Skip to main content

Biosynthetic Convergence of Salicylic Acid and Melatonin, and their Role in Plant Stress Tolerance

  • Chapter
  • First Online:
Salicylic Acid - A Versatile Plant Growth Regulator

Abstract

Phytohormones are small organic molecules that are found naturally in plants and regulate various physiological processes at a very low concentration. Salicylic acid (SA) and melatonin (MEL) are phytohormones discovered in plants during nineteenth and twentieth century, respectively. Since, SA and MEL share a common precursor during their biosynthesis many similarities exist between the two. SA and MEL regulate growth and physiology of plants specifically, under the stress (abiotic) conditions. The present chapter deals with SA and MEL coinciding biosynthetic pathway, response and interaction with each other in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalam, L., Sedghi, M., & Sofalian, O. (2019). Sodium nitroprusside and salicylic acid decrease antioxidant enzymes activity in soybean. Plant Physiology, 10(1), 3073–3077.

    Google Scholar 

  • Abdelaal, K. A., Attia, K. A., Alamery, S. F., El-Afry, M. M., Ghazy, A. I., Tantawy, D. S., Al-Doss, A. A., El-Shawy, E. S. E., Abu-Elsaoud, M., & A., & Hafez, Y. M. (2020). Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability, 12(5), 1736.

    CAS  Google Scholar 

  • Aftab, T., Masroor, M., Khan, A., Idrees, M., & Naeem, M. (2010). Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. Journal of Crop Science and Biotechnology, 13(3), 183–188.

    Google Scholar 

  • Aguilera, Y., Herrera, T., Liébana, R., Rebollo-Hernanz, M., Sanchez-Puelles, C., & Martín-Cabrejas, M. A. (2015). Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity. Journal of Agricultural and Food Chemistry, 63(36), 7967–7974.

    CAS  PubMed  Google Scholar 

  • Ahammed, G. J., Xu, W., Liu, A., & Chen, S. (2019). Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environmental and Experimental Botany, 161, 303–311.

    CAS  Google Scholar 

  • Ahanger, M. A., Aziz, U., Alsahli, A. A., Alyemeni, M. N., & Ahmad, P. (2020). Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules, 10(1), 42.

    CAS  Google Scholar 

  • Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Egamberdieva, D., Wijaya, L., & Alam, P. (2018). Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russian Journal of Plant Physiology, 65(1), 104–114.

    CAS  Google Scholar 

  • Ahmad, S., Kamran, M., Ding, R., Meng, X., Wang, H., Ahmad, I., Fahad, S., & Han, Q. (2019). Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ, 7, e7793.

    PubMed  PubMed Central  Google Scholar 

  • Alamer, K. H., & Fayez, K. A. (2020). Impact of salicylic acid on the growth and physiological activities of parsley plants under lead toxicity. Physiology and Molecular Biology of Plants, 26, 1361–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alamri, S. A., Siddiqui, M. H., Al-Khaishany, M. Y., Nasir Khan, M., Ali, H. M., Alaraidh, I. A., Alsahli, A. A., Al-Rabiah, H., & Mateen, M. (2018). Ascorbic acid improves the tolerance of wheat plants to lead toxicity. Journal of Plant Interactions, 13(1), 409–419.

    CAS  Google Scholar 

  • Aldesuquy, H., & Ghanem, H. (2015). Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. Journal of Horticulture, 2, 2.

    Google Scholar 

  • Ali, B. (2017). Salicylic acid induced antioxidant system enhances the tolerence to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Indian Journal of Plant Physiology, 22(2), 178–189.

    CAS  Google Scholar 

  • Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., & Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123(3), 1047–1056.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Mohammadi, A. N., & Al-Rawi, A. R. (2016). Effect of planting date, growth promoters, type of organic manure on growth and yield, and active ingredient of Datura stramonium L. Tikrit Journal for Agricultural Sciences., 16(2), 26–50.

    Google Scholar 

  • An, C., & Mou, Z. (2011). Salicylic acid and its function in plant immunity F. Journal of Integrative Plant Biology, 53(6), 412–428.

    CAS  PubMed  Google Scholar 

  • Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences, 17(1), 1–8.

    Google Scholar 

  • Antonić, D., Milošević, S., Cingel, A., Lojić, M., Trifunović-Momčilov, M., Petrić, M., Subotić, A., & Simonović, A. (2016). Effects of exogenous salicylic acid on Impatiens walleriana L. grown in vitro under polyethylene glycol-imposed drought. South African Journal of Botany, 105, 226–233.

    Google Scholar 

  • Ardebili, N. O., Saadatmand, S., Niknam, V., & Khavari-Nejad, R. A. (2014). The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiologiae Plantarum, 36(12), 3199–3205.

    CAS  Google Scholar 

  • Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 164(6), 685–694.

    CAS  PubMed  Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2015). Functions of melatonin in plants: A review. J Pineal Research, 59(2), 133–150. https://doi.org/10.1111/jpi.12253

    Article  CAS  Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2017). Growth activity, rooting capacity, and tropism: Three auxinic precepts fulfilled by melatonin. Acta Physiologiae Plantarum, 39(6) Article 127.

    Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2018). Melatonin and its relationship to plant hormones. Annals of Botany, 121(2), 195–207.

    Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2019). Melatonin and reactive oxygen and nitrogen species: A model for the plant redox network. Melatonin Research, 2, 152–168.

    Google Scholar 

  • Astier, J., Loake, G., Velikova, V., & Gaupels, F. (2016). Interplay between NO signaling, ROS, and the antioxidant system in plants. Frontiers in Plant Science, 7, 1731.

    PubMed  PubMed Central  Google Scholar 

  • Babar, S., Siddiqi, E. H., Hussain, I., Hayat Bhatti, K., & Rasheed, R. (2014). Mitigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiology Journal, 2014, 1–6.

    Google Scholar 

  • Back, K., Tan, D. X., & Reiter, R. J. (2016). Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 61(4), 426–437.

    CAS  PubMed  Google Scholar 

  • Bajwa, V. S., Shukla, M. R., Sherif, S. M., Murch, S. J., & Saxena, P. K. (2014). Role of melatonin in alleviating cold stress in A rabidopsis thaliana. Journal of Pineal Research, 56(3), 238–245.

    CAS  PubMed  Google Scholar 

  • Bastam, N., Baninasab, B., & Ghobadi, C. (2013). Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regulation, 69(3), 275–284.

    CAS  Google Scholar 

  • Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W., & Djebali, W. (2010). Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety, 73(5), 1004–1011.

    CAS  PubMed  Google Scholar 

  • Bidabadi, S. S., VanderWeide, J., & Sabbatini, P. (2020). Exogenous melatonin improves glutathione content, redox state and increases essential oil production in two Salvia species under drought stress. Scientific Reports, 10(1), 1–12.

    Google Scholar 

  • Bijanzadeh, E., Naderi, R., & Egan, T. P. (2019). Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L.) hybrids. Journal of Plant Nutrition, 42(13), 1483–1495.

    CAS  Google Scholar 

  • Blask, D. E., Dauchy, R. T., Sauer, L. A., & Krause, J. A. (2004). Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: Melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin. Carcinogenesis, 25(6), 951–960.

    CAS  PubMed  Google Scholar 

  • Byeon, Y., & Back, K. (2014a). Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. Journal of Pineal Research, 56(2), 189–195.

    CAS  PubMed  Google Scholar 

  • Byeon, Y., & Back, K. (2014b). An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. Journal of Pineal Research, 56(4), 408–414.

    CAS  PubMed  Google Scholar 

  • Byeon, Y., Tan, D. X., Reiter, R. J., & Back, K. (2015). Predominance of 2-hydroxymelatonin over melatonin in plants. Journal of Pineal Research, 59(4), 448–454.

    CAS  PubMed  Google Scholar 

  • Cao, F., Liu, L., Ibrahim, W., Cai, Y., & Wu, F. (2013). Alleviating effects of exogenous glutathione, glycinebetaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza sativa). Agrotechnology, 2(1), 107–112.

    Google Scholar 

  • Carvalho, P. R., Machado Neto, N. B., & Custódio, C. C. (2007). Ácido salicílico em sementes de calêndula (Calendula officinalis L.) sob diferentes estresses. Revista Brasileira de Sementes, 29(1), 114–124.

    Google Scholar 

  • Castanares, J. L., & Bouzo, C. A. (2019). Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Horticultural Plant Journal, 5(2), 79–87.

    Google Scholar 

  • Chandrakar, V., Dubey, A., & Keshavkant, S. (2016). Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. Journal of Soil Science and Plant Nutrition, 16(3), 662–676.

    CAS  Google Scholar 

  • Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S. A. (2019). Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Industrial Crops and Products, 134, 168–176.

    CAS  Google Scholar 

  • Chen, Q., Qi, W. B., Reiter, R. J., Wei, W., & Wang, B. M. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166(3), 324–328.

    CAS  PubMed  Google Scholar 

  • Chen, L., Liu, L., Lu, B., Ma, T., Jiang, D., Li, J., Zhang, K., Sun, H., Zhang, Y., Bai, Z., & Li, C. (2020). Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PloS One, 15(1), e0228241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. E., Mao, J. J., Sun, L. Q., Huang, B., Ding, C. B., Gu, Y., Liao, J. Q., Hu, C., Zhang, Z. W., Yuan, S., & Yuan, M. (2018). Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiologia Plantarum, 164(3), 349–363.

    CAS  PubMed  Google Scholar 

  • Cingoz, G. S., & Gurel, E. (2016). Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina. Plant Physiology and Biochemistry, 105, 145–149.

    CAS  PubMed  Google Scholar 

  • Csiszár, J., Brunner, S., Horváth, E., Bela, K., Ködmön, P., Riyazuddin, R., Gallé, Á., Hurton, Á., Papdi, C., Szabados, L., & Tari, I. (2018). Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regulation, 86(2), 181–194.

    Google Scholar 

  • Damiani, I., Pauly, N., Puppo, A., Brouquisse, R., & Boscari, A. (2016). Reactive oxygen species and nitric oxide control early steps of the legume–rhizobium symbiotic interaction. Frontiers in Plant Science, 7, 454.

    PubMed  PubMed Central  Google Scholar 

  • Darvizheh, H., Zahedi, M., Abbaszadeh, B., & Razmjoo, J. (2019). Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Scientia Horticulturae, 247, 390–399.

    CAS  Google Scholar 

  • Dehnavi, A., Zahedi, M., Razmjoo, J., & Eshghizadeh, H. (2019). Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. Journal of Plant Nutrition, 42(11–12), 1333–1349.

    Google Scholar 

  • Del Río, L. A., & López-Huertas, E. (2016). ROS generation in peroxisomes and its role in cell signaling. Plant and Cell Physiology, 57(7), 1364–1376.

    PubMed  Google Scholar 

  • Ding, F., Liu, B., & Zhang, S. (2017). Exogenous melatonin ameliorates cold-induced damage in tomato plants. Scientia Horticulturae, 219, 264–271.

    CAS  Google Scholar 

  • Ding, F., Wang, G., Wang, M., & Zhang, S. (2018). Exogenous melatonin improves tolerance to water deficit by promoting cuticle formation in tomato plants. Molecules, 23(7), 1605.

    PubMed Central  Google Scholar 

  • Ding, Z. S., Tian, S. P., Zheng, X. L., Zhou, Z. W., & Xu, Y. (2007). Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia Plantarum, 130(1), 112–121.

    CAS  Google Scholar 

  • Dubbels, R., Reiter, R. J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H. W., & Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18(1), 28–31.

    CAS  PubMed  Google Scholar 

  • El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M., Ali, H. M., & Elshikh, M. S. (2017). Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8, 716.

    PubMed  PubMed Central  Google Scholar 

  • Elhakem, A. H. (2019). Impact of salicylic acid application on growth, photosynthetic pigments and organic osmolytes response in Mentha arvensis under drought stress. Journal of Biological Sciences, 19(6), 372–380.

    CAS  Google Scholar 

  • Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113(2), 120–128.

    CAS  Google Scholar 

  • Espanany, A., Fallah, S., & Tadayyon, A. (2015). The effect of halopriming and salicylic acid on the germination of fenugreek (Trigonella foenum-graecum) under different cadmium concentrations. Notulae Scientia Biologicae, 7(3), 322–329.

    CAS  Google Scholar 

  • Fardus, J., Matin, M. A., Hasanuzzaman, M., Hossain, M. A., & Hasanuzzaman, M. (2018). Salicylic acid-induced improvement in germination and growth parameters of wheat under salinity stress. Journal of Animal and Plant Sciences, 28, 197–207.

    CAS  Google Scholar 

  • Farhadi, N., & Ghassemi-Golezani, K. (2020). Physiological changes of Mentha pulegium in response to exogenous salicylic acid under salinity. Scientia Horticulturae, 267, 109325.

    CAS  Google Scholar 

  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41(2), 281–284.

    CAS  Google Scholar 

  • Fleta-Soriano, E., Díaz, L., Bonet, E., & Munné-Bosch, S. (2017). Melatonin may exert a protective role against drought stress in maize. Journal of Agronomy and Crop Science, 203(4), 286–294.

    CAS  Google Scholar 

  • Ghassemi-Golezani, K., Hassanzadeh, N., Shakiba, M. R., & Esmaeilpour, B. (2020). Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatalysis and Agricultural Biotechnology, 101636.

    Google Scholar 

  • Gu, C. S., Yang, Y. H., Shao, Y. F., Wu, K. W., & Liu, Z. L. (2018). The effects of exogenous salicylic acid on alleviating cadmium toxicity in Nymphaea tetragona Georgi. South African Journal of Botany, 114, 267–271.

    CAS  Google Scholar 

  • Guo, S., Ge, Y., & Jom, K. N. (2017). A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chemistry Central Journal, 11(1), 1–10.

    CAS  Google Scholar 

  • Guo, Y. Y., Li, H. J., Zhao, C. F., Xue, J. Q., & Zhang, R. H. (2020). Exogenous melatonin improves drought tolerance in maize seedlings by regulating photosynthesis and the ascorbate–glutathione cycle. Russian Journal of Plant Physiology, 67(5), 809–821.

    CAS  Google Scholar 

  • Habibi, G. (2012). Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis, 56(1), 57–63.

    Google Scholar 

  • Hardeland, R. (2015). Melatonin in plants and other phototrophs: Advances and gaps concerning the diversity of functions. Journal of Experimental Botany, 66(3), 627–646.

    CAS  PubMed  Google Scholar 

  • Hardeland, R. (2016). Melatonin in plants – Diversity of levels and multiplicity of functions. Frontiers in Plant Science, 7. Article 198.

    Google Scholar 

  • Hasan, M., Ahammed, G. J., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J., & Zhou, J. (2015). Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Frontiers in Plant Science, 6, 601.

    PubMed  PubMed Central  Google Scholar 

  • Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., Hara, M., Suzuki, T., & Reiter, R. J. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International, 35(3), 627.

    CAS  PubMed  Google Scholar 

  • Hayat, Q., Hayat, S., Alyemeni, M. N., & Ahmad, A. (2012). Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant, Soil and Environment, 58(9), 417–423.

    CAS  Google Scholar 

  • Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013a). Salicylic acid. Springer.

    Google Scholar 

  • Hayat, S., Aqil, A., & Alyemeni, M. N. (Eds.). (2013b). Salicylic acid: Plant. In Growth and development. Springer. ISBN 978-94-007-6427-9.

    Google Scholar 

  • Hayat, S., Fariduddin, Q., Ali, B., & Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53(4), 433–437.

    CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3(4), 297–304.

    CAS  Google Scholar 

  • Horváth, E., Brunner, S., Bela, K., Papdi, C., Szabados, L., Tari, I., & Csiszár, J. (2015). Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Functional Plant Biology, 42(12), 1129–1140.

    PubMed  Google Scholar 

  • Horváth, E., Pál, M., Szalai, G., Páldi, E., & Janda, T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum, 51(3), 480–487.

    Google Scholar 

  • Hosain, T., Poly, K., Rahman, M., Munshi, M., & Rahman, S. (2020). Drought stress response of rice yield (Oryza sativa L.) and role of exogenous salicylic acid. International Journal of Biosciences, 16, 222–230.

    CAS  Google Scholar 

  • Hu, Z., Fan, J., Chen, K., Amombo, E., Chen, L., & Fu, J. (2016). Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature. Photosynthesis Research, 128(1), 59–72.

    CAS  PubMed  Google Scholar 

  • Huang, B., Chen, Y. E., Zhao, Y. Q., Ding, C. B., Liao, J. Q., Hu, C., Zhou, L. J., Zhang, Z. W., Yuan, S., & Yuan, M. (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science, 10, 677.

    PubMed  PubMed Central  Google Scholar 

  • Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., & Cheema, M. A. (2008). Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal of Agronomy and Crop Science, 194(3), 193–199.

    CAS  Google Scholar 

  • Islam, F., Yasmeen, T., Arif, M. S., Riaz, M., Shahzad, S. M., Imran, Q., & Ali, I. (2016). Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiology and Biochemistry, 108, 456–467.

    CAS  PubMed  Google Scholar 

  • Jahan, M. S., Shu, S., Wang, Y., Chen, Z., He, M., Tao, M., Sun, J., & Guo, S. (2019). Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biology, 19(1), 1–16.

    CAS  Google Scholar 

  • Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., & Acet, T. (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation, 64(1), 27–37.

    CAS  Google Scholar 

  • Kamiab, F. (2020). Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. Journal of Plant Nutrition, 43(10), 1468–1484.

    CAS  Google Scholar 

  • Kareem, F., Rihan, H., & Fuller, M. P. (2019). The effect of exogenous applications of salicylic acid on drought tolerance and up-regulation of the drought response regulon of Iraqi wheat. Journal of Crop Science and Biotechnology, 22(1), 37–45.

    Google Scholar 

  • Kholodova, V. P., Vasil’ev, S. V., Efimova, M. V., Voronin, P. Y., Rakhmankulova, Z. F., Danilova, E. Y., & Kuznetsov, V. V. (2018). Exogenous melatonin protects canola plants from toxicity of excessive copper. Russian Journal of Plant Physiology, 65(6), 882–889.

    CAS  Google Scholar 

  • Kim, Y., Kim, S., & Shim, I. S. (2017). Exogenous salicylic acid alleviates salt-stress damage in cucumber under moderate nitrogen conditions by controlling endogenous salicylic acid levels. Horticulture, Environment, and Biotechnology, 58(3), 247–253.

    CAS  Google Scholar 

  • Kładna, A., Aboul-Enein, H. Y., & Kruk, I. (2003). Enhancing effect of melatonin on chemiluminescence accompanying decomposition of hydrogen peroxide in the presence of copper. Free Radical Biology and Medicine, 34(12), 1544–1554.

    PubMed  Google Scholar 

  • Klessig, D. F., Tian, M., & Choi, H. W. (2016). Multiple targets of salicylic acid and its derivatives in plants and animals. Frontiers in Immunology, 7, 206.

    PubMed  PubMed Central  Google Scholar 

  • Kováčik, J., Gruz, J., Hedbavny, J., Klejdus, B., & Strnad, M. (2009). Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. Journal of Agricultural and Food Chemistry, 57(20), 9848–9855.

    PubMed  Google Scholar 

  • Lee, B. R., Jin, Y. L., Avice, J. C., Cliquet, J. B., Ourry, A., & Kim, T. H. (2009). Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytologist, 182(3), 654–663.

    CAS  Google Scholar 

  • Lee, H. Y., Byeon, Y., & Back, K. (2014). Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. Journal of Pineal Research, 57(3), 262–268.

    CAS  PubMed  Google Scholar 

  • Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188(2), 626–637.

    CAS  Google Scholar 

  • Lei, X. Y., Zhu, R. Y., Zhang, G. Y., & Dai, Y. R. (2004). Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: The possible involvement of polyamines. Journal of Pineal Research, 36(2), 126–131.

    CAS  PubMed  Google Scholar 

  • León, J., Costa, Á., & Castillo, M. C. (2016). Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports, 6, 37945.

    PubMed  PubMed Central  Google Scholar 

  • Lerner, A. B., Case, J. D., Mori, W., & Wright, M. R. (1959). Melatonin in peripheral nerve. Nature, 183(4678), 1821–1821.

    CAS  PubMed  Google Scholar 

  • Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., & Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. Journal of the American Chemical Society, 80(10), 2587–2587.

    CAS  Google Scholar 

  • Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., Jia, D., Fu, M., & Ma, F. (2012). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 53(3), 298–306.

    CAS  PubMed  Google Scholar 

  • Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., Zhang, Y., Ma, J., Yang, J., & Zhang, X. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science, 8, 295.

    PubMed  PubMed Central  Google Scholar 

  • Li, J., Yang, Y., Sun, K., Chen, Y., Chen, X., & Li, X. (2019). Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules, 24(9), 1826.

    CAS  PubMed Central  Google Scholar 

  • Li, J., Zeng, L., Cheng, Y., Lu, G., Fu, G., Ma, H., Liu, Q., Zhang, X., Zou, X., & Li, C. (2018). Exogenous melatonin alleviates damage from drought stress in Brassica napus L. (rapeseed) seedlings. Acta Physiologiae Plantarum, 40(3), 43.

    Google Scholar 

  • Li, T., Hu, Y., Du, X., Tang, H., Shen, C., & Wu, J. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. Plos One, 9(10), e109492.

    PubMed  PubMed Central  Google Scholar 

  • Liang, B., Ma, C., Zhang, Z., Wei, Z., Gao, T., Zhao, Q., Ma, F., & Li, C. (2018b). Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and Experimental Botany, 155, 650–661.

    CAS  Google Scholar 

  • Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J., Lv, X., & Xia, H. (2018a). Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Frontiers in Plant Science, 9, 426.

    PubMed  PubMed Central  Google Scholar 

  • Liu, J., Li, L., Yuan, F., & Chen, M. (2019). Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signaling & Behavior, 14(10), e1644595.

    Google Scholar 

  • Liu, J., Wang, W., Wang, L., & Sun, Y. (2015). Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regulation, 77(3), 317–326.

    CAS  Google Scholar 

  • Liu, N., Song, F., Zhu, X., You, J., Yang, Z., & Li, X. (2017). Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism. Frontiers in Chemistry, 5, 96.

    PubMed  PubMed Central  Google Scholar 

  • Liu, W., Zhang, Y., Yuan, X., Xuan, Y., Gao, Y., & Yan, Y. (2016). Exogenous salicylic acid improves salinity tolerance of Nitraria tangutorum. Russian Journal of Plant Physiology, 63(1), 132–142.

    CAS  Google Scholar 

  • Maldonado, M. D., Murillo-Cabezas, F., Terron, M. P., Flores, L. J., Tan, D. X., Manchester, L. C., & Reiter, R. J. (2007). The potential of melatonin in reducing morbidity–mortality after craniocerebral trauma. Journal of Pineal Research, 42(1), 1–11.

    CAS  PubMed  Google Scholar 

  • Manzoor, K., Ilyas, N., Batool, N., Ahmad, B., & Arshad, M. (2015). Effect of salicylic acid on the growth and physiological characteristics of maize under stress conditions. Journal of the Chemical Society of Pakistan, 37(3), 588–593.

    CAS  Google Scholar 

  • Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Grzesiak, M. T., Janowiak, F., Filek, M., Dziurka, M., Dziurka, K., Waligórski, P., Juzoń, K., & Cyganek, K. (2013). Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. International Journal of Molecular Sciences, 14(7), 13171–13193.

    PubMed  PubMed Central  Google Scholar 

  • Mateo, A., Funck, D., Mühlenbock, P., Kular, B., Mullineaux, P. M., & Karpinski, S. (2006). Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany, 57(8), 1795–1807.

    CAS  PubMed  Google Scholar 

  • Mir, A. R., Faizan, M., Bajguz, A., Sami, F., Siddiqui, H., & Hayat, S. (2020a). Occurrence and biosynthesis of melatonin and its exogenous effect on plants. Acta Societatis Botanicorum Poloniae, 89(2), 8922.

    Google Scholar 

  • Mir, A. R., Siddiqui, H., Alam, P., & Hayat, S. (2020b). Melatonin modulates photosynthesis, redox status, and elemental composition to promote growth of Brassica juncea—A dose-dependent effect. Protoplasma, 257(6), 1685–1700.

    CAS  PubMed  Google Scholar 

  • Molassiotis, A., Job, D., Ziogas, V., & Tanou, G. (2016). Citrus plants: A model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Frontiers in Plant Science, 7, 229.

    PubMed  PubMed Central  Google Scholar 

  • Mustafa, M. A., Ali, A., Seymour, G., & Tucker, G. (2018). Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage. Scientia Horticulturae, 231, 89–96.

    CAS  Google Scholar 

  • Mustafa, N. R., Kim, H. K., Choi, Y. H., Erkelens, C., Lefeber, A. W., Spijksma, G., van der Heijden, R., & Verpoorte, R. (2009). Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry, 70(4), 532–539.

    CAS  PubMed  Google Scholar 

  • Mutlu, S., Atıcı, Ö., Nalbantoğlu, B., & Mete, E. (2016). Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Frontiers in Life Science, 9(2), 99–109.

    CAS  Google Scholar 

  • Najafian, S., Khoshkhui, M., & Tavallali, V. (2009a). Effect of salicylic acid and salinity in rosemary (Rosmarinus officinalis L.): Investigation on changes in gas exchange, water relations, and membrane stabilization. Advances in Environmental Biology, 3(3), 322–328.

    CAS  Google Scholar 

  • Najafian, S., Khoshkhui, M., Tavallali, V., & Saharkhiz, M. J. (2009b). Effect of salicylic acid and salinity in thyme (Thymus vulgaris L.): Investigation on changes in gas exchange, water relations, and membrane stabilization and biomass accumulation. Australian Journal of Basic and Applied Sciences, 3(3), 2620–2626.

    CAS  Google Scholar 

  • Namdjoyan, S., Kermanian, H., Soorki, A. A., Tabatabaei, S. M., & Elyasi, N. (2018). Effects of exogenous salicylic acid and sodium nitroprusside on α-tocopherol and phytochelatin biosynthesis in zinc-stressed safflower plants. Turkish Journal of Botany, 42(3), 271–279.

    CAS  Google Scholar 

  • Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807–815.

    CAS  PubMed  Google Scholar 

  • Nazar, R., Umar, S., & Khan, N. A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3), e1003751.

    Google Scholar 

  • Pancheva, T. V., Popova, L. P., & Uzunova, A. N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149(1–2), 57–63.

    CAS  Google Scholar 

  • Poór, P., Gémes, K., Horváth, F., Szepesi, A., Simon, M. L., & Tari, I. (2011). Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biology, 13(1), 105–114.

    PubMed  Google Scholar 

  • Posmyk, M. M., Kontek, R., & Janas, K. M. (2009). Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 72(2), 596–602.

    CAS  PubMed  Google Scholar 

  • Pucciariello, C., & Perata, P. (2017). New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant, Cell & Environment, 40(4), 473–482.

    CAS  Google Scholar 

  • Qiao, Y., Ren, J., Yin, L., Liu, Y., Deng, X., Liu, P., & Wang, S. (2020). Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance. BMC Plant Biology, 20, 1–14.

    Google Scholar 

  • Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J., & van Zanten, M. (2016). Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2(1), 1–9.

    Google Scholar 

  • Radwan, D. E. M., Mohamed, A. K., Fayez, K. A., & Abdelrahman, A. M. (2019). Oxidative stress caused by Basagran® herbicide is altered by salicylic acid treatments in peanut plants. Heliyon, 5(5), e01791.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem, M., Fariduddin, Q., & Janda, T. (2020). Multifaceted role of salicylic acid in combating cold stress in plants: A review. https://doi.org/10.1007/s00344-020-10152-x.

  • Sarropoulou, V., Dimassi-Theriou, K., Therios, I., & Koukourikou-Petridou, M. (2012). Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium× Prunus cerasus). Plant Physiology and Biochemistry, 61, 162–168.

    CAS  PubMed  Google Scholar 

  • Saxena, I., Srikanth, S., & Chen, Z. (2016). Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science, 7, 570.

    PubMed  PubMed Central  Google Scholar 

  • Shaikh-Abol-hasani, F., & Roshandel, P. (2019). Effects of priming with salicylic acid on germination traits of Dracocephalum moldavica L. under salinity stress. Plant Physiology, 10(1), 3035–3045.

    Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.

    Google Scholar 

  • Sheteiwy, M. S., An, J., Yin, M., Jia, X., Guan, Y., He, F., & Hu, J. (2019). Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma, 256(1), 79–99.

    CAS  PubMed  Google Scholar 

  • Shi, H., Chen, Y., Tan, D. X., Reiter, R. J., Chan, Z., & He, C. (2015). Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. Journal of Pineal Research, 59, 102–108. https://doi.org/10.1111/jpi.12244

    Article  CAS  PubMed  Google Scholar 

  • Shi, H. T., Li, R. J., Cai, W., Liu, W., Wang, C. L., & Lu, Y. T. (2012). Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Plant and Cell Physiology, 53(2), 344–357.

    CAS  PubMed  Google Scholar 

  • Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63(1–3), 317–326.

    CAS  Google Scholar 

  • Simlat, M., Ptak, A., Skrzypek, E., Warchoł, M., Morańska, E., & Piórkowska, E. (2018). Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ, 6, e5009.

    PubMed  PubMed Central  Google Scholar 

  • Sohag, A. A. M., Tahjib-Ul-Arif, M., Brestic, M., Afrin, S., Sakil, M. A., Hossain, M. T., Hossain, M. A., & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant, Soil and Environment, 66(1), 7–13.

    Google Scholar 

  • Sultan, S. M., Mohamed, F. M., Gamal, H. A., & Mohamed, S. S. E. (2016). Growth and yield of cucumber plants derived from seeds pretreated with salicylic acid. Journal of Biological Chemistry and Environmental Sciences, 11(1), 541–561.

    Google Scholar 

  • Sun, H., Feng, F., Liu, J., & Zhao, Q. (2017). The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Frontiers in Plant Science, 8, 2169.

    PubMed  PubMed Central  Google Scholar 

  • Tahjib-Ul-Arif, M., Siddiqui, M. N., Sohag, A. A. M., Sakil, M. A., Rahman, M. M., Polash, M. A. S., Mostofa, M. G., & Tran, L. S. P. (2018). Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. Journal of Plant Growth Regulation, 37(4), 1318–1330.

    CAS  Google Scholar 

  • Tan, D. X., Manchester, L. C., Helton, P., & Reiter, R. J. (2007). Phytoremediative capacity of plants enriched with melatonin. Plant Signaling & Behavior, 2(6), 514–516.

    Google Scholar 

  • Tari, I., Csiszár, J., Horváth, E., Poór, P., Takács, Z., & Szepesi, Á. (2015). The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time-and organ-specific antioxidant response. Acta Biologica Cracoviensia s. Botanica, 57, 21–30.

    CAS  Google Scholar 

  • Tayyab, N., Naz, R., Yasmin, H., Nosheen, A., Keyani, R., Sajjad, M., Hassan, M. N., & Roberts, T. H. (2020). Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One, 15(5), e0232269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torun, H., Novák, O., Mikulík, J., Pěnčík, A., Strnad, M., & Ayaz, F. A. (2020). Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Scientific Reports, 10(1), 1–17.

    Google Scholar 

  • Traw, M. B., & Bergelson, J. (2003). Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology, 133(3), 1367–1375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turk, H., Erdal, S., Genisel, M., Atici, O., Demir, Y., & Yanmis, D. (2014). The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regulation, 74(2), 139–152.

    CAS  Google Scholar 

  • Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 1–10.

    Google Scholar 

  • Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.

    CAS  PubMed  Google Scholar 

  • Wael, M. S., Mostafa, M. R., Taia, A. A. E. M., Saad, M. H., & Magdi, T. A. (2015). Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. The Journal of Horticultural Science and Biotechnology, 90(1), 83–91.

    Google Scholar 

  • Wang, L. Y., Liu, J. L., Wang, W. X., & Sun, Y. (2016). Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 54(1), 19–27.

    Google Scholar 

  • Wang, L. J., Fan, L., Loescher, W., Duan, W., Liu, G. J., Cheng, J. S., Luo, H. B., & Li, S. H. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10(1), 34.

    PubMed  PubMed Central  Google Scholar 

  • Wang, P., Yin, L., Liang, D., Li, C., Ma, F., & Yue, Z. (2012). Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate–glutathione cycle. Journal of Pineal Research, 53(1), 11–20.

    PubMed  Google Scholar 

  • Wang, Q., Liang, X., Dong, Y., Xu, L., Zhang, X., Kong, J., & Liu, S. (2013). Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. Journal of Plant Growth Regulation, 32(4), 721–731.

    CAS  Google Scholar 

  • Wang, Y. S., Wang, J., Yang, Z. M., Wang, Q. Y., Lu, B., Li, S. Q., Lu, Y. P., Wang, S. H., & Sun, X. (2004). Salicylic acid modulates aluminum-induced oxidative stress in roots of Cassia tora. Acta Botanica Sinica-English Edition, 46(7), 819–828.

    CAS  Google Scholar 

  • Wassie, M., Zhang, W., Zhang, Q., Ji, K., Cao, L., & Chen, L. (2020). Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety, 191, 110206.

    Google Scholar 

  • Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G. A., Fu, C., & Ren, S. (2014). Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One, 9(3), e93462.

    PubMed  PubMed Central  Google Scholar 

  • Wen, D., Gong, B., Sun, S., Liu, S., Wang, X., Wei, M., Yang, F., Li, Y., & Shi, Q. (2016). Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science, 7, 718.

    PubMed  PubMed Central  Google Scholar 

  • Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., Zhang, W. K., Ma, B., Lin, Q., Zhang, J. S., & Chen, S. Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66(3), 695–707.

    CAS  PubMed  Google Scholar 

  • Wei, J., Li, D. X., Zhang, J. R., Shan, C., Rengel, Z., Song, Z. B., & Chen, Q. (2018). Phytomelatonin receptor PMTR 1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. Journal of Pineal Research, 65(2), e12500.

    PubMed  Google Scholar 

  • Wu, S., Wang, Y., Zhang, J., Gong, X., Zhang, Z., Sun, J., Chen, X., & Wang, Y. (2020). Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Horticultural Plant Journal., 7(1), 13–22.

    Google Scholar 

  • Xiang-Dong, X., Yan, S., Xiao-Qin, G., Bo, S., & Jian, Z. (2010). Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress. Yingyong Shengtai Xuebao, 21(10), 2580–2586.

    Google Scholar 

  • Xu, L. L., Fan, Z. Y., Dong, Y. J., Kong, J., & Bai, X. Y. (2015). Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biologia Plantarum, 59(1), 171–182.

    CAS  Google Scholar 

  • Xu, L., Zhang, F., Tang, M., Wang, Y., Dong, J., Ying, J., Chen, Y., Hu, B., Li, C., & Liu, L. (2020). Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. Journal of Pineal Research, 69, e12659.

    CAS  PubMed  Google Scholar 

  • Yadav, V., Arif, N., Singh, S., Srivastava, P. K., Sharma, S., Tripathi, D. K., Dubey, N. K., & Chauhan, D. K. (2016). Exogenous mineral regulation under heavy metal stress: Advances and prospects. Biochemistry and Pharmacology, 5(220), 2167–0501.

    Google Scholar 

  • Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., & Yamaguchi, S. (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. The Plant Cell, 16(2), 367–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, Y., Pan, C., Du, Y., Li, D., & Liu, W. (2018). Exogenous salicylic acid regulates reactive oxygen species metabolism and ascorbate–glutathione cycle in Nitraria tangutorum Bobr. under salinity stress. Physiology and Molecular Biology of Plants, 24(4), 577–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, Z., Lu, J., Meng, S., Liu, Y., Mostafa, I., Qi, M., & Li, T. (2019). Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. Journal of Plant Interactions, 14(1), 453–463.

    CAS  Google Scholar 

  • Yool, L. H. (2016). Back Kyoungwhan. Melatonin is required for H2O2-and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. Journal of Pineal Research, 62(2), e12379.

    Google Scholar 

  • Yordanova, R., & Popova, L. (2007). Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. General of Applied Plant Physiology, 33(3–4), 155–170.

    CAS  Google Scholar 

  • Zhang, H. M., & Zhang, Y. (2014). Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. Journal of Pineal Research, 57(2), 131–146.

    CAS  PubMed  Google Scholar 

  • Zhang, M., He, S., Zhan, Y., Qin, B., Jin, X., Wang, M., Zhang, Y., Hu, G., Teng, Z., & Wu, Y. (2019). Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PLoS One, 14(12), e0226542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, N., Zhang, H. J., Sun, Q. Q., Cao, Y. Y., Li, X., Zhao, B., Wu, P., & Guo, Y. D. (2017). Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Scientific Reports, 7(1), 1–15.

    Google Scholar 

  • Zhou, X., Zhao, H., Cao, K., Hu, L., Du, T., Baluška, F., & Zou, Z. (2016). Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Frontiers in Plant Science, 7, 1823.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, H., Mir, A.R., Sami, F., Ahmed, K.B.M., Hayat, S. (2021). Biosynthetic Convergence of Salicylic Acid and Melatonin, and their Role in Plant Stress Tolerance. In: Hayat, S., Siddiqui, H., Damalas, C.A. (eds) Salicylic Acid - A Versatile Plant Growth Regulator. Springer, Cham. https://doi.org/10.1007/978-3-030-79229-9_10

Download citation

Publish with us

Policies and ethics