and frequency domain. A relationship between the computed compaction indicator and roller speed is established. It is shown that the roller speed has a significant effect on the achieved soil compaction both in terms of the compaction degree and the depth of influence. The results confirm that the CCC indicator under consideration qualitatively reflects the soil stiffness characterized by the predicted void ratio distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam, D.: Continuous Compaction Control (CCC) with vibrating rollers (in German) (Flächendeckende Dynamische Verdichtungskontrolle (FDVK) mit Vibrationswalzen). Ph.D. thesis, TU Wien (1996)

    Google Scholar 

  2. Anderegg, R., Kaufmann, K.: Intelligent compaction with vibratory rollers: Feedback control systems in automatic compaction and compaction control. Transportation Research Record 1868, 124–134 (2004)

    Article  Google Scholar 

  3. Erdmann, P., Adam, D.: Numerical simulation of dynamic soil compaction with vibratory compaction equipment. In: Brandl, H., Adam, D. (eds.) Proceeding XV Danube—European Conference on Geotechnical Engineering (DECGE 2014), pp. 243–248. Vienna, Austria (2014)

    Google Scholar 

  4. Grabe, J.: Continuous inverse calculation of soil stiffness from the dynamic behavior of a driving vibratory roller (in German) (Fortlaufend inverse Berechnung der Bodensteifigkeit aus dem Schwingungsverhalten einer fahrenden Vibrationswalze). Archive of Applied Mechanics 63(7), 472–478 (1993)

    Google Scholar 

  5. Gudehus, G., Amorosi, A., Gens, A., Herle, I., Kolymbas, D., Mašín, D., Muir Wood, D., Niemunis, A., Nova, R., Pastor, M., Tamagnini, C., Viggiani, G.: The soilmodels.info project. Int. J. Numer. Anal. Methods Geomech. 32(12) (2008)

    Google Scholar 

  6. Hamm A.G.: Data sheet HD+ 90 VO (2011)

    Google Scholar 

  7. Heiniger, R.: Contributions to the numerical simulation of the compaction of non-cohesive soils with oscillation rollers (in German) (Beiträge zur numerischen Simulation der Verdichtung von nichtbindigen Böden mit Oszillationswalzen). Master thesis, University of Innsbruck (2018)

    Google Scholar 

  8. Herle, I., Gudehus, G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-frictional Materials 4(5), 461–486 (1999)

    Article  Google Scholar 

  9. Kelm, M.: Numerical simulation of the compaction of granular soils by vibratory rollers (in German) (Nummerische Simulation der Verdichtung rolliger Böden mittels Vibrationswalzen). Ph.D. thesis (2003). Publication of the Institute of Geotechnical and Construction Engineering, 6. Technische Universität Hamburg-Harburg (2004)

    Google Scholar 

  10. Kenneally, B., Musimbi, O.M., Wang, J., Mooney, M.A.: Finite element analysis of vibratory roller response on layered soil systems. Computers and Geotechnics 67, 73–82 (2015)

    Article  Google Scholar 

  11. Kopf, F.: Continuous Compaction Control (CCC) during compaction of soil by means of dynamic rollers with different kinds of excitation (in German) (Flächendeckende Dynamische Verdichtungskontrolle (FDVK) bei der Verdichtung von Böden durch dynamische Walzen mit unterschiedlichen Anregungsarten). Ph.D. thesis, TU Wien (1999)

    Google Scholar 

  12. Lawrence, J.D.: A Catalog of Special Plane Curves. Dover Publications (1972)

    Google Scholar 

  13. Mašín, D.: Clay and sand hypoplasticity UMAT and Plaxis implementations, including UMAT-Plaxis interface. https://soilmodels.com

  14. Mašín, D.: Modelling of Soil Behaviour with Hypoplasticity. Springer Series in Geomechanics and Geoengineering. Springer International Publishing (2019)

    Google Scholar 

  15. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-frictional Materials 2(4), 279–299 (1997)

    Article  Google Scholar 

  16. Paulmichl, I.: Numerical modeling approaches to the oscillation roller-subsoil interaction problem. Ph.D. thesis, University of Innsbruck (2019)

    Google Scholar 

  17. Paulmichl, I., Adam, C., Adam, D.: Analytical modeling of the stick-slip motion of an oscillation drum. Acta Mechanica 230(9), 3103–3126 (2019)

    Article  MathSciNet  Google Scholar 

  18. Paulmichl, I., Adam, C., Adam, D.: Parametric study of the compaction effect and the response of an oscillation roller. In: Proceedings of the Institution of Civil Engineers—Geotechnical Engineering, vol. 173(4), pp. 285–301 (2020)

    Google Scholar 

  19. Paulmichl, I., Adam, C., Adam, D., Völkel, W.: Assessment of a compaction indicator for oscillation rollers with a lumped parameter model. In: Proceedings of the Institution of Civil Engineers—Geotechnical Engineering, vol. 173(4), pp. 302–318 (2020)

    Google Scholar 

  20. Paulmichl, I., Furtmüller, T., Adam, C., Adam, D.: Numerical simulation of the compaction effect and the dynamic response of an oscillation roller based on a hypoplastic soil model. Soil Dyn. Earthq. Eng. 132, 106057 (2020)

    Google Scholar 

  21. Pietzsch, D., Poppy, W.: Simulation of soil compaction with vibratory rollers. Journal of Terramechanics 29(6), 585–597 (1992)

    Article  Google Scholar 

  22. Pistrol, J.: Compaction with oscillating rollers. Motion behaviour, roller integrated compaction control and assessment of wear (in German) (Verdichtung mit Oszillationswalzen - Bewegungsverhalten, walzenintegrierte Verdichtungskontrolle und Verschleißbeurteilung). Ph.D. thesis, TU Wien (2016)

    Google Scholar 

  23. Smith, M.: ABAQUS 2016 Documentation Collection. Simulia (2015)

    Google Scholar 

  24. von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-frictional Materials 1(3), 251–271 (1996)

    Article  Google Scholar 

  25. Yoo, T.S., Selig, E.T.: Dynamics of vibratory-roller compaction. ASCE J. Geotech. Eng. Div. 105, 1211–1231 (1979)

    Google Scholar 

Download references

Acknowledgements

The financial support granted by the manufacturer of compaction equipment HAMM AG, Hammstraße 1, 95643 Tirschenreuth, Germany, made the research on oscillation rollers possible [16] and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paulmichl, I., Adam, C., Adam, D. (2022). A Numerical Study on the Response of the Oscillation Roller-Soil Interaction System. In: Irschik, H., Krommer, M., Matveenko, V.P., Belyaev, A.K. (eds) Dynamics and Control of Advanced Structures and Machines. Advanced Structured Materials, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-030-79325-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79325-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79324-1

  • Online ISBN: 978-3-030-79325-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics