Skip to main content

Role of Salicylic Acid in Pre- and Post-Harvest Attributes in Horticulture

  • Chapter
  • First Online:
Salicylic Acid - A Versatile Plant Growth Regulator

Abstract

Salicylic acid (SA) is the seventh class of phytohormones after the worldwide acceptance of brassinosteroids as the sixth and five other classical ones. It is a beta hydroxy phenolic acid and is represented by the analogues; salicylic acid, acetyl salicylic acid and methyl salicylic acid. It is basically a defence related hormone and is primarily responsible for the development of systemic resistance against pathogens and tolerance to abiotic stress in plants. Under normal growth conditions, SA regulates several physiological responses such as stomatal movements, pigment accumulation, photosynthesis, ethylene biosynthesis, secondary metabolite production, heat production, enzyme activities, abscission reversal, nutrient uptake, flower induction and overall growth and development of the plant. Exogenous application of SA also affects the growth, physiology, yield, and quality of the produce in several fruit crops, grown under different environmental conditions. Besides this, SA also affects the post-harvest attributes of the fruits; maintenance of quality, prevention of fruit decay and pathogen attack, and increase in the shelf life of the fruit. All this information is comprehensively presented in this chapter, besides an outline of the scheme of SA biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aazami, M. A., & Mahna, N. (2017). Salicylic acid affects the expression of VvCBF4 gene in grapes subjected to low temperature. Journal of Genetic Engineering and Biotechnology, 15, 257–261.

    PubMed  PubMed Central  Google Scholar 

  • Abbasi, P. A., Ali, S., Braun, G., Bevis, E., & Fillmore, S. (2019). Reducing apple scab and frogeye or black rot infections with salicylic acid or its analogue on field-established apple trees. Canadian Journal of Plant Pathology, 41(3), 345–354.

    CAS  Google Scholar 

  • Aghaeifard, M., Babalar, M., Fallahi, E., & Ahmadi, A. (2016). Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria × Ananassa Duch.) cv. Camarosa. Journal of Plant Nutrition, 39, 1821–1829.

    CAS  Google Scholar 

  • Alali, A. A., Awad, M. A., Al-Qurashi, A. D., & Mohamed, S. A. (2018). Postharvest gum Arabic and salicylic acid dipping affect quality and biochemical changes of ‘Grand Nain’ bananas during shelf life. Scientia Horticulturae, 237, 51–58.

    CAS  Google Scholar 

  • Ali, B. (2017). Salicylic acid induced antioxidant system enhances the tolerance to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Indian Journal of Plant Physiology, 22, 178–189.

    CAS  Google Scholar 

  • Ali, B. (2021). Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. https://doi.org/10.1016/j.bcab.2020.101884

  • Alrashdi, A. M. A., Al-Qurashi, A. D., Awad, M. A., Mohamed, S. A., & Al-Rashdi, A. A. (2017). Quality, antioxidant compounds, antioxidant capacity and enzymes activity of ‘El-Bayadi’ table grapes at harvest as affected by preharvest salicylic acid and gibberellic acid spray. Scientia Horticulturae, 220, 243–249.

    CAS  Google Scholar 

  • Al-Saleh, M. A., Saleh, A. A., & Ibrahim, Y. E. (2016). Integration of Pseudomonas fluorescens and salicylic acid improves citrus canker disease management caused by Xanthomonas citri subsp citri-A. Archives of Phytopathology and Plant Protection, 121, 863–872.

    Google Scholar 

  • Aminifard, M. H., Mohammadi, S., & Fatemi, H. (2013). Inhibition of green mould in blood orange (Citrus sinensis var. Moro) with salicylic acid treatment. Archives of Phytopathology and Plant Protection, 46, 695–703.

    CAS  Google Scholar 

  • Asghari, M., & Hasanlooe, A. R. (2015). Interaction effects of salicylic acid and methyl jasmonate on total antioxidant content, catalase and peroxidase enzymes activity in “Sabrosa” strawberry fruit during storage. Scientia Horticulturae, 197, 490–495.

    CAS  Google Scholar 

  • Baswal, A. K., Dhaliwal, H. S., Singh, Z., Mahajan, B. V. C., & Gill, K. S. (2020). Postharvest application of methyl jasmonate, 1-methylcyclopropene and salicylic acid extends the cold storage life and maintain the quality of ‘Kinnow’ mandarin (Citrus nobilis L. X C. deliciosa L.) fruit. Postharvest Biology and Technology, 161, 111064.

    CAS  Google Scholar 

  • Cao, J. K., Yan, J. Q., Zhao, Y. M., & Jiang, W. B. (2013). Effects of four pre-harvest foliar sprays with β-aminobutyric acid or salicylic acid on the incidence of post-harvest disease and induced defence responses in jujube (Zizyphus jujuba Mill.) fruit after storage. The Journal of Horticultural Science and Biotechnology, 88, 338–344.

    CAS  Google Scholar 

  • Chen, J.-Y., Wen, P.-F., Kong, W.-F., Pan, Q.-H., Zhan, J.-C., Li, J.-M., Wan, S.-B., & Huang, W.-D. (2006). Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biology and Technology, 40, 64–72.

    CAS  Google Scholar 

  • Chen, L., Zhao, X., Wu, J., He, Y., & Yang, H. (2020a). Metabolic analysis of salicylic acid-induced chilling tolerance of banana using NMR. Food Research International, 128, 108796.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Sun, J., Lin, H., Lin, M., Lin, Y., Wang, H., & Hung, Y.-C. (2020b). Salicylic acid reduces the incidence of Phomopsis longanae Chi infection in harvested longan fruit by affecting the energy status and respiratory metabolism. Postharvest Biology and Technology, 160, 111035.

    CAS  Google Scholar 

  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signalling and Behaviour, 4(6), 493–496.

    CAS  Google Scholar 

  • Cova, V., Paris, R., Toller, C., Patocchi, A., Velasco, R., & Komjanc, M. (2017). Apple genes involved in the response to Venturia inaequalis and salicylic acid treatment. Scientia Horticulturae, 226, 157–172.

    CAS  Google Scholar 

  • Cui, K., Shu, C., Zhao, H., Fan, X., Cao, J., & Jiang, W. (2020). Preharvest chitosan oligochitosan and salicylic acid treatments enhance phenol metabolism and maintain the postharvest quality of apricots (Prunus armeniaca L.). Scientia Horticulturae, 267, 109334.

    CAS  Google Scholar 

  • Dokhanieha, A. Y., Aghdam, M. S., Fard, J. R., & Hassanpour, H. (2013). Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Scientia Horticulturae, 154, 31–36.

    Google Scholar 

  • Ezzat, A., Ammar, A., Szabó, Z., & Holb, I. J. (2017). Salicylic acid treatment saves quality and enhances antioxidant properties of apricot fruit. Horticulture Science, (Prague), 44, 73–81.

    CAS  Google Scholar 

  • Faghih, S., Ghobadi, C., & Zarei, A. (2017). Response of strawberry plant cv. ‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. Journal of Plant Growth Regulation, 36, 651–659.

    CAS  Google Scholar 

  • Feng, J., Zhang, M., Yang, K.-N., & Zheng, C.-Z. (2020). Salicylic acid-primed defence response in octoploid strawberry ‘Benihoppe’ leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesis-related genes. BMC Plant Biology, 20, 149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haider, S.-A., Ahmad, S., Khan, A. S., Anjum, M. A., Nasir, M., & Naz, S. (2020). Effects of salicylic acid on postharvest fruit quality of “Kinnow” mandarin under cold storage. Scientia Horticulturae, 259, 108843.

    CAS  Google Scholar 

  • Hajilou, J., & Fakhimrezaei, S. (2013). Effects of post-harvest calcium chloride or salicylic acid treatments on the shelf-life and quality of apricot fruit. The Journal of Horticultural Science and Biotechnology, 88(5), 600–604. https://doi.org/10.1080/14620316.2013.11513012

    Article  CAS  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.

    CAS  Google Scholar 

  • Hayat, S., Ali, B., & Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plant. In S. Hayat & A. Ahmad (Eds.), Salicylic acid – A plant hormone (pp. 1–14). Springer. https://doi.org/10.1007/1-4020-5184-0_1

    Chapter  Google Scholar 

  • Hayat, S., Fariduddin, Q., Ali, B., & Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53, 433–437. https://doi.org/10.1556/AAgr.53.2005.4.9

    Article  CAS  Google Scholar 

  • Helaly, M. N., El-Sheery, N. I., El-Hoseiny, H., Rastogi, A., Kalaji, H. M., & Zabochnicka-Świątek, M. (2018). Impact of treated waste water and salicylic acid on physiological performance, malformation and yield of two mango cultivars. Scientia Horticulturae, 233, 159–177.

    Google Scholar 

  • Hendricks, D., Hoffman, E., & Lötze, E. (2015). Improving fruit quality and tree health of Prunus persica cv. ‘Sandvliet’ through combined mineral and salicylic acid foliar applications. Scientia Horticulturae, 187, 65–71. https://doi.org/10.1016/j.scienta.2015.02.034

    Article  CAS  Google Scholar 

  • Hong, K., Gong, D., Xu, H., Wang, S., Jia, Z., Chen, J., & Zhang, L. (2014). Effects of salicylic acid and nitric oxide pretreatment on the expression of genes involved in the ethylene signalling pathway and the quality of postharvest mango fruit. New Zealand Journal of Crop and Horticultural Science, 42, 205–216.

    CAS  Google Scholar 

  • Huang, R.-H., Liu, J.-H., Lu, Y.-M., & Xia, R.-X. (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’ navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47, 168–175.

    CAS  Google Scholar 

  • Jamali, B., & Eshghi, S. (2015). Salicylic acid–induced salinity redressal in hydroponically grown strawberry. Communications in Soil Science and Plant Analysis, 46(12), 1482–1493.

    CAS  Google Scholar 

  • Jamali, B., Eshghi, S., & Taffazoli, E. (2013). Vegetative growth, yield, fruit quality and fruit and leaf composition of strawberry cv. ‘Pajaro’ and influenced by salicylic acid and nickel sprays. Journal of Plant Nutrition, 36, 1043–1055.

    CAS  Google Scholar 

  • Jin, J. B., Cai, B., & Zhou, J.-M. (2017). Salicylic acid. In Hormone metabolism and signaling in plants. Elsevier Ltd.

    Google Scholar 

  • Jing-Hua, Y., Yuan, G., Yan-Man, L., Xiao-Hua, Q., & Ming-Fang, Z. (2008). Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon. Scientia Horticulturae, 118, 200–205.

    Google Scholar 

  • Khademi, O., Ashtari, M., & Razavi, F. (2019). Effects of salicylic acid and ultrasound treatments on chilling injury control and quality preservation in banana fruit during cold storage. Scientia Horticulturae, 249, 334–339.

    CAS  Google Scholar 

  • Khalid, K. A., El-Gohary, A. E., & Ahmed, A. M. A. (2018). Effect of the interaction between salicylic acid and geographical locations on grape fruit essential oil. Journal of Essential Oil Bearing Plants, 21, 1594–1603.

    CAS  Google Scholar 

  • Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462.

    PubMed  PubMed Central  Google Scholar 

  • Khayyat, M., Jabbari, M., Fallahi, H.-R., & Samadzadeh, A. (2018). Effect of corm dipping in salicylic acid or potassium nitrate on growth, flowering and quality of saffron. Journal of Horticultural Research, 26, 13–21.

    CAS  Google Scholar 

  • Korkmaz, A., Uzunlu, M., & Demirkiran, A. R. (2007). Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiologae Plantarum, 29, 503–508.

    CAS  Google Scholar 

  • Kumar, S., & Kaur, G. (2019). Effect of pre harvest application of salicylic acid on plant growth parameters and yield of strawberry cv. Chandler. Journal of Pharmacognosy and Phytochemistry, SP4, 85–87.

    Google Scholar 

  • Kumari, P., Barman, K., Patel, V. B., Siddiqui, M. W., & Kole, B. (2015). Reducing postharvest pericarp browning and preserving health promoting compounds of litchi fruit by combination treatment of salicylic acid and chitosan. Scientia Horticulturae, 197, 555–563.

    CAS  Google Scholar 

  • Lata, D., Aftab, M. A., Homa, F., Ahmad, M. S., & Siddiqui, M. W. (2018). Effect of eco-safe compounds on postharvest quality preservation of papaya (Carica papaya L.). Acta Physiologiae Plantarum, 40, 8.

    Google Scholar 

  • Léay, A. A. (2017). Preharvest salicylic acid and delay ripening of ‘superior seedless’ grapes. Egyptian Journal of Basic and Applied Sciences, 4, 227–230. https://doi.org/10.1016/j.ejbas.2017.04.006

    Article  Google Scholar 

  • Lim, G.-H., Liu, H., Yu, K., Liu, R., Shine, M. B., Fernandez, J., Burch-Smith, T., Mobley, J. K., McLetchie, N., Kachroo, A., & Kachroo, P. (2020). The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Science Advances, 6. https://doi.org/10.1126/sciadv.aaz0478

  • Lokesh, G., Madhumathi, C., Krishna, M. R., Priya, B. T., & Kadiri, L. (2020). Effect of salicylic acid and potassium silicate on shelf life of mango (Mangifera indica L.) cv. Alphonso. International Journal of Chemical Studies, 8, 437–440.

    CAS  Google Scholar 

  • Lu, X. H., Sun, D. Q., Mo, Y. W., Xi, J. G., & Sun, G. M. (2010). Effects of post-harvest salicylic acid treatment on fruit quality and anti-oxidant metabolism in pineapple during cold storage. The Journal of Horticultural Science and Biotechnology, 85, 454–458.

    CAS  Google Scholar 

  • Luo, Z., Chen, C., & Xie, J. (2011). Effect of salicylic acid treatment on alleviating postharvest chilling injury of ‘Qingnai’ plum fruit. Postharvest Biology and Technology, 62, 115–120.

    CAS  Google Scholar 

  • Madhav, J. V., Sethi, S., Sharma, R. R., & Nagaraja, A. (2018). Impact of salicylic acid treatments on storage quality of guava fruits cv. Lalit during storage. International Journal of Current Microbiology and Applied Sciences, 7, 2390–2397.

    CAS  Google Scholar 

  • Mohamadi, H., & Pakkish, Z. (2014). Role of salicylic acid on yield improvement of ‘Elberta’ Peach (Prunus persica L. Batsch) tree. International journal of Advanced Biological and Biomedical Research, 2, 970–973.

    Google Scholar 

  • Mustafa, M. A., Ali, A., Seymour, G., & Tucker, G. (2018). Delayed pericarp hardening of cold stored mangosteen (Garcinia mangostana L.) upon pre-treatment with the stress hormones methyl jasmonate and salicylic acid. Scientia Horticulturae, 230, 107–116.

    CAS  Google Scholar 

  • Mustafa, M. A., Ali, A., Seymour, G., & Tucker, G. (2018a). Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage. Scientia Horticulturae, 231, 89–96.

    CAS  Google Scholar 

  • Promyou, S., & Supapvanich, S. (2020). Combinative effect of salicylic acid immersion and UV-C illumination on chilling injury-related factors of longan (Dimocarpus longan Lour.) fruit. International Journal of Fruit Science, 20, 133–148.

    Google Scholar 

  • Ranjbaran, E., Sarikhani, H., Bakhshi, D., & Mehrdad, P. (2011). Investigation of salicylic acid application to reduce postharvest losses in stored ‘Bidaneh Ghermez’ table grapes. International Journal of Fruit Science, 11, 430–439.

    Google Scholar 

  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463.

    CAS  Google Scholar 

  • Rasouli, M., Saba, M. K., & Ramezanian, A. (2019). Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit. Scientia Horticulturae, 247, 27–34.

    CAS  Google Scholar 

  • Sahu, G. K. (2013). Salicylic acid: Role in plant physiology and stress tolerance. In G. R. Rout & A. B. Das (Eds.), Molecular stress physiology of plants. Springer. https://doi.org/10.1007/978-81-322-0807-5_9

    Chapter  Google Scholar 

  • Saurabh, V., Barman, K., & Singh, A. K. (2019). Synergistic effect of salicylic acid and chitosan on postharvest life and quality attributes of jamun (Syzygium cumini Skeels) fruit. Acta Physiologiae Plantarum, 41, 89.

    Google Scholar 

  • Sayyari, M., Babalar, M., Kalantari, S., Serrano, M., & Valero, D. (2009). Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biology and Technology, 53, 152–154.

    CAS  Google Scholar 

  • Sayyari, M., Castillo, S., Valero, D., Díaz-Mula, H. M., & Serrano, M. (2011). Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biology and Technology, 60, 136–142.

    CAS  Google Scholar 

  • Sedaghata, M., Sarvestani, Z. T., Emam, Y., Bidgoli, A. M., & Sorooshzadeh, A. (2020). Foliar-applied GR24 and salicylic acid enhanced wheat drought tolerance. Russian Journal of Plant Physiology, 67, 733–739.

    Google Scholar 

  • Shafiee, M., Taghavi, T. S., & Babalar, M. (2010). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae, 124, 40–45.

    CAS  Google Scholar 

  • Shi, Z., Wang, F., Lu, Y., & Deng, J. (2018). Combination of chitosan and salicylic acid to control postharvest green mold caused by Penicillium digitatum in grape fruit. Scientia Horticulturae, 233, 54–60.

    CAS  Google Scholar 

  • Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171, 1722–1731.

    CAS  PubMed  Google Scholar 

  • Siboza, X. I., Bertling, I., & Odindo, A. O. (2017). Enzymatic antioxidants in response to methyl jasmonate and salicylic acid and their effect on chilling tolerance in lemon fruit [Citrus limon (L.) Burm. F.]. Scientia Horticulturae, 225, 659–667.

    CAS  Google Scholar 

  • Sun, X., Huo, L., Jia, X., Che, R., Gong, X., Wang, P., & Ma, F. (2018). Overexpression of MdATG18a in apple improves resistance to Diplocarpon mali infection by enhancing antioxidant activity and salicylic acid levels. Horticulture Research, 5, 57.

    PubMed  PubMed Central  Google Scholar 

  • Supapvanich, S., Mitsanga, P., & Youryon, P. (2017). Preharvest salicylic acid application maintains physicochemical quality of ‘Taaptimjaan’ wax apple fruit (Syzygium samarangenese) during short-term storage. Scientia Horticulturae, 215, 178–183.

    CAS  Google Scholar 

  • Tareen, M. J., Abbasi, N. A., & Hafiz, I. A. (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Scientia Horticulturae, 142, 221–228.

    CAS  Google Scholar 

  • Tareen, M. J., Singh, Z., Khan, A. S., Abbasi, N. A., & Naveed, M. (2017). Combined applications of aminoethoxyvinylglycine with salicylic acid or nitric oxide reduce oxidative stress in peach during ripening and cold storage. Journal of Plant Growth Regulation, 36, 983–994.

    CAS  Google Scholar 

  • Tripathi, D., Raikhy, G., & Kumar, D. (2019). Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Current Plant Biology, 17, 48–59.

    Google Scholar 

  • Valero, D., Díaz-Mula, H. M., Zapata, P. J., Castillo, S., Guillen, F., Martínez-Romero, D., & Serrano, M. (2011). Postharvest treatments with salicylic acid, acetyl salicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry, 59, 5483–5489.

    CAS  PubMed  Google Scholar 

  • Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251. https://doi.org/10.1016/j.postharvbio.2006.04.010

    Article  CAS  Google Scholar 

  • Wang, Y., & Liu, J.-H. (2012). Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology, 169, 1143–1149.

    CAS  PubMed  Google Scholar 

  • Weissmann, G. (1991). Aspirin. Scientific American, 264, 84–90.

    CAS  PubMed  Google Scholar 

  • Wen, P.-F., Chen, J.-Y., Wan, S.-B., Kong, W.-F., Zhang, P., Wang, W., Zhan, J.-C., Pan, Q.-H., & Huang, W.-D. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation, 55, 1–10.

    CAS  Google Scholar 

  • White, R. F. (1979). Acetylsalicylic-acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99, 410–412.

    CAS  PubMed  Google Scholar 

  • Yang, C., Duan, W., Xie, K., Ren, C., Zhu, C., Chen, K., & Zhang, B. (2020). Effect of salicylic acid treatment on sensory quality, flavor-related chemicals and gene expression in peach fruit after cold storage. Postharvest Biology and Technology, 161, 111089.

    CAS  Google Scholar 

  • Youryon, P., Supapvanich, S., & Wongs-Aree, C. (2019). Internal browning alleviation of queen pineapple cv. ‘Sawi’under cold storage using salicylic acid or abscisic acid peduncle infiltration. The Journal of Horticultural Science and Biotechnology, 94, 744–752.

    Google Scholar 

  • Yu, T., & Zheng, X. D. (2006). Salicylic acid enhances biocontrol efficacy of the antagonist Cryptococcus laurentii in apple fruit. Journal of Plant Growth Regulation, 25, 166–174.

    Google Scholar 

  • Yusuf, M., Hasan, S. A., Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). Effect of salicylic acid on salinity induced changes in Brassica juncea. Journal of Integrative Plant Biology, 50, 1096–1102.

    CAS  PubMed  Google Scholar 

  • Zeraatgar, H., Davarynejad, G. H., Moraddinezhad, F., & Abedi, B. (2018). Effect of salicylic acid and calcium nitrate spraying on qualitative properties and storability of fresh jujube fruit (Ziziphus jujube Mill.). Notulae Botanicae Horti Agrobotanicae, 46, 138–147.

    CAS  Google Scholar 

  • Zhang, Y., Shi, X., Li, B., Zhang, Q., Liang, W., & Wang, C. (2016). Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple. Plant Physiology and Biochemistry, 106, 64–72.

    CAS  PubMed  Google Scholar 

  • Zhao, Y., Li, Y., & Zhang, B. (2020). Induced resistance in peach fruit as treated by Pichia guilliermondii and their possible mechanism. International Journal of Food Properties, 23, 34–51.

    CAS  Google Scholar 

  • Zhou, Y., Ma, J., Xie, J., Deng, L., Yao, S., & Zeng, K. (2018). Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid, Pichia membranaefaciens and oligochitosan. Postharvest Biology and Technology, 142, 81–92.

    CAS  Google Scholar 

  • Zhu, F., Chen, J., Xiao, X., Zhang, M., Yun, Z., Zeng, Y., Xu, J., Cheng, Y., & Deng, X. (2016). Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones. Food Chemistry, 207, 68–74.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, B. (2021). Role of Salicylic Acid in Pre- and Post-Harvest Attributes in Horticulture. In: Hayat, S., Siddiqui, H., Damalas, C.A. (eds) Salicylic Acid - A Versatile Plant Growth Regulator. Springer, Cham. https://doi.org/10.1007/978-3-030-79229-9_4

Download citation

Publish with us

Policies and ethics