Skip to main content

Foliar Applications of Salicylic Acid for Improving Crop Tolerance to Drought Stress: A Review

  • Chapter
  • First Online:

Abstract

Salicylic acid (SA) is a multifaceted plant growth modulator that is reported to engage in plant reaction to stresses. Drought is a common environmental constraint of crop growth, influencing global agricultural productivity. Foliar applications of SA have been recorded to improve growth under drought stress in major crops such as cereals (wheat, barley, maize, and rice), oilseed crops (sunflower, safflower, sesame, and flax), legumes (beans, mungbeans, and crown vetch), vegetable crops (cucumber, okra, Chinese cabbage, fennel, and strawberry), medicinal plants (basil and black cumin), some ornamental and non-woody fruit plants, along with other herbs. Foliar applications of SA can reduce the toxic effects of oxidative stress provoked by drought through different mechanisms. First, SA may act by boosting osmolytes, including total soluble sugars and proline, thus maintaining the water status of plants under drought stress. Second, SA may act by improving the enzymatic activity of peroxidase, superoxide dismutase, and catalase (common antioxidant enzymes) often manifested with lower levels of lipid peroxidation, lipoxygenase activity, and H2O2 production. Third, SA may act by maintaining the total chlorophyll content of plants, thus preserving the photosynthetic apparatus of plants. Low concentrations of SA are generally beneficial, but high concentrations can be either detrimental or of no benefit. Recent reports on the improvement of crop tolerance to drought stress with foliar or applications of SA and proposed metabolic pathways for induced tolerance by SA treatments are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antonić, D., Milošević, S., Cingel, A., Lojić, M., Trifunović-Momčilov, M., Petrić, M., Subotić, A., & Simonović, A. (2016). Effects of exogenous salicylic acid on Impatiens walleriana L. grown in vitro under polyethylene glycol-imposed drought. South African Journal of Botany, 105, 226–233.

    Article  Google Scholar 

  • Askari, E., & Ehsanzadeh, P. (2015). Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare mill.) genotypes. Acta Physiologiae Plantarum, 37(2), 4.

    Article  Google Scholar 

  • Bakry, B. A., El-Hariri, D. M., Sadak, M. S., & El-Bassiouny, H. M. S. (2012). Drought stress mitigation by foliar application of salicylic acid in two linseed varieties grown under newly reclaimed sandy soil. Journal of Applied Sciences Research, 8(7), 3503–3514.

    CAS  Google Scholar 

  • Baninasab, B. (2010). Induction of drought tolerance by salicylic acid in seedlings of cucumber (Cucumis sativus L.). Journal of Horticultural Science and Biotechnology, 85(3), 191–196.

    Article  CAS  Google Scholar 

  • Bijanzadeh, E., Naderi, R., & Egan, T. P. (2019). Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L.) hybrids. Journal of Plant Nutrition, 42(13), 1483–1495.

    Article  CAS  Google Scholar 

  • Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11), 1159–1168.

    Article  Google Scholar 

  • Cha, Y. R., Kim, S., Lee, J. H., & Shim, I. S. (2020). Enhanced drought tolerance in Chinese cabbage (Brassica campestris L.) seedlings upon pretreatment with exogenous salicylic acid. Horticultural Science and Technology, 38(1), 9–20.

    CAS  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30(3), 239–264.

    Article  CAS  PubMed  Google Scholar 

  • Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S. A. (2019). Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Industrial Crops and Products, 134, 168–176.

    Article  CAS  Google Scholar 

  • Damalas, C. A. (2019). Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Scientia Horticulturae, 246, 360–365.

    Article  CAS  Google Scholar 

  • El-Tohamy, W. A. K., El-Abagy, H. M., Badr, M. A. A., & Gruda, N. (2018). Effect of exogenous salicylic acid on the response of snap bean (Phaseolus vulgaris L.) and Jerusalem artichoke (Helianthus tuberosus L.) to drought stress. Acta Scientiarum Polonorum. Hortorum Cultus, 17(4), 81.

    Article  Google Scholar 

  • Estaji, A., & Niknam, F. (2020). Foliar salicylic acid spraying effect on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management, 234, 106116.

    Article  Google Scholar 

  • Farjam S., Siosemardeh A., Kazemi-Arbat H., Yarnia M., & Rokhzadi, A. (2014). Response of chickpea (Cicer arietinum L.) to exogenous salicylic acid and ascorbic acid under vegetative and reproductive drought stress conditions. Journal of Applied Botany and Food Quality, 87, 80.

    Google Scholar 

  • Farooq, M., Basra, S. M. A., Wahid, A., Ahmad, N., & Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195(4), 237–246.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., & Aziz, T. (2010). Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196(5), 336–345.

    Article  CAS  Google Scholar 

  • Fayez, K. A., & Bazaid, S. A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13(1), 45–55.

    Article  Google Scholar 

  • Ghaderi, N., Normohammadi, S., & Javadi, T. (2015). Morpho-physiological responses of strawberry (Fragaria × ananassa) to exogenous salicylic acid application under drought stress. Journal of Agricultural Science and Technology, 17, 167.

    Google Scholar 

  • Habibi, G. (2012). Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis, 56(1), 57–63.

    Google Scholar 

  • Horváth, E., Pál, M., Szalai, G., Páldi, E., & Janda, T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum, 51(3), 480–487.

    Article  Google Scholar 

  • Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., & Cheema, M. A. (2008). Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal of Agronomy and Crop Science, 194(3), 193–199.

    Article  CAS  Google Scholar 

  • Jiang, M. M., Xu, S., Xia, B., Peng, F., & Wang, R. (2012). Effects of exogenous calcium chloride, salicylic acid and nitric oxide on drought resistance of Lycoris radiata under drought stress. Plant Physiology Journal, 9, 909–916.

    Google Scholar 

  • Kabiri, R., Nasibi, F., & Farahbakhsh, H. (2014). Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protection Science, 50(1), 43–51.

    Article  Google Scholar 

  • Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., & Acet, T. (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation, 64(1), 27–37.

    Article  CAS  Google Scholar 

  • Kang, G., Li, G., Xu, W., Peng, X., Han, Q., Zhu, Y., & Guo, T. (2012). Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Journal of Proteome Research, 11(12), 6066–6079.

    Article  CAS  PubMed  Google Scholar 

  • Kang, G. Z., Li, G. Z., Liu, G. Q., Xu, W., Peng, X. Q., Wang, C. Y., Zhu, Y. J., & Guo, T. C. (2013). Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia Plantarum, 57(4), 718–724.

    Article  CAS  Google Scholar 

  • Karamian, R., Ghasemlou, F., & Amiri, H. (2020). Physiological evaluation of drought stress tolerance and recovery in Verbascum sinuatum plants treated with methyl jasmonate, salicylic acid and titanium dioxide nanoparticles. Plant Biosystems 154(3), 277–287.

    Article  Google Scholar 

  • Kareem, F., Rihan, H., & Fuller, M. P. (2019). The effect of exogenous applications of salicylic acid on drought tolerance and up-regulation of the drought response regulon of Iraqi wheat. Journal of Crop Science and Biotechnology, 22(1), 37–45.

    Article  Google Scholar 

  • Khan, N., Zandi, P., Ali, S., Mehmood, A., Adnan Shahid, M., & Yang, J. (2019). Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annus. Frontiers in Microbiology, 10, 2222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Yu, J., Peng, Y., & Huang, B. (2017). Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiologia Plantarum, 159(1), 42–58.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, L. S., Nobre, D. A. C., & Macedo, W. R. (2019). Effect of foliar application of 24-epibrassinolide and salicylic acid on common bean plants grown under drought stress. Emirates Journal of Food and Agriculture, 31(8), 635–644.

    Google Scholar 

  • Lu, J., Carbone, G. J., Huang, X., Lackstrom, K., & Gao, P. (2020). Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016. Agricultural and Forest Meteorology, 292, 108124.

    Article  Google Scholar 

  • Ma, L. Y., Chen, N. L., Han, G. J., & Li, L. (2017). Effects of exogenous salicylic acid on seed germination and physiological characteristics of Coronilla varia under drought stress. Chinese Journal of Applied Ecology, 28, 3274–3280.

    PubMed  Google Scholar 

  • Majeed, S., Akram, M., Latif, M., Ijaz, M., & Hussain, M. (2016). Mitigation of drought stress by foliar application of salicylic acid and potassium in mung bean (Vigna radiata L.). Legume Research, 39(2), 208–214.

    Google Scholar 

  • Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munir, M., Amjad, M., Ziaf, K., & Ahmad, A. (2016). Improving okra productivity by mitigating drought through foliar application of salicylic acid. Pakistan Journal of Agricultural Sciences, 53(4), 879.

    Article  Google Scholar 

  • Nazar, R., Umar, S., & Khan, N. A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3), e1003751.

    Article  Google Scholar 

  • Németh, M., Janda, T., Horváth, E., Páldi, E., & Szalai, G. (2002). Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162(4), 569–574.

    Article  Google Scholar 

  • Noreen, S., Fatima, K., Athar, H. U. R., Ahmad, S., & Hussain, K. (2017). Enhancement of physio-biochemical parameters of wheat through exogenous application of salicylic acid under drought stress. Journal of Animal and Plant Science, 27(1), 153–163.

    CAS  Google Scholar 

  • Osama, S., El Sherei, M., Al-Mahdy, D. A., Bishr, M., & Salama, O. (2019). Effect of salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Industrial Crops and Products, 134, 1–10.

    Article  CAS  Google Scholar 

  • Pasala, R. K., Khan, M. I. R., Minhas, P. S., Farooq, M. A., Sultana, R., Per, T. S., Deokate, P. P., Khan, N. A., & Rane, J. (2016). Can plant bio-regulators minimize crop productivity losses caused by drought, heat and salinity stress? An integrated review. Journal of Applied Botany and Food Quality, 89, 113.

    Google Scholar 

  • Pasternak, T., Groot, E. P., Kazantsev, F. V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V., Palme, K., & Mironova, V. V. (2019). Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiology, 180(3), 1725–1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourghasemian, N., Moradi, R., Naghizadeh, M., & Landberg, T. (2020). Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract. Agricultural Water Management, 231, 105997.

    Article  Google Scholar 

  • Rao, S. R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I., & Sher, A. (2012). Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. Journal of Animal and Plant Sciences, 22(3), 768–772.

    CAS  Google Scholar 

  • Richards, R. A., Rebetzke, G. J., Watt, M., Condon, A. T., Spielmeyer, W., & Dolferus, R. (2010). Breeding for improved water productivity in temperate cereals: Phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology, 37(2), 85–97.

    Article  Google Scholar 

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321–3338.

    Article  CAS  PubMed  Google Scholar 

  • Saruhan, N., Saglam, A., & Kadioglu, A. (2012). Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiologiae Plantarum, 34(1), 97–106.

    Article  CAS  Google Scholar 

  • Shan, C., & Wang, Y. (2017). Exogenous salicylic acid-induced nitric oxide regulates leaf water condition through root osmoregulation of maize seedlings under drought stress. Brazilian Journal of Botany, 40(2), 591–597.

    Article  Google Scholar 

  • Siddique, M. S., Ghulam, Q., Gill, S. M., Tariq, S., Ahmed, Z. I., & Riffat, H. (2020). Bio-invigoration of rhizobacteria supplemented with exogenous salicylic acid and glycine betaine enhanced drought tolerance in sunflower. International Journal of Agriculture and Biology, 23(5), 869–881.

    CAS  Google Scholar 

  • Singh, S., Prasad, S., Yadav, V., Kumar, A., Jaiswal, B., Kumar, A., Khan, N. A., & Dwivedi, D. K. (2018). Effect of drought stress on yield and yield components of rice (Oryza sativa L.) genotypes. International Journal of Current Microbiology and Applied Sciences, 7, 2752–2759.

    Google Scholar 

  • Sohag, A. A. M., Tahjib-Ul-Arif, M., Brestic, M., Afrin, S., Sakil, M. A., Hossain, M. T., Hossain, M. A., & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant, Soil and Environment, 66(1), 7–13.

    Article  Google Scholar 

  • Stamm, P., Ramamoorthy, R., & Kumar, P. P. (2011). Feeding the extra billions: Strategies to improve crops and enhance future food security. Plant Biotechnology Reports, 5(2), 107–120.

    Article  Google Scholar 

  • Tayyab, N., Naz, R., Yasmin, H., Nosheen, A., Keyani, R., Sajjad, M., Hassan, M. N., & Roberts, T. H. (2020). Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One, 15(5), e0232269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefzadeh Najafabadi, M., & Ehsanzadeh, P. (2017). Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica, 55, 611–622.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos A. Damalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damalas, C.A., Koutroubas, S.D. (2021). Foliar Applications of Salicylic Acid for Improving Crop Tolerance to Drought Stress: A Review. In: Hayat, S., Siddiqui, H., Damalas, C.A. (eds) Salicylic Acid - A Versatile Plant Growth Regulator. Springer, Cham. https://doi.org/10.1007/978-3-030-79229-9_5

Download citation

Publish with us

Policies and ethics